Dementia Prevention Self-Management in Older Thai Adults with Type 2 Diabetes: Development and Psychometric Properties of Two Questionnaires
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Participants and Recruitment
2.3. Item Generation
2.3.1. The Dementia Preventive Individual and Family Self-Management Process Questionnaire (DP-IFSM-PQ)
2.3.2. The Dementia Preventive Self-Management Behavior Questionnaire (DPSMBQ)
- Dietary habits (13 items, item 1–13);
- Non-smoking and alcohol-avoiding habits (3 items, item 14–16);
- Leisure and exercise habits (3 items, item 17–19);
- Stress management and brain exercise (3 items, item 20–22);
- Depressant prevention behavior (3 items, item 23–25);
- Drug adherence and follow-up habits (4 items, item 26–29).
2.4. The Demographics Questionnaire
2.5. Assessment of Content Validity Indexes—DP-IFSM-PQ and DPSMBQ
2.6. Psychometric Property Evaluation
Construct Validity
2.7. Data Analysis
3. Results
3.1. Participant Demographics
3.2. Principle Component Analysis
3.2.1. DP-IFSM-PQ: EFA
3.2.2. DPSMBQ: EFA
3.3. Confirmatory Factor Analysis
3.3.1. DP-IFSM-PQ: CFA
3.3.2. DPSMBQ: CFA
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Public Involvement Statement
Guidelines and Standards Statement
Use of Artificial Intelligence
Acknowledgments
Conflicts of Interest
References
- Magliano, D.J.; Boyko, E.J. IDF Atlas 10th Edition 2021. In IDF Diabetes Atlas, 10th ed.; International Diabetes Federation: Brussels, Belgium, 2021. [Google Scholar]
- van Dieren, S.; Beulens, J.W.; van der Schouw, Y.T.; Grobbee, D.E.; Neal, B. The global burden of diabetes and its complications: An emerging pandemic. Eur. J. Cardiovasc. Prev. Rehabil. 2010, 17 (Suppl. 1), S3–S8. [Google Scholar] [PubMed]
- Cholerton, B.; Baker, L.D.; Montine, T.J.; Craft, S. Type 2 Diabetes, Cognition, and Dementia in Older Adults: Toward a Precision Health Approach. Diabetes Spectr. 2016, 29, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Lyu, F.; Wu, D.; Wei, C.; Wu, A. Vascular cognitive impairment and dementia in type 2 diabetes mellitus: An overview. Life Sci. 2020, 254, 117771. [Google Scholar] [CrossRef]
- Celis-Morales, C.A.; Franzen, S.; Eeg-Olofsson, K.; Naucler, E.; Svensson, A.M.; Gudbjornsdottir, S.; Eliasson, B.; Sattar, N. Type 2 Diabetes, Glycemic Control, and Their Association with Dementia and Its Major Subtypes: Findings from the Swedish National Diabetes Register. Diabetes Care. 2022, 45, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Barbiellini Amidei, C.; Fayosse, A.; Dumurgier, J.; Machado-Fragua, M.D.; Tabak, A.G.; van Sloten, T.; Kivimaki, M.; Dugravot, A.; Sabia, S.; Singh-Manoux, A. Association Between Age at Diabetes Onset and Subsequent Risk of Dementia. JAMA 2021, 325, 1640–1649. [Google Scholar] [CrossRef]
- Lee, A.T.C.; Richards, M.; Chan, W.C.; Chiu, H.F.K.; Lee, R.S.Y.; Lam, L.C.W. Higher dementia incidence in older adults with type 2 diabetes and large reduction in HbA1c. Age Ageing 2019, 48, 838–844. [Google Scholar] [CrossRef]
- Reinke, C.; Buchmann, N.; Fink, A.; Tegeler, C.; Demuth, I.; Doblhammer, G. Diabetes duration and the risk of dementia: A cohort study based on German health claims data. Age Ageing 2022, 51, afab231. [Google Scholar] [CrossRef]
- Ragy, M.M.; Kamal, N.N. Linking senile dementia to type 2 diabetes: Role of oxidative stress markers, C-reactive protein and tumor necrosis factor-alpha. Neurol. Res. 2017, 39, 587–595. [Google Scholar] [CrossRef]
- Fei, M.; Yan Ping, Z.; Ru Juan, M.; Ning Ning, L.; Lin, G. Risk factors for dementia with type 2 diabetes mellitus among elderly people in China. Age Ageing 2013, 42, 398–400. [Google Scholar] [CrossRef]
- Koch, M.; Fitzpatrick, A.L.; Rapp, S.R.; Nahin, R.L.; Williamson, J.D.; Lopez, O.L.; DeKosky, S.T.; Kuller, L.H.; Mackey, R.H.; Mukamal, K.J.; et al. Alcohol Consumption and Risk of Dementia and Cognitive Decline Among Older Adults with or Without Mild Cognitive Impairment. JAMA Netw. Open 2019, 2, e1910319. [Google Scholar] [CrossRef]
- Bloom, R.; Schnaider-Beeri, M.; Ravona-Springer, R.; Heymann, A.; Dabush, H.; Bar, L.; Slater, S.; Rassovsky, Y.; Bahar-Fuchs, A. Computerized cognitive training for older diabetic adults at risk of dementia: Study protocol for a randomized controlled trial. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2017, 3, 636–650. [Google Scholar] [CrossRef] [PubMed]
- Masuch, A.; Friedrich, N.; Roth, J.; Nauck, M.; Muller, U.A.; Petersmann, A. Preventing misdiagnosis of diabetes in the elderly: Age-dependent HbA1c reference intervals derived from two population-based study cohorts. BMC Endocr. Disord. 2019, 19, 20. [Google Scholar] [CrossRef] [PubMed]
- Li, F.R.; Yang, H.L.; Zhou, R.; Zheng, J.Z.; Chen, G.C.; Wu, X.X.; Zou, M.C.; Wang, J.Y.; Fu, Q.; Wu, X.B. Influence of Diabetes Duration and Glycemic Control on Dementia: A Cohort Study. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2021, 76, 2062–2070. [Google Scholar] [CrossRef] [PubMed]
- Ravona-Springer, R.; Schnaider-Beeri, M. The association of diabetes and dementia and possible implications for nondiabetic populations. Expert Rev. Neurother. 2011, 11, 1609–1617. [Google Scholar] [CrossRef]
- Rakesh, G.; Szabo, S.T.; Alexopoulos, G.S.; Zannas, A.S. Strategies for dementia prevention: Latest evidence and implications. Ther. Adv. Chronic Dis. 2017, 8, 121–136. [Google Scholar] [CrossRef]
- Chowdhury, H.A.; Harrison, C.L.; Siddiquea, B.N.; Tissera, S.; Afroz, A.; Ali, L.; Joham, A.E.; Billah, B. The effectiveness of diabetes self-management education intervention on glycaemic control and cardiometabolic risk in adults with type 2 diabetes in low- and middle-income countries: A systematic review and meta-analysis. PLoS ONE 2024, 19, e0297328. [Google Scholar] [CrossRef] [PubMed]
- Li, T.J.; Zhou, J.; Ma, J.J.; Luo, H.Y.; Ye, X.M. What are the self-management experiences of the elderly with diabetes? A systematic review of qualitative research. World J. Clin. Cases 2022, 10, 1226–1241. [Google Scholar] [CrossRef]
- Whitehead, L.; Jacob, E.; Towell, A.; Abu-Qamar, M.; Cole-Heath, A. The role of the family in supporting the self-management of chronic conditions: A qualitative systematic review. J. Clin. Nurs. 2018, 27, 22–30. [Google Scholar] [CrossRef]
- Caro-Bautista, J.; Martin-Santos, F.J.; Morales-Asencio, J.M. Systematic review of the psychometric properties and theoretical grounding of instruments evaluating self-care in people with type 2 diabetes mellitus. J. Adv. Nurs. 2014, 70, 1209–1227. [Google Scholar] [CrossRef]
- Ryan, P.; Sawin, K.J. The Individual and Family Self-Management Theory: Background and perspectives on context, process, and outcomes. Nurs. Outlook 2009, 57, 217–225.e6. [Google Scholar] [CrossRef]
- Bauer, W.S.; Schiffman, R.F.; Ellis, J.L.; Erickson, J.M.; Polfuss, M.; Taani, M.H.; Sawin, K.J. An Integrative Review of the Use of the Individual and Family Self-Management Theory in Research. ANS Adv. Nurs. Sci. 2023, 10-1097. [Google Scholar] [CrossRef] [PubMed]
- Strategy and Planning Division-Department of Older Persons-Ministry of Social Development and Human Security. Trends in the Structure of the Thai Population and Population Challenges; DOP Journal, Strategy and Planning Division-Department of Older Persons-Ministry of Social Development and Human Security: Bangkok, Thailand, 2024; Volume 1.
- Social Statistics Analysis and Resource Management Group, Statistical Analysis and Resource Management Division, National Statistical Office. Situation of Elderly in Thailand: Regional Differences in 2021; Statistical Analysis and Resource Management Division, National Statistical Office, 2021. Available online: https://www.nso.go.th/public/e-book/Analytical-Reports/The_Situation_of_Thai_Elderly_2021_Area_Disparity/47 (accessed on 20 November 2024).
- Shamaskin, A.M.; Mikels, J.A.; Reed, A.E. Getting the message across: Age differences in the positive and negative framing of health care messages. Psychol. Aging 2010, 25, 746–751. [Google Scholar] [CrossRef] [PubMed]
- Pipatpiboon, N.; Koonrungsesomboon, N.; Suriyawong, W.; Sripetchwandee, J.; Turale, S. Perception of benefits and barriers associated with dementia prevention behaviors among people with diabetes. Nurs. Health Sci. 2022, 24, 274–282. [Google Scholar] [CrossRef]
- Sugimoto, T.; Araki, A.; Fujita, H.; Honda, K.; Inagaki, N.; Ishida, T.; Kato, J.; Kishi, M.; Kobayashi, K.; Kouyama, K.; et al. The Multi-Domain Intervention Trial in Older Adults with Diabetes Mellitus for Prevention of Dementia in Japan: Study Protocol for a Multi-Center, Randomized, 18-Month Controlled Trial. Front. Aging Neurosci. 2021, 13, 680341. [Google Scholar] [CrossRef]
- Trakulsithichoke, S. Prevention of Dementia in Older Persons. J. Nurs. Health Care 2018, 36, 6–14. [Google Scholar]
- Nuysri, M. The Prevention of Dementia. J. Police Nurs. 2016, 8, 227–240. [Google Scholar]
- Zamanzadeh, V.; Ghahramanian, A.; Rassouli, M.; Abbaszadeh, A.; Alavi-Majd, H.; Nikanfar, A.R. Design and Implementation Content Validity Study: Development of an instrument for measuring Patient-Centered Communication. J. Caring Sci. 2015, 4, 165–178. [Google Scholar] [CrossRef] [PubMed]
- Vaske, J.J.; Beaman, J.; Sponarski, C.C. Rethinking Internal Consistency in Cronbach’s Alpha. Leis. Sci. 2017, 39, 163–173. [Google Scholar] [CrossRef]
- Hajjar, S.E. Statistical Analysis: Internal-Consistency Reliability and Construct Validity. Int. J. Qual. Methods 2018, 6, 46–57. [Google Scholar]
- Muthén, L.K.; Muthén, B.O. How to Use a Monte Carlo Study to Decide on Sample Size and Determine Power. Struct. Equ. Model. 2002, 9, 599–620. [Google Scholar] [CrossRef]
- Schermelleh-engel, K.; Moosbrugger, H.; Müller, H. Evaluating the Fit of Structural Equation Models: Tests of Significance and Descriptive Goodness-of-Fit Measures. Methods Psychol. Res. 2003, 8, 23–74. [Google Scholar] [CrossRef]
- Areri, H.; Marshall, A.; Harvey, G. Factors influencing self-management of adults living with HIV on antiretroviral therapy in Northwest Ethiopia: A cross-sectional study. BMC Infect. Dis. 2020, 20, 879. [Google Scholar] [CrossRef] [PubMed]
- Kwon, O.Y.; Jang, Y.; Lee, J.Y.; Kim, S.U.; Ahn, S.H. Development and initial validation of the nonalcoholic fatty liver disease self-management questionnaire. Res. Nurs. Health 2021, 44, 844–853. [Google Scholar] [CrossRef] [PubMed]
- Webel, A.R.; Asher, A.; Cuca, Y.; Okonsky, J.G.; Kaihura, A.; Dawson Rose, C.; Hanson, J.E.; Salata, R.A.; Burant, C.J. Measuring HIV self-management in women living with HIV/AIDS: A psychometric evaluation study of the HIV Self-management Scale. J. Acquir. Immune Defic. Syndr. 2012, 60, e72–e81. [Google Scholar] [CrossRef]
- Crowley, T.; Van der Merwe, A.; Skinner, D. Development of a cultural and contextual appropriate HIV self-management instrument using interpretive phenomenology and focus group cognitive interviews. Int. J. Afr. Nurs. Sci. 2020, 12, 100207. [Google Scholar] [CrossRef]
- Webel, A.R.; Cuca, Y.; Okonsky, J.G.; Asher, A.K.; Kaihura, A.; Salata, R.A. The impact of social context on self-management in women living with HIV. Soc. Sci. Med. 2013, 87, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Salthouse, T.A.; Berish, D.E.; Siedlecki, K.L. Construct validity and age sensitivity of prospective memory. Mem. Cogn. 2004, 32, 1133–1148. [Google Scholar] [CrossRef]
- Lam, L. Impact of competitiveness on salespeople’s commitment and performance. J. Bus. Res. 2012, 65, 1328–1334. [Google Scholar] [CrossRef]
- Kim, H.; Ku, B.; Kim, J.Y.; Park, Y.J.; Park, Y.B. Confirmatory and Exploratory Factor Analysis for Validating the Phlegm Pattern Questionnaire for Healthy Subjects. Evid. Based Complement. Altern Med. 2016, 2016, 2696019. [Google Scholar] [CrossRef]
- Toobert, D.J.; Glasgow, R.E. Assessing diabetes self-management: The Summary of Diabetes Self-Care Activities Questionnaire. In Handbook of Psychology and Diabetes: A Guide to Psychological Measurement in Diabetes Research and Practice; Harwood Academic Publishers/Gordon: Langhorne, PA, UK, 1994; pp. 351–375. [Google Scholar]
- Toobert, D.J.; Hampson, S.E.; Glasgow, R.E. The summary of diabetes self-care activities measure: Results from 7 studies and a revised scale. Diabetes Care 2000, 23, 943–950. [Google Scholar] [CrossRef]
- Fain, J.A. Psychometric properties of the Spanish Version of the Diabetes Self-management Assessment Report Tool. Diabetes Educ. 2007, 33, 827–832. [Google Scholar] [CrossRef] [PubMed]
- Whiteley, C.; Benton, F.; Matwiejczyk, L.; Luscombe-Marsh, N. Determining Dietary Patterns to Recommend for Type 2 Diabetes: An Umbrella Review. Nutrients 2023, 15, 861. [Google Scholar] [CrossRef] [PubMed]
- Diabetes Association of Thailand under The Patronage of Her Royal Highness Princess Maha Chakri Sirindhorn. Clinical Practice Guideline for Diabetes; Srimuang Printing Co., Ltd.: Pathumwan, Thailand, 2023; Volume 1. [Google Scholar]
- Nam, Y.H. The Psychological Effects of Diabetes Patients’ Educational Experience on Health and Food Literacies in Korean. J. ReAttach Ther. Dev. Divers. 2023, 6, 356–366. [Google Scholar]
- Orzechowska, A.; Zajaczkowska, M.; Talarowska, M.; Galecki, P. Depression and ways of coping with stress: A preliminary study. Med. Sci. Monit. 2013, 19, 1050–1056. [Google Scholar] [CrossRef]
- Orzechowska, A.; Blizniewska-Kowalska, K.; Galecki, P.; Szulc, A.; Plaza, O.; Su, K.P.; Georgescu, D.; Galecka, M. Ways of Coping with Stress among Patients with Depressive Disorders. J. Clin. Med. 2022, 11, 6500. [Google Scholar] [CrossRef]
- Alavi, M.; Visentin, D.C.; Thapa, D.K.; Hunt, G.E.; Watson, R.; Cleary, M. Chi-square for model fit in confirmatory factor analysis. J. Adv. Nurs. 2020, 76, 2209–2211. [Google Scholar] [CrossRef]
- Bentler, P.M. Comparative fit indexes in structural models. Psychol. Bull. 1990, 107, 238–246. [Google Scholar] [CrossRef]
- Stevens, J.P. Applied Multivariate Statistics for the Social Sciences, 4th ed.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 2002. [Google Scholar]
- Ingenhoff, D.; Buhmann, A. Advancing PR measurement and evaluation: Demonstrating the properties and assessment of variance-based structural equation models using an example study on corporate reputation. Public Relat. Rev. 2016, 42, 418–431. [Google Scholar] [CrossRef]
- Notthoff, N.; Klomp, P.; Doerwald, F.; Scheibe, S. Positive messages enhance older adults’ motivation and recognition memory for physical activity programmes. Eur. J. Ageing 2016, 13, 251–257. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gotzsche, P.C.; Vandenbroucke, J.P.; Initiative, S. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef]
Demographics | EFA (n = 311) | CFA (n = 254) | Total (n = 565) |
---|---|---|---|
Gender, n (%) | |||
Male | 117 (37.62) | 88 (34.65) | 205 (36.28) |
Female | 194 (62.38) | 166 (65.35) | 360 (63.72) |
Mean Age (SD) | 64.85 (2.77) | 64.43 (2.83) | 64.67 (2.81) |
Marital Status, n (%) | |||
Single | 17 (5.47) | 8 (3.15) | 25 (4.42) |
Married | 236 (75.88) | 192 (75.59) | 428 (75.75) |
Widowed/Divorced/Separated | 58 (18.65) | 54 (21.26) | 112 (19.82) |
Educational Level, n (%) | |||
Illiterate | 15 (4.82) | 17 (6.69) | 32 (5.66) |
Primary School | 221 (71.06) | 186 (73.23) | 407 (72.04) |
Junior High School | 37 (11.90) | 21 (8.27) | 58 (10.27) |
Senior High School | 21 (6.75) | 20 (7.87) | 41 (7.26) |
Diploma/High Vocational Certificate | 6 (1.93) | 4 (1.57) | 10 (1.77) |
Bachelor’s degree or higher | 11 (3.54) | 6 (2.36) | 17 (3.01) |
Employment, n (%) | |||
Laborer | 132 (42.44) | 125 (49.21) | 257 (45.49) |
Trader | 50 (16.08) | 36 (14.17) | 86 (15.22) |
Government Officer | 18 (5.79) | 10 (3.94) | 28 (4.96) |
Unemployed | 111 (35.69) | 83 (32.68) | 194 (34.34) |
Mean Family Members (SD) | 3.25 (1.38) | 3.28 (1.41) | 3.26 (1.39) |
Family Structure, n (%) | |||
Husband and Wife | 87 (27.97) | 67 (26.38) | 154 (27.26) |
Single Family | 94 (30.23) | 72 (28.35) | 166 (29.38) |
Extended Family | 130 (41.80) | 115 (45.28) | 245 (43.36) |
Family member with T2DM, n (%) | |||
Yes | 87 (27.97) | 77 (30.31) | 164 (29.03) |
No | 224 (72.03) | 177 (69.69) | 401 (70.97) |
Mean Family Monthly Income in USD (SD) | 314.16 (532.27) | 267.30 (374.97) | 293.09 (468.33) |
Religion, n (%) | |||
Buddhist | 303 (97.43) | 248 (97.64) | 551 (97.52) |
Christian | 8 (2.57) | 6 (2.36) | 14 (2.48) |
Duration of T2DM | 10.05 (7.61) | 9.80 (6.97) | 9.97 (7.36) |
Mean HbA1C (SD) | 7.67 (1.63) | 7.64 (1.76) | 7.66 (1.68) |
Items | Component | Communality | |||
---|---|---|---|---|---|
1 SSA | 2 KB | 3 SF | 4 SE | ||
16 | 0.813 | 0.812 | |||
17 | 0.800 | 0.818 | |||
18 | 0.851 | 0.661 | |||
19 | 0.859 | 0.851 | |||
20 | 0.852 | 0.756 | |||
21 | 0.875 | 0.877 | |||
22 | 0.825 | 0.850 | |||
23 | 0.869 | 0.901 | |||
24 | 0.890 | 0.870 | |||
25 | 0.878 | 0.810 | |||
26 | 0.838 | 0.820 | |||
27 | 0.889 | 0.804 | |||
1 | 0.538 | 0.569 | |||
2 | 0.602 | 0.643 | |||
3 | 0.632 | 0.679 | |||
4 | 0.940 | 0.771 | |||
5 | 0.768 | 0.762 | |||
6 | 0.755 | 0.682 | |||
7 | 0.759 | 0.666 | |||
8 | 0.714 | 0.659 | |||
9 | 0.754 | 0.734 | |||
28 | 0.564 | 0.902 | |||
29 | 0.555 | 0.871 | |||
30 | 0.526 | 0.863 | |||
10 | 0.601 | 0.633 | |||
12 | 0.743 | 0.738 | |||
13 | 0.810 | 0.827 | |||
14 | 0.850 | 0.756 | |||
15 | 0.873 | 0.739 | |||
Sum of Squares | 18.044 | 2.720 | 1.105 | 1.050 | |
% of Variance | 60.147 | 9.067 | 3.684 | 3.500 | |
% Cumulative | 60.147 | 69.214 | 75.898 | 76.398 | |
Cronbach’s α | 0.925 | 0.927 | 0.872 | 0.855 |
Factor Loading | Communality | |||||||
---|---|---|---|---|---|---|---|---|
1 RSM | 2 DAF | 3 EX | 4 AFC | 5 SAS | 6 FAC | 7 NSA | ||
19 | 0.722 | 0.623 | ||||||
20 | 0.790 | 0.728 | ||||||
21 | 0.816 | 0.762 | ||||||
23 | 0.785 | 0.740 | ||||||
24 | 0.808 | 0.729 | ||||||
25 | 0.826 | 0.721 | ||||||
26 | 0.725 | 0.659 | ||||||
27 | 0.781 | 0.745 | ||||||
28 | 0.708 | 0.601 | ||||||
29 | 0.781 | 0.743 | ||||||
17 | 0.874 | 0.860 | ||||||
18 | 0.869 | 0.777 | ||||||
22 | 0.817 | 0.826 | ||||||
1 | 0.555 | 0.642 | ||||||
2 | 0.506 | 0.574 | ||||||
3 | 0.692 | 0.596 | ||||||
5 | 0.669 | 0.643 | ||||||
7 | 0.645 | 0.503 | ||||||
8 | 0.747 | 0.597 | ||||||
9 | 0.679 | 0.582 | ||||||
11 | 0.547 | 0.633 | ||||||
4 | 0.722 | 0.581 | ||||||
6 | 0.566 | 0.492 | ||||||
13 | 0.771 | 0.611 | ||||||
14 | 0.738 | 0.623 | ||||||
15 | 0.816 | 0.711 | ||||||
16 | 0.675 | 0.580 | ||||||
Sum of Squares | 4.926 | 2.670 | 2.522 | 2.497 | 2.293 | 2.148 | 1.910 | |
% of Variance | 16.987 | 9.206 | 8.696 | 8.610 | 7.907 | 7.406 | 6.586 | |
% Cumulative | 16.987 | 26.193 | 34.890 | 43.500 | 51.407 | 58.813 | 65.399 | |
Cronbach’s α | 0.883 | 0.905 | 0.827 | 0.838 | 0.805 | 0.864 | 0.876 |
Factor | (1) | (2) | (3) | (4) | CR |
---|---|---|---|---|---|
Factor 1 | (0.456) | 0.942 | |||
Factor 2 | 0.307 ** | (0.474) | 0.889 | ||
Factor 3 | 0.459 ** | 0.415 ** | (0.658) | 0.850 | |
Factor 4 | 0.509 ** | 0.401 ** | 0.633 ** | (0.578) | 0.872 |
Mean | 40.772 | 25.134 | 9.744 | 16.421 | |
S.D. | 4.947 | 3.868 | 1.842 | 2.729 |
Factor | (1) | (2) | (3) | (4) | (5) | (6) | (7) | CR |
---|---|---|---|---|---|---|---|---|
Factor 1 | (0.629) | 0.910 | ||||||
Factor 2 | 0.376 ** | (0.559) | 0.833 | |||||
Factor 3 | 0.454 ** | 0.278 ** | (0.703) | 0.875 | ||||
Factor 4 | 0.576 ** | 0.276 ** | 0.404 ** | (0.539) | 0.823 | |||
Factor 5 | 0.414 ** | 0.281 ** | 0.183 ** | 0.376 ** | (0.381) | 0.711 | ||
Factor 6 | 0.242 ** | 0.132 * | 0.157 * | 0.161 * | 0.280 ** | (0.492) | 0.742 | |
Factor 7 | 0.275 ** | 0.350 ** | 0.228 ** | 0.241 ** | 0.299 ** | 0.164 ** | (0.458) | 0.716 |
Mean | 20.937 | 15.370 | 8.059 | 13.134 | 13.732 | 9.717 | 11.095 | |
S.D. | 3.340 | 1.487 | 2.756 | 2.343 | 1.781 | 1.179 | 1.595 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pipatpiboon, N.; Sripetchwandee, J.; Kantawong, E.; Budda, R.; Bressington, D. Dementia Prevention Self-Management in Older Thai Adults with Type 2 Diabetes: Development and Psychometric Properties of Two Questionnaires. Nurs. Rep. 2024, 14, 3786-3802. https://doi.org/10.3390/nursrep14040277
Pipatpiboon N, Sripetchwandee J, Kantawong E, Budda R, Bressington D. Dementia Prevention Self-Management in Older Thai Adults with Type 2 Diabetes: Development and Psychometric Properties of Two Questionnaires. Nursing Reports. 2024; 14(4):3786-3802. https://doi.org/10.3390/nursrep14040277
Chicago/Turabian StylePipatpiboon, Noppamas, Jirapas Sripetchwandee, Eakachai Kantawong, Ruksanudt Budda, and Daniel Bressington. 2024. "Dementia Prevention Self-Management in Older Thai Adults with Type 2 Diabetes: Development and Psychometric Properties of Two Questionnaires" Nursing Reports 14, no. 4: 3786-3802. https://doi.org/10.3390/nursrep14040277
APA StylePipatpiboon, N., Sripetchwandee, J., Kantawong, E., Budda, R., & Bressington, D. (2024). Dementia Prevention Self-Management in Older Thai Adults with Type 2 Diabetes: Development and Psychometric Properties of Two Questionnaires. Nursing Reports, 14(4), 3786-3802. https://doi.org/10.3390/nursrep14040277