Strategies to Mitigate Cisplatin-Induced Ototoxicity: A Literature Review of Protective Agents, Mechanisms, and Clinical Gaps
Abstract
:1. Introduction
2. Material and Methods
3. Results
Mechanisms of Cisplatin-Induced Ototoxicity
4. Current Otoprotective Strategies
4.1. Systemic Interventions
4.2. Localized Delivery Strategies
4.2.1. Intratympanic Delivery:
4.2.2. Nanoparticles and Hydrogels
5. Emerging and Experimental Approaches
5.1. Genetic and Biomarker-Based Risk Stratification
5.2. Novel Otoprotective Agents
5.3. Statin–Cisplatin Interactions and Their Implications for Ototoxicity-Reducing Therapies in Cancer Treatment
6. Clinical Implications
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ghosh, S. Cisplatin: The First Metal Based Anticancer Drug. Bioorg Chem. 2019, 88, 102925. [Google Scholar] [CrossRef] [PubMed]
- Jadon, A.S.; Bhadauriya, P.; Sharma, M. An Integrative Review of Cisplatin: The First Metal Anti-Tumor Drug. J. Drug Deliv. Ther. 2019, 9, 673–677. [Google Scholar] [CrossRef]
- Kis, A.M.; Watz, C.G.; Motofelea, A.C.; Chiriac, S.; Poenaru, M.; Dehelean, C.A.; Borza, C.; Ionita, I. Challenges of Pharyngeal Cancer Screening in Lower-Income Countries during Economic and Social Transitions: A Population-Based Analysis. Eur. J. Investig. Health Psychol. Educ. 2023, 13, 2226–2237. [Google Scholar] [CrossRef]
- Roberts, D.; O’Dwyer, P.J.; Johnson, S.W. Platinum Complexes for the Treatment of Cancer. In Cancer Management in Man: Chemotherapy, Biological Therapy, Hyperthermia and Supporting Measures; Minev, B., Ed.; Cancer Growth and Progression; Springer: Dordrecht, The Netherlands, 2011; Volume 13, pp. 145–164. [Google Scholar] [CrossRef]
- Canon, J.-L.; Humblet, Y.; Symann, M. Resistance to Cisplatin: How to Deal with the Problem? Eur. J. Cancer Clin. Oncol. 1990, 26, 1–3. [Google Scholar] [CrossRef]
- Waissbluth, S.; Daniel, S.J. Cisplatin-Induced Ototoxicity: Transporters Playing a Role in Cisplatin Toxicity. Hear. Res. 2013, 299, 37–45. [Google Scholar] [CrossRef]
- Benkafadar, N.; Menardo, J.; Bourien, J.; Nouvian, R.; François, F.; Decaudin, D.; Maiorano, D.; Puel, J.-L.; Wang, J. Reversible P53 Inhibition Prevents Cisplatin Ototoxicity without Blocking Chemotherapeutic Efficacy. EMBO Mol. Med. 2017, 9, 7–26. [Google Scholar] [CrossRef] [PubMed]
- Brock, P.; Rajput, K.; Edwards, L.; Meijer, A.; Simpkin, P.; Hoetink, A.; Kruger, M.; Sullivan, M.; van den Heuvel-Eibrink, M. Cisplatin Ototoxicity in Children. IntechOpen. 2021. Available online: https://www.intechopen.com/chapters/75723 (accessed on 4 November 2024).
- Brock, P.R.; Bellman, S.C.; Yeomans, E.C.; Pinkerton, C.R.; Pritchard, J. Cisplatin Ototoxicity in Children: A Practical Grading System. Med. Pediatr. Oncol. 1991, 19, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Mosallai, A.; Heydari, M.H.; Khademi, B.; Omidvari, S.; Ahmadloo, N.; Mohammadian Panah, M. Effects of Cisplatin on Olfactory Function in Cancer Patients Receiving Cisplatin-Based Chemotherapy. Iran. J. Otorhinolaryngol. 2008, 20, 7–12. [Google Scholar]
- Peleva, E.; Emami, N.; Alzahrani, M.; Bezdjian, A.; Gurberg, J.; Carret, A.S.; Daniel, S.J. Incidence of Platinum-Induced Ototoxicity in Pediatric Patients in Quebec. Pediatr. Blood Cancer 2014, 61, 2012–2017. [Google Scholar] [CrossRef]
- Dhillon, S. Sodium Thiosulfate: Pediatric First Approval. Paediatr. Drugs 2023, 25, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Correa-Morales, J.E.; Giraldo-Moreno, S.; Mantilla-Manosalva, N.; Cuellar-Valencia, L.; Borja-Montes, O.F.; Bedoya-Muñoz, L.J.; Iriarte-Aristizábal, M.F.; Quintero-Muñoz, E.; Zuluaga-Liberato, A.M. Prevention and Treatment of Cisplatin-Induced Ototoxicity in Adults: A Systematic Review. Clin. Otolaryngol. 2024, 49, 1–15. [Google Scholar] [CrossRef]
- Chen, D.; Milacic, V.; Frezza, M.; Dou, Q.P. Metal Complexes, Their Cellular Targets and Potential for Cancer Therapy. Curr. Pharm. Des. 2009, 15, 777–791. [Google Scholar] [CrossRef] [PubMed]
- Alkahtani, S.; Alarifi, S.; Albasher, G.; Al-Zharani, M.; Aljarba, N.H.; Almarzoug, M.H.; Alhoshani, N.M.; Al-Johani, N.S.; Alothaid, H.; Alkahtane, A.A. Poly Lactic-Co-Glycolic Acid- (PLGA-) Loaded Nanoformulation of Cisplatin as a Therapeutic Approach for Breast Cancers. Oxid. Med. Cell. Longev. 2021, 2021, 5834418. [Google Scholar] [CrossRef]
- Kang, S.W. Role of Reactive Oxygen Species in Cell Death Pathways. Hanyang Med. Rev. 2013, 33, 77–82. [Google Scholar] [CrossRef]
- Basappa, J.; Turcan, S.; Vetter, D.E. Corticotropin-Releasing Factor-2 Activation Prevents Gentamicin-Induced Oxidative Stress in Cells Derived from the Inner Ear. J. Neurosci. Res. 2010, 88, 2976–2990. [Google Scholar] [CrossRef] [PubMed]
- Kamogashira, T.; Fujimoto, C.; Yamasoba, T. Reactive Oxygen Species, Apoptosis, and Mitochondrial Dysfunction in Hearing Loss. Biomed. Res. Int. 2015, 2015, 617207. [Google Scholar] [CrossRef] [PubMed]
- Mohan, H.; Vandna; Soni, S.; Syed, S. Targeting Reactive Oxygen Species (ROS) for Cancer Therapy. In Handbook of Oxidative Stress in Cancer: Therapeutic Aspects; Chakraborti, S., Ed.; Springer: Singapore, 2022; pp. 1–16. [Google Scholar] [CrossRef]
- Tabuchi, K.; Nishimura, B.; Nakamagoe, M.; Hayashi, K.; Nakayama, M.; Hara, A. Ototoxicity: Mechanisms of Cochlear Impairment and Its Prevention. Curr. Med. Chem. 2011, 18, 4866–4871. [Google Scholar] [CrossRef]
- Ruhl, D.; Du, T.T.; Wagner, E.L.; Choi, J.H.; Li, S.; Reed, R.; Kim, K.; Freeman, M.; Hashisaki, G.; Lukens, J.R.; et al. Necroptosis and Apoptosis Contribute to Cisplatin and Aminoglycoside Ototoxicity. J. Neurosci. 2019, 39, 2951–2964. [Google Scholar] [CrossRef] [PubMed]
- Ramkumar, V.; Mukherjea, D.; Dhukhwa, A.; Rybak, L.P. Oxidative Stress and Inflammation Caused by Cisplatin Ototoxicity. Antioxidants 2021, 10, 1919. [Google Scholar] [CrossRef]
- Youn, C.K.; Kim, J.; Park, J.-H.; Do, N.Y.; Cho, S.I. Role of Autophagy in Cisplatin-Induced Ototoxicity. Int. J. Pediatr. Otorhinolaryngol. 2015, 79, 1814–1819. [Google Scholar] [CrossRef]
- Jamesdaniel, S.; Rathinam, R.; Neumann, W.L. Targeting Nitrative Stress for Attenuating Cisplatin-Induced Downregulation of Cochlear LIM Domain Only 4 and Ototoxicity. Redox. Biol. 2016, 10, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Jamesdaniel, S.; Ding, D.; Kermany, M.H.; Davidson, B.A.; Knight, P.R.; Salvi, R.; Coling, D.E. Proteomic Analysis of the Balance between Survival and Cell Death Responses in Cisplatin-Mediated Ototoxicity. J. Proteome Res. 2008, 7, 3516–3524. [Google Scholar] [CrossRef]
- Waissbluth, S.; Garnier, D.; Akinpelu, O.V.; Salehi, P.; Daniel, S.J. The Impact of Erdosteine on Cisplatin-Induced Ototoxicity: A Proteomics Approach. Eur. Arch. Otorhinolaryngol. 2017, 274, 1365–1374. [Google Scholar] [CrossRef]
- Tan, W.J.T.; Vlajkovic, S.M. Molecular Characteristics of Cisplatin-Induced Ototoxicity and Therapeutic Interventions. Int. J. Mol. Sci. 2023, 24, 16545. [Google Scholar] [CrossRef]
- Jamesdaniel, S.; Manohar, S.; Hinduja, S. Is S-Nitrosylation of Cochlear Proteins a Critical Factor in Cisplatin-Induced Ototoxicity? Antioxid. Redox Signal. 2012, 17, 929–933. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.-Y.; Yang, Y.; Zhang, Y.-Y.; Xie, Z.; Zhao, X.-Y.; Sun, Y.; Kong, W.-J. The Dual Role of Poly(ADP-Ribose) Polymerase-1 in Modulating Parthanatos and Autophagy under Oxidative Stress in Rat Cochlear Marginal Cells of the Stria Vascularis. Redox. Biol. 2018, 14, 361–370. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, X.; Geng, Y.; Xiang, L.; Wu, Y.; Li, Y.; Yang, L.; Zhou, K. Exploring the Role of Parthanatos in CNS Injury: Molecular Insights and Therapeutic Approaches. J. Adv. Res. 2024, in press. [Google Scholar] [CrossRef]
- Tolouian, R.; Tolouian, A.; Dastan, F.; Farhangi, V.; Peymani, P.; Saeifar, S.; Montes, O.F.B.; Mohmoodnia, L.; Khosravifarsani, M.; Sadighpour, T. Antioxidants and Cisplatin Nephrotoxicity; an Updated Review on Current Knowledge. J. Nephropharmacol. 2022, 12, e10556. [Google Scholar] [CrossRef]
- Sugihara, K.; Gemba, M. Modification of Cisplatin Toxicity by Antioxidants. Jpn. J. Pharmacol. 1986, 40, 353–355. [Google Scholar] [CrossRef] [PubMed]
- Olas, B.; Wachowicz, B.; Majsterek, I.; Blasiak, J.; Stochmal, A.; Oleszek, W. Antioxidant Properties of trans-3,3’,5,5’-Tetrahydroxy-4’-Methoxystilbene Against Modification of a Variety of Biomolecules in Human Blood Cells Treated with Platinum Compounds. Nutrients 2006, 22, 1202–1209. [Google Scholar] [CrossRef]
- Bose, R.N. Biomolecular Targets for Platinum Antitumor Drugs. Mini Rev. Med. Chem. 2002, 2, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Brabec, V. DNA Modifications by Antitumor Platinum and Ruthenium Compounds: Their Recognition and Repair. Prog. Nucleic Acid Res. Mol. Biol. 2002, 71, 1–68. [Google Scholar] [CrossRef] [PubMed]
- Tabuchi, K.; Pak, K.; Chavez, E.; Ryan, A.F. Role of Inhibitor of Apoptosis Protein in Gentamicin-Induced Cochlear Hair Cell Damage. Neuroscience 2007, 149, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Low, W.K.; Sun, L.; Tan, M.G.; Chua, A.W.; Wang, D.Y. L-N-Acetylcysteine Protects Against Radiation-Induced Apoptosis in a Cochlear Cell Line. Acta Otolaryngol. 2008, 128, 440–445. [Google Scholar] [CrossRef]
- Orzáez, M.; Sancho, M.; Marchán, S.; Mondragón, L.; Montava, R.; Valero, J.G.; Landeta, O.; Basañez, G.; Carbajo, R.J.; Pineda-Lucena, A.; et al. Apaf-1 Inhibitors Protect from Unwanted Cell Death in In Vivo Models of Kidney Ischemia and Chemotherapy Induced Ototoxicity. PLoS ONE 2014, 9, e110979. [Google Scholar] [CrossRef]
- Alvarado, J.C.; Fuentes-Santamaría, V.; Melgar-Rojas, P.; Gabaldón-Ull, M.C.; Cabanes-Sanchis, J.J.; Juiz, J.M. Oral Antioxidant Vitamins and Magnesium Limit Noise-Induced Hearing Loss by Promoting Sensory Hair Cell Survival: Role of Antioxidant Enzymes and Apoptosis Genes. Antioxidants 2020, 9, 1177. [Google Scholar] [CrossRef] [PubMed]
- Wen, Q.; Zhang, F.; Zhang, C.; Li, H.; Xu, Q.; Ye, P.; Chen, D.; Miao, J.; Mei, L.; Liu, X.; et al. Rhein Attenuates Lipopolysaccharide-Primed Inflammation through NF-κB Inhibition in RAW264.7 Cells: Targeting the PPAR-γ Signal Pathway. Can. J. Physiol. Pharmacol. 2019, 98, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Luo, X.; Sun, A.; Dou, W.; Wang, Z.; Han, M.; Yue, B.; Zhang, J.; Yu, Z.; Ren, G. Activation of PXR by Alantolactone Ameliorates DSS-Induced Experimental Colitis via Suppressing NF-\u03baB Signaling Pathway. Sci. Rep. 2019, 9, 16636. [Google Scholar] [CrossRef] [PubMed]
- An, S.Y.; Park, J.; Kim, H.; Choi, S.Y.; Youn, G.S. Celastrol Suppresses Expression of Adhesion Molecules and Chemokines by Inhibiting JNK-STAT1/NF-κB Activation in Poly(I:C)-Stimulated Astrocytes. BMB Rep. 2017, 50, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Ju, S.M.; Park, J.; Cho, Y.S.; Youn, G.S.; Choi, S.Y. Celastrol Ameliorates Cytokine Toxicity and Pro-Inflammatory Immune Responses by Suppressing NF-κB Activation in RINm5F Beta Cells. BMB Rep. 2015, 48, 172–177. [Google Scholar] [CrossRef]
- Nam, Y.J.; Lee, M.S.; Lee, D.H.; Lee, C.S. Sesquiterpene Lactone Parthenolide Attenuates Production of Inflammatory Mediators by Suppressing the Toll-like Receptor-4-Mediated Activation of the Akt, mTOR, and NF-κB Pathways. Naunyn-Schmiedeberg Arch. Pharmacol. 2015, 388, 921–930. [Google Scholar] [CrossRef] [PubMed]
- Wullaert, A.; Pasparakis, M.; Bonnet, M.C. NF-κB in the Regulation of Epithelial Homeostasis and Inflammation. Cell Res. 2010, 21, 146–158. [Google Scholar] [CrossRef]
- Chao, C.-S.; Tsai, C.-S.; Chang, Y.-P.; Chen, J.-M.; Chin, H.-K.; Yang, S.-C. Hyperin Inhibits Nuclear Factor Kappa B and Activates Nuclear Factor E2-Related Factor-2 Signaling Pathways in Cisplatin-Induced Acute Kidney Injury in Mice. Int. Immunopharmacol. 2016, 40, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.-J.; Leng, B.; Bian, J.-S.; Wu, Z.-Y. Polysulfide and Hydrogen Sulfide Ameliorate Cisplatin-Induced Nephrotoxicity and Renal Inflammation through Persulfidating STAT3 and IKKβ. Int. J. Mol. Sci. 2020, 21, 7805. [Google Scholar] [CrossRef]
- Nagaki, M.; Naiki, T.; Brenner, D.A.; Osawa, Y.; Imose, M.; Hayashi, H.; Banno, Y.; Nakashima, S.; Moriwaki, H. Tumor Necrosis Factor α Prevents Tumor Necrosis Factor Receptor—Mediated Mouse Hepatocyte Apoptosis, but Not Fas-Mediated Apoptosis: Role of Nuclear Factor-κB. Hepatology 2000, 32, 1272–1279. [Google Scholar] [CrossRef]
- Gausterer, J.C.; Saidov, N.; Ahmadi, N.; Zhu, C.; Wirth, M.; Reznicek, G.; Arnoldner, C.; Gabor, F.; Honeder, C. Intratympanic Application of Poloxamer 407 Hydrogels Results in Sustained N-Acetylcysteine Delivery to the Inner Ear. Eur. J. Pharm. Biopharm. 2020, 150, 143–155. [Google Scholar] [CrossRef] [PubMed]
- Videhult Pierre, P.; Fransson, A.; Kisiel, M.A.; Damberg, P.; Nikkhou Aski, S.; Andersson, M.; Hällgren, L.; Laurell, G. Middle Ear Administration of a Particulate Chitosan Gel in an in Vivo Model of Cisplatin Ototoxicity. Front. Cell. Neurosci. 2019, 13, 268. [Google Scholar] [CrossRef] [PubMed]
- Murphy, D.; Daniel, S.J. Intratympanic Dexamethasone to Prevent Cisplatin Ototoxicity: A Guinea Pig Model. Otolaryngol. Head Neck Surg. 2011, 145, 452–457. [Google Scholar] [CrossRef]
- Chen, B.C.; Lin, L.J.; Lin, Y.C.; Lee, C.F.; Hsu, W.C. Optimal N-Acetylcysteine Concentration for Intratympanic Injection to Prevent Cisplatin-Induced Ototoxicity in Guinea Pigs. Acta Oto-Laryngol. 2022, 142, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Nader, M.-E.; Théorêt, Y.; Saliba, I. The Role of Intratympanic Lactate Injection in the Prevention of Cisplatin-Induced Ototoxicity. Laryngoscope 2010, 120, 1208–1213. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.C.; Cho, H.H. Intratympanic Drug Injection for Inner Ear Disease. Korean J. Otorhinolaryngol.-Head Neck Surg. 2014, 57, 364–372. [Google Scholar] [CrossRef]
- Valente, F.; Astolfi, L.; Simoni, E.; Danti, S.; Franceschini, V.; Chicca, M.; Martini, A. Nanoparticle Drug Delivery Systems for Inner Ear Therapy: An Overview. J. Drug Deliv. Sci. Technol. 2017, 39, 28–35. [Google Scholar] [CrossRef]
- Nagaraja, S.H.; Nataraj, C.; Jang, Y.; Nair, A.; Attimarad, M.; Al-Dhubiab, B.; Meravanige, G.; Asdaq, S.; Anwer, M.K.; Gopalachar, J.; et al. An Overview of Nanoparticle Drug Delivery for Ototoxin and Noise Mediated Hearing Loss Treatment. Indian. J. Pharm. Educ. 2022, 56, S581–S598. [Google Scholar] [CrossRef]
- Ayoob, A.M.; Borenstein, J.T. The Role of Intracochlear Drug Delivery Devices in the Management of Inner Ear Disease. Expert Opin. Drug Deliv. 2015, 12, 465–479. [Google Scholar] [CrossRef] [PubMed]
- Richardson, R.T.; Wise, A.K.; Andrew, J.K.; O’Leary, S.J. Novel Drug Delivery Systems for Inner Ear Protection and Regeneration after Hearing Loss. Expert. Opin. Drug Deliv. 2008, 5, 1059–1076. [Google Scholar] [CrossRef] [PubMed]
- Paulson, D.P.; Abuzeid, W.; Jiang, H.; Oe, T.; O’Malley, B.W.; Li, D. A Novel Controlled Local Drug Delivery System for Inner Ear Disease. Laryngoscope 2008, 118, 706–711. [Google Scholar] [CrossRef]
- Delaney, D.S.; Liew, L.J.; Lye, J.; Atlas, M.D.; Wong, E.Y.M. Overcoming Barriers: A Review on Innovations in Drug Delivery to the Middle and Inner Ear. Front. Pharmacol. 2023, 14, 1207141. [Google Scholar] [CrossRef]
- Swan, E.E.; Mescher, M.J.; Sewell, W.F.; Tao, S.L.; Borenstein, J.T. Inner Ear Drug Delivery for Auditory Applications. Adv. Drug Deliv. Rev. 2008, 60, 1583–1599. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Robinson, G.W.; Huang, J.; Lim, J.Y.-S.; Zhang, H.; Bass, J.K.; Broniscer, A.; Chintagumpala, M.; Bartels, U.; Gururangan, S.; et al. Common Variants in ACYP2 Influence Susceptibility to Cisplatin-Induced Hearing Loss. Nat. Genet. 2015, 47, 263–266. [Google Scholar] [CrossRef] [PubMed]
- Drögemöller, B.I.; Monzon, J.G.; Bhavsar, A.P.; Borrie, A.E.; Brooks, B.; Wright, G.E.B.; Liu, G.; Renouf, D.J.; Kollmannsberger, C.K.; Bedard, P.L.; et al. Association Between SLC16A5 Genetic Variation and Cisplatin-Induced Ototoxic Effects in Adult Patients with Testicular Cancer. JAMA Oncol. 2017, 3, 1558–1562. [Google Scholar] [CrossRef] [PubMed]
- Langer, T.; Clemens, E.; Broer, L.; Maier, L.; Uitterlinden, A.G.; de Vries, A.C.H.; van Grotel, M.; Pluijm, S.F.M.; Binder, H.; Mayer, B.; et al. Usefulness of Current Candidate Genetic Markers to Identify Childhood Cancer Patients at Risk for Platinum-Induced Ototoxicity: Results of the European PanCareLIFE Cohort Study. Eur. J. Cancer 2020, 138, 212–224. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.-L.; Pilling, L.C.; Liu, Z.; Levine, M.E. Genetic Predisposition to Accelerated Biological Ages Predicted by Biochemical Markers. Innov. Aging 2019, 3, S947–S948. [Google Scholar] [CrossRef]
- Lanvers-Kaminsky, C.; Ciarimboli, G. Pharmacogenetics of Drug-Induced Ototoxicity Caused by Aminoglycosides and Cisplatin. Pharmacogenomics 2017, 18, 1683–1695. [Google Scholar] [CrossRef] [PubMed]
- DeBacker, J.R.; McMillan, G.P.; Martchenke, N.; Lacey, C.M.; Stuehm, H.R.; Hungerford, M.E.; Konrad-Martin, D. Ototoxicity Prognostic Models in Adult and Pediatric Cancer Patients: A Rapid Review. J. Cancer Surviv. 2023, 17, 82–100. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, H.E.; Gamazon, E.R.; Frisina, R.D.; Perez-Cervantes, C.; El Charif, O.; Mapes, B.; Fossa, S.D.; Feldman, D.R.; Hamilton, R.J.; Vaughn, D.J.; et al. Variants in WFS1 and Other Mendelian Deafness Genes Are Associated with Cisplatin-Associated Ototoxicity. Clin. Cancer Res. 2017, 23, 3325–3333. [Google Scholar] [CrossRef] [PubMed]
- Ross, C.J.D.; Katzov-Eckert, H.; Dubé, M.-P.; Brooks, B.; Rassekh, S.R.; Barhdadi, A.; Feroz-Zada, Y.; Visscher, H.; Brown, A.M.K.; Rieder, M.J.; et al. Genetic Variants in TPMT and COMT Are Associated with Hearing Loss in Children Receiving Cisplatin Chemotherapy. Nat. Genet. 2009, 41, 1345–1349. [Google Scholar] [CrossRef]
- de Souza Tesch, R.; Ladeira Bonato, L.; Quinelato, V.; Ladeira Casado, P.; Rezende Vieira, A.; Granjeiro, J.M.; Góes, C. Evaluation of Genetic Risk Related to Catechol-O-Methyltransferase (COMT) and Β2-Adrenergic Receptor (ADRB2) Activity in Different Diagnostic Subgroups of Temporomandibular Disorder in Brazilian Patients. Int. J. Oral. Maxillofac. Surg. 2020, 49, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Kalebic, T. Epigenetic Changes: Potential Therapeutic Targets. Ann. N. Y. Acad. Sci. 2003, 983, 278–285. [Google Scholar] [CrossRef] [PubMed]
- RM, S.K.; Hao, F.; Cheng, H.; Zhang, X.; Wang, Y.; He, S.; Sun, L. Redox Components: Key Regulators of Epigenetic Modifications in Plants. Int. J. Mol. Sci. 2020, 21, 1419. [Google Scholar] [CrossRef] [PubMed]
- Hodge, D.R.; Peng, B.; Pompeia, C.; Thomas, S.B.; Cho, E.; Clausen, P.A.; Marquez, V.E.; Farrar, W.L. Epigenetic Silencing of Manganese Superoxide Dismutase (SOD-2) in KAS 6/1 Human Multiple Myeloma Cells Increases Cell Proliferation. Cancer Biol. Ther. 2005, 4, 585–592. [Google Scholar] [CrossRef]
- Zelko, I.N.; Folz, R.J. Regulation of Oxidative Stress in Pulmonary Artery Endothelium. Modulation of Extracellular Superoxide Dismutase and NOX4 Expression Using Histone Deacetylase Class I Inhibitors. Am. J. Respir. Cell Mol. Biol. 2015, 53, 513–524. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Shao, R.; Canlon, B. Suppression of Apoptosis Occurs in the Cochlea by Sound Conditioning. NeuroReport 2003, 14, 1025. [Google Scholar] [CrossRef]
- Issa, J. Epigenetic Therapy. Cancer Res. 2009, 69, ES4-3. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, Q.; Tan, H.; Liao, M.; Zhu, S.; Zheng, L.-L.; Huang, H.; Liu, B. Targeting Cancer Epigenetic Pathways with Small-Molecule Compounds: Therapeutic Efficacy and Combination Therapies. Pharmacol. Res. 2021, 173, 105702. [Google Scholar] [CrossRef]
- Damiescu, R.; Efferth, T.; Dawood, M. Dysregulation of Different Modes of Programmed Cell Death by Epigenetic Modifications and Their Role in Cancer. Cancer Lett. 2024, 584, 216623. [Google Scholar] [CrossRef]
- Kang, M.H.; Reynolds, C.P. Bcl-2 Inhibitors: Targeting Mitochondrial Apoptotic Pathways in Cancer Therapy. Clin. Cancer Res. 2009, 15, 1126–1132. [Google Scholar] [CrossRef] [PubMed]
- Bolden, J.E.; Johnstone, R.W.; Cluse, L.; Martin, B.P.; Shi, W.; Jankowski, K.; Mackenzie, K.L.; Kan, C.-Y.; Smyth, G.K. HDAC Inhibitors Induce Tumor-Cell-Selective pro-Apoptotic Transcriptional Responses. Cell Death Dis. 2013, 4, e519. [Google Scholar] [CrossRef]
- Shim, G.; Kim, M.-G.; Kim, D.; Park, J.Y.; Oh, Y.-K. Nanoformulation-Based Sequential Combination Cancer Therapy. Adv. Drug Deliv. Rev. 2017, 115, 57–81. [Google Scholar] [CrossRef]
- Choudhary, R.C.; Shoaib, M.; Hayashida, K.; Yin, T.; Miyara, S.J.; d’Abramo, C.; Heuser, W.G.; Shinozaki, K.; Kim, N.; Takegawa, R.; et al. Multi-Drug Cocktail Therapy Improves Survival and Neurological Function after Asphyxial Cardiac Arrest in Rodents. Cells 2023, 12, 1548. [Google Scholar] [CrossRef] [PubMed]
- Bianco, M.D.C.A.D.; Leite, D.I.; Branco, F.S.C.; Boechat, N.; Uliassi, E.; Bolognesi, M.L.; Bastos, M.M. The Use of Zidovudine Pharmacophore in Multi-Target-Directed Ligands for AIDS Therapy. Molecules 2022, 27, 8502. [Google Scholar] [CrossRef]
- Ladiges, W.C. Time for an Alzheimer’s Disease Cocktail. Aging Pathobiol. Ther. 2020, 2, 14–15. [Google Scholar] [CrossRef]
- Huang, W.-Y.; Liu, C.-A.; Fan, R.-S.; Lin, Z.-D.; Wang, K.; Lee, G.-B. Automatic Optimization of Drug Cocktails on an Integrated Microfluidic System. Biomicrofluidics 2017, 11, 034109. [Google Scholar] [CrossRef]
- Park, M.; Nassar, M.; Evans, B.L.; Vikalo, H. Adaptive Experimental Design for Drug Combinations. In Proceedings of the 2012 IEEE Statistical Signal Processing Workshop (SSP), Ann Arbor, MI, USA, 5–8 August 2012; pp. 712–715. [Google Scholar] [CrossRef]
- Dai, D.; Chen, C.; Lu, C.; Guo, Y.; Li, Q.; Sun, C. Apoptosis, Autophagy, Ferroptosis, and Pyroptosis in Cisplatin-Induced Ototoxicity and Protective Agents. Front. Pharmacol. 2024, 15, 1430469. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.W.; Han, L.; Shu, Y. A Potential Therapeutic Approach for Cisplatin-Induced Hearing Loss. Mol. Ther. Nucleic Acids 2024, 35, 102207. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, T.; Song, Q.; Gao, D.; Li, Y.; Jie, H.; Huang, P.; Zheng, G.; Yang, J.; He, J. Cisplatin Ototoxicity Mechanism and Antagonistic Intervention Strategy: A Scope Review. Front. Cell Neurosci. 2023, 17, 1197051. [Google Scholar] [CrossRef] [PubMed]
- Kaur, T.; Mukherjea, D.; Sheehan, K.; Jajoo, S.; Rybak, L.P.; Ramkumar, V. Short Interfering RNA against STAT1 Attenuates Cisplatin-Induced Ototoxicity in the Rat by Suppressing Inflammation. Cell Death Dis. 2011, 2, e180. [Google Scholar] [CrossRef]
- Fujieda, M.; Morita, T.; Naruse, K.; Hayashi, Y.; Ishihara, M.; Yokoyama, T.; Toma, T.; Ohta, K.; Wakiguchi, H. Effect of Pravastatin on Cisplatin-Induced Nephrotoxicity in Rats. Hum. Exp. Toxicol. 2011, 30, 603–615. [Google Scholar] [CrossRef]
- Schmitt, N.C.; Fernandez, K.; Newlands, S.; Allen, P.; Kaufman, A.; McMillan, G.P.; Switchenko, J.M.; Stokes, W.A.; Mehra, R.; Mandawat, A.; et al. Randomized, Placebo-Controlled Trial of Atorvastatin to Prevent Hearing Loss in Patients with Head and Neck Squamous Cell Carcinoma Receiving Cisplatin Based Chemoradiation (CRT). JCO 2024, 42, TPS12153. [Google Scholar] [CrossRef]
- Fernandez, K.A.; Allen, P.; Campbell, M.; Page, B.; Townes, T.; Li, C.-M.; Cheng, H.; Garrett, J.; Mulquin, M.; Clements, A.; et al. Atorvastatin Is Associated with Reduced Cisplatin-Induced Hearing Loss. J. Clin. Investig. 2021, 131, 142616. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, K.; Spielbauer, K.K.; Rusheen, A.; Wang, L.; Baker, T.G.; Eyles, S.; Cunningham, L.L. Lovastatin Protects against Cisplatin-Induced Hearing Loss in Mice. Hear. Res. 2020, 389, 107905. [Google Scholar] [CrossRef] [PubMed]
- Miao, D.N.R.; Wilke, M.A.; Pham, J.; Ladha, F.; Singh, M.; Arsenio, J.; Yang, W.; Yang, J.J.; Drögemöller, B.I. Leveraging Large-Scale Datasets and Single Cell Omics Data to Develop a Polygenic Score for Cisplatin-Induced Ototoxicity. Hum. Genom. 2024, 18, 112. [Google Scholar] [CrossRef]
- Voruz, F.; Vuilleumier, A.; Migliorini, D.; Nacher-Soler, G.; Rousset, F.; De Maesschalck, T.; Senn, P. Cisplatin-Induced Ototoxicity in 401 Consecutive Geneva Cancer Patients. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Govender, C.D.; Pillay, M.; Paken, J.; Sewram, V. Perspectives and Practices of Ototoxicity Monitoring. S. Afr. J. Commun. Disord. 2020, 67, 1–10. [Google Scholar] [CrossRef]
- Garinis, A.C.; Cornell, A.; Allada, G.; Fennelly, K.P.; Maggiore, R.J.; Konrad-Martin, D. Ototoxicity Monitoring Through the Eyes of the Treating Physician: Perspectives from Pulmonology and Medical Oncology. Int. J. Audiol. 2018, 57, S42–S47. [Google Scholar] [CrossRef] [PubMed]
- Nagdee, N.; de Andrade, V.M. Strengthening Cancer Care through the Inclusion of Audiological Services. S. Afr. Health Rev. 2024, 26, 152–161. [Google Scholar] [CrossRef]
- Schellack, N.; Wium, A.M.; Ehlert, K.; van Aswegen, Y.; Gous, A. Establishing a Pharmacotherapy Induced Ototoxicity Programme within a Service-Learning Approach. S. Afr. J. Commun. Disord. 2015, 62, 7. [Google Scholar] [CrossRef] [PubMed]
- De Andrade, V.; Khoza-Shangase, K.; Hajat, F. Perceptions of Oncologists at Two State Hospitals in Gauteng Regarding the Ototoxic Effects of Cancer Chemotherapy: A Pilot Study. Afr. J. Pharm. Pharmacol. 2009, 3, 307–318. [Google Scholar]
- Rhainds, M.; Bussières, M.; L’Espérance, S.; Nourissat, A.; Coulombe, M. 137 Audiologic Monitoring of Cisplatin Ototoxicity in Cancer Treatment of Adults: A Balance between Overdiagnosis and Patient Safety? BMJ Evid.-Based Med. 2018, 23, A64. [Google Scholar] [CrossRef]
- Ramma, L.; Schellack, N.; Heinze, B. Prevention of Treatment-Induced Ototoxicity: An Update for Clinicians. S. Afr. Med. J. 2019, 109, 145–149. [Google Scholar] [CrossRef]
- Khoza-Shangase, K.; Masondo, N. In Pursuit of Preventive Audiology in South Africa: Scoping the Context for Ototoxicity Assessment and Management. J. Pharm. Bioallied Sci. 2021, 13, 46. [Google Scholar] [CrossRef]
- Natalie, S.; Alida, N. An Overview of Pharmacotherapy-Induced Ototoxicity. S. Afr. Fam. Pract. 2013, 55, 357–365. [Google Scholar] [CrossRef]
- Maru, D.; Malky, G.-A. Current Practice of Ototoxicity Management across the United Kingdom (UK). Int. J. Audiol. 2018, 57, S29–S41. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, K.A.; Garinis, A.; Knight, K.; Konrad-Martin, D.; Morata, T.; Poling, G.L.; Reavis, K.M.; Sanchez, V.A.; Dreisbach, L. What’s New in Ototoxicity Management? Perspect. ASHA Spec. Interest Groups 2024, 9, 113–123. [Google Scholar] [CrossRef]
Mechanism | Pathway/Details | Key Studies | Therapeutic Implications |
---|---|---|---|
Oxidative Stress | ROS generation causing lipid, protein, and DNA damage; activation of apoptotic pathways. | [16,17,18] | Antioxidants like NAC and vitamin E could neutralize ROS. |
Apoptosis | Activation of JNK and p38 MAPK pathways, leading to hair cell apoptosis. | [20] | Caspase inhibitors and agents targeting JNK/MAPK pathways. |
Necroptosis | Involves RIPK1 and RIPK3; a programmed necrosis contradicting earlier views of passive necrosis. | [21] | Necroptosis inhibitors targeting RIPK1 and RIPK3 pathways. |
Ferroptosis | Iron-dependent lipid peroxidation; recently linked to cochlear cell death in cisplatin ototoxicity. | [22] | Potential use of ferroptosis inhibitors in preclinical research. |
Autophagy | Dual role: cytoprotective effects early, but later induction of cell death via mTOR suppression. | [23] | Agents modulating autophagy pathways may reduce cell death. |
Nitrative Stress | S-nitrosylation of cochlear proteins; peroxynitrite formation linked to cellular damage. | [28] | Inhibitors of nitrative stress, such as Trolox, show potential. |
Parthanatos | PARP-1-dependent cell death; linked to oxidative stress and cochlear cell damage. | [22,23] | Targeting PARP-1 pathways could mitigate ototoxic effects. |
Gene | Polymorphism | Associated Risk | Study Findings | References |
---|---|---|---|---|
ACYP2 | rs1872328 | Increased risk of hearing loss | Polymorphism linked to higher susceptibility to cisplatin-induced hearing loss in pediatric patients | [62] |
WFS1 | rs62283056 | Increased risk of hearing loss | Dose-dependent effect; individuals with the minor allele exhibit greater hearing loss at higher cumulative cisplatin doses; replicated in a cohort of 18,620 patients | [68] |
SLC16A5 | rs4788863 | Protection against hearing loss | Identified as protective against cisplatin-induced ototoxic effects in two independent cohorts. Functional validation revealed that SLC16A5 silencing altered cellular responses to cisplatin, suggesting its role in ototoxic mechanisms. Previous studies highlight potential otoprotective strategies using SLC16A5 inhibitors like cimetidine. | [63] |
TPMT | rs12201199 | Increased risk of hearing loss | Genetic variant associated with cisplatin-induced hearing loss in children. Found in two cohorts (p = 0.00022); functional validation suggested significant susceptibility. | [69] |
COMT | rs9332377 | Increased risk of hearing loss | Genetic variant linked to higher susceptibility to cisplatin ototoxicity in pediatric patients; association replicated (p = 0.00018). | [70] |
Approach | Description | Key Studies | Therapeutic Potential |
---|---|---|---|
Epigenetic Modifications | Targets DNA methylation and histone modifications to influence gene expression and apoptosis. | [71,76,77] | Epigenetic drugs show efficacy in cancer treatment by modulating cellular processes. |
Sound Conditioning | Uses low-level non-damaging sound to upregulate neuroprotective genes (e.g., bcl-2) and prevent cytochrome c release. | [75] | Promising alternative for preventing noise-induced and other types of hearing loss. |
Combination Therapies | Targets multiple pathways simultaneously to enhance therapeutic efficacy and overcome single-drug limitations. | [81,82] | Addresses limitations of single-drug therapies; applicable in cancer, cardiac arrest, and HIV/AIDS. |
Nanotechnology-based Carriers | Employs nanocarriers for controlled drug release, tumor sensitization, and improved drug distribution. | [81,82] | Improves bioavailability and targeted drug delivery with minimized side effects. |
Multi-drug Cocktails | Combines multiple drugs to address complex diseases; used in HIV/AIDS, cardiac arrest, and Alzheimer’s. | [83,84] | Provides life-saving benefits and addresses multiple disease mechanisms; requires optimization. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orasan, A.; Negru, M.-C.; Morgovan, A.I.; Fleser, R.C.; Sandu, D.; Sitaru, A.M.; Motofelea, A.-C.; Balica, N.C. Strategies to Mitigate Cisplatin-Induced Ototoxicity: A Literature Review of Protective Agents, Mechanisms, and Clinical Gaps. Audiol. Res. 2025, 15, 22. https://doi.org/10.3390/audiolres15020022
Orasan A, Negru M-C, Morgovan AI, Fleser RC, Sandu D, Sitaru AM, Motofelea A-C, Balica NC. Strategies to Mitigate Cisplatin-Induced Ototoxicity: A Literature Review of Protective Agents, Mechanisms, and Clinical Gaps. Audiology Research. 2025; 15(2):22. https://doi.org/10.3390/audiolres15020022
Chicago/Turabian StyleOrasan, Alexandru, Mihaela-Cristina Negru, Anda Ioana Morgovan, Razvan Claudiu Fleser, Daniela Sandu, Adrian Mihail Sitaru, Alexandru-Catalin Motofelea, and Nicolae Constantin Balica. 2025. "Strategies to Mitigate Cisplatin-Induced Ototoxicity: A Literature Review of Protective Agents, Mechanisms, and Clinical Gaps" Audiology Research 15, no. 2: 22. https://doi.org/10.3390/audiolres15020022
APA StyleOrasan, A., Negru, M.-C., Morgovan, A. I., Fleser, R. C., Sandu, D., Sitaru, A. M., Motofelea, A.-C., & Balica, N. C. (2025). Strategies to Mitigate Cisplatin-Induced Ototoxicity: A Literature Review of Protective Agents, Mechanisms, and Clinical Gaps. Audiology Research, 15(2), 22. https://doi.org/10.3390/audiolres15020022