Influence of Nursing Time and Staffing on Medication Errors: A Cross-Sectional Analysis of Administrative Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Sources
2.3. Measures and Outcomes
- Misidentified patients for nursing practices (treatment, medication, examination, and serving meals), e.g., treatment for patient A was provided to patient B.
- Misidentified nursing practices (treatment, medication, examination, and serving meals), e.g., Patient A was provided treatment B instead of prescribed treatment C.
- Misidentification of medication by nurses included misidentifying patients for medication and the misadministration of medication (dosing errors and dosing method errors).
- Medication errors caused by nurses. We excluded medication errors associated with the patient, consumer, and other healthcare providers, such as physicians, pharmacologists, and nursing assistants, and outside-hospital care (while staying outside the hospital) based on case content.
2.4. Patient Variables
2.5. Statistical Analyses
2.6. Ethical Considerations
3. Results
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Public Involvement Statement
Guidelines and Standards Statement
Use of Artificial Intelligence
Acknowledgments
Conflicts of Interest
References
- Medication Without Harm. Global Patient Safety Challenge on Medication Safety. In Strategic Framework; WHO: Geneva, Switzerland, 2017; Available online: https://www.who.int/initiatives/medication-without-harm (accessed on 12 December 2024).
- Anderson, J.G.; Abrahamson, K. Your health care may kill you: Medical errors. Stud. Health Technol. Inform. 2017, 234, 13–17. [Google Scholar] [PubMed]
- Morioka, N.; Tomio, J.; Seto, T.; Kobayashi, Y. The association between higher nurse staffing standards in the fee schedules and the geographic distribution of hospital nurses: A cross-sectional study using nationwide administrative data. BMC Nurs. 2017, 16, 25. [Google Scholar] [CrossRef] [PubMed]
- Iijima, K.; Arai, H.; Akishita, M.; Endo, T.; Ogasawara, K.; Kashihara, N.; Hayashi, Y.K.; Yokode, M.; Ouchi, Y. Toward the development of a vibrant, super-aged society: The future of medicine and society in Japan. Geriatr. Gerontol. Int. 2021, 21, 601–613. [Google Scholar] [CrossRef]
- Needleman, J.; Liu, J.; Shang, J.; Larson, E.L.; Stone, P.W. Association of registered nurse and nursing support staffing with inpatient hospital mortality. BMJ Qual. Saf. 2020, 29, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Aiken, L.H.; Cerón, C.; Simonetti, M.; Lake, E.T.; Galiano, A.; Garbarini, A.; Soto, P.; Bravo, D.; Smith, H.L. Hospital nurse staffing and patient outcomes. Rev. Med. Clin. Condes 2018, 29, 322–327. [Google Scholar] [CrossRef]
- Griffiths, P.; Maruotti, A.; Recio Saucedo, A.; Redfern, O.C.; Ball, J.E.; Briggs, J.; Dall’Ora, C.; Schmidt, P.E.; Smith, G.B.; Missed Care Study Group. Nurse staffing, nursing assistants and hospital mortality: Retrospective longitudinal cohort study. BMJ Qual. Saf. 2019, 28, 609–617. [Google Scholar] [CrossRef]
- Lasater, K.B.; Aiken, L.H.; Sloane, D.; French, R.; Martin, B.; Alexander, M.; McHugh, M.D. Patient outcomes and cost savings associated with hospital safe nurse staffing legislation: An observational study. BMJ Open 2021, 11, e052899. [Google Scholar] [CrossRef]
- Perlman, S.E.; Saiman, L.; Larson, E.L. Risk factors for late-onset health care associated bloodstream infections in patients in neonatal intensive care units. Am. J. Infect. Control 2007, 35, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Lasater, K.B.; McHugh, M.D. Reducing hospital readmission disparities of older black and white adults after elective joint replacement: The role of nurse staffing. J. Am. Geriatr. Soc. 2016, 64, 2593–2598. [Google Scholar] [CrossRef] [PubMed]
- Aiken, L.H.; Clarke, S.P.; Sloane, D.M.; Sochalski, J.; Silber, J.H. Hospital nurse staffing and patient mortality, nurse burnout, and job dissatisfaction. JAMA 2002, 288, 1987–1993. [Google Scholar] [CrossRef] [PubMed]
- Silber, J.H.; Rosenbaum, P.R.; McHugh, M.D.; Ludwig, J.M.; Smith, H.L.; Niknam, B.A.; Even-Shoshan, O.; Fleisher, L.A.; Kelz, R.R.; Aiken, L.H. Comparison of the value of nursing work environments in hospitals across different levels of patient risk. JAMA Surg. 2016, 151, 527–536. [Google Scholar] [CrossRef] [PubMed]
- Paulsen, R.A. Taking nurse staffing research to the unit level. Nurs. Manag. 2018, 49, 42–48. [Google Scholar] [CrossRef]
- Park, S.H.; Blegen, M.A.; Spetz, J.; Chapman, S.A.; De Groot, H.A. Comparison of nurse staffing measurements in staffing-outcomes research. Med. Care 2015, 53, e1–e8. [Google Scholar] [CrossRef] [PubMed]
- Haegdorens, F.; Van Bogaert, P.; Roelant, E.; De Meester, K.; Misselyn, M.; Wouters, K.; Monsieurs, K.G. The introduction of a rapid response system in acute hospitals: A pragmatic stepped wedge cluster randomised controlled trial. Resuscitation 2018, 129, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, P.; Saville, C.; Ball, J.; Jones, J.; Pattison, N.; Monks, T.; Safer Nursing Care Study Group. Nursing workload, nurse staffing methodologies and tools: A systematic scoping review and discussion. Int. J. Nurs. Stud. 2020, 103, 103487. [Google Scholar] [CrossRef]
- Hayashida, K.; Murakami, G.; Matsuda, S.; Fushimi, K. History and profile of diagnosis procedure combination (DPC): Development of a real data collection system for acute inpatient care in Japan. J. Epidemiol. 2021, 31, 1–11. [Google Scholar] [CrossRef]
- Hayashida, K.; Moriwaki, M.; Murakami, G. Evaluation of the condition of inpatients in acute care hospitals in Japan: A retrospective multicenter descriptive study. Nurs. Health Sci. 2022, 24, 811–819. [Google Scholar] [CrossRef] [PubMed]
- Quan, H.; Li, B.; Couris, C.M.; Fushimi, K.; Graham, P.; Hider, P.; Januel, J.M.; Sundararajan, V. Updating and validating the Charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries. Am. J. Epidemiol. 2011, 173, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Needleman, J.; Buerhaus, P.; Mattke, S.; Stewart, M.; Zelevinsky, K. Nurse-staffing levels and the quality of care in hospitals. N. Engl. J. Med. 2002, 346, 1715–1722. [Google Scholar] [CrossRef] [PubMed]
- Blume, K.S.; Dietermann, K.; Kirchner-Heklau, U.; Winter, V.; Fleischer, S.; Kreidl, L.M.; Meyer, G.; Schreyögg, J. Staffing levels and nursing-sensitive patient outcomes: Umbrella review and qualitative study. Health Serv. Res. 2021, 56, 885–907. [Google Scholar] [CrossRef] [PubMed]
- Morioka, N.; Okubo, S.; Moriwaki, M.; Hayashida, K. Evidence of the association between nurse staffing levels and patient and nurses’ outcomes in acute care hospitals across Japan: A scoping Review. Healthcare 2022, 10, 1052. [Google Scholar] [CrossRef]
- Patrician, P.A.; Loan, L.; McCarthy, M.; Fridman, M.; Donaldson, N.; Bingham, M.; Brosch, L.R. The association of shift-level nurse staffing with adverse patient events. J. Nurs. Adm. 2011, 41, 64–70. [Google Scholar] [CrossRef] [PubMed]
- van der Mark, C.J.E.M.; Vermeulen, H.; Hendriks, P.H.J.; Oostveen, C.J.V. Measuring perceived adequacy of staffing to incorporate nurses’ judgement into hospital capacity management: A scoping review. BMJ Open 2021, 11, e045245. [Google Scholar] [CrossRef] [PubMed]
- Perpetua, Z.; Lennon, J.; Shovel, J.A.; Appell, K.E.; Patterson, L.; Martin, S.C.; Minnier, T.E.; Sackrowitz, R.; Zapf, R.L.; Kip, P.L.; et al. A current state assessment on nursing work activities: An Observational Study. J. Nurs. Care Qual. 2023, 38, 381–387. [Google Scholar] [CrossRef]
- Yen, P.Y.; Kellye, M.; Lopetegui, M.; Saha, A.; Loversidge, J.; Chipps, E.M.; Gallagher-Ford, L.; Buck, J. Nurses’ time allocation and multitasking of nursing activities: A time motion study. AMIA Annu. Symp. Proc. 2018, 2018, 1137–1146. [Google Scholar] [PubMed] [PubMed Central]
- Michel, O.; Garcia Manjon, A.J.; Pasquier, J.; Ortoleva Bucher, C. How do nurses spend their time? A time and motion analysis of nursing activities in an internal medicine unit. J. Adv. Nurs. 2021, 77, 4459–4470. [Google Scholar] [CrossRef] [PubMed]
- Moriwaki, M.; Tanaka, M.; Toba, M.; Ozasa, Y.; Ogata, Y.; Obayashi, S. The relationship between unit characteristics and fall incidence: A cross-sectional survey and administrative data in Japan. J. Nurs. Res. 2024, in press. [Google Scholar] [CrossRef]
- Falk, A.C. Nurse staffing levels in critical care: The impact of patient characteristics. Nurs. Crit. Care 2023, 28, 281–287. [Google Scholar] [CrossRef]
- Maleki, M.; Mardani, A.; Vaismoradi, M. Insecure Employment Contracts during the COVID-19 Pandemic and the Need for Participation in Policy Making. Int. J. Environ. Res. Public Health 2021, 18, 12548. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine Committee on the Work Environment for Nurses and Patient Safety. Keeping Patients Safe: Transforming the Work Environment of Nurses; Page, A., Ed.; National Academies Press: Washington, DC, USA, 2004. [Google Scholar]
- Richter, J.P.; McAlearney, A.S.; Pennell, M.L. Evaluating the effect of safety culture on error reporting: A comparison of managerial and staff perspectives. Am. J. Med. Qual. 2015, 30, 550–558. [Google Scholar] [CrossRef] [PubMed]
- Hessels, A.J.; Paliwal, M.; Weaver, S.H.; Siddiqui, D.; Wurmser, T.A. Impact of patient safety culture on missed nursing care and adverse patient events. J. Nurs. Care Qual. 2019, 34, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Witczak, I.; Rypicz, Ł.; Karniej, P.; Młynarska, A.; Kubielas, G.; Uchmanowicz, I. Rationing of nursing care and patient safety. Front. Psychol. 2021, 12, 676970. [Google Scholar] [CrossRef] [PubMed]
- Division of Adverse Event Prevention; Japan Council for Cuality Health Care. Project to Collect. Medical Near-Miss/Adverse Event. Information 2021 Annual Report. Available online: https://www.med-safe.jp/contents/english/index.html (accessed on 12 December 2024).
- Schwendimann, R.; Blatter, C.; Dhaini, S.; Simon, M.; Ausserhofer, D. The occurrence, types, consequences and preventability of in-hospital adverse events–A scoping review. BMC Health Serv. Res. 2018, 18, 521. [Google Scholar] [CrossRef] [PubMed]
- Hawamg, Y.J.; Kim, G.H.; Nam, K.W. Deep learning monitoring technique for trial-time intravenous medication bag status. Biomed. Eng. Lett. 2023, 13, 705–714. [Google Scholar] [CrossRef]
- Maul, J.; Straub, J. Assessment of the use of patient vital sign data for preventing misidentification and medical errors. Healthcare 2022, 10, 2440. [Google Scholar] [CrossRef]
- Manias, E.; Kusljic, S.; Wu, A. Interventions to reduce medication errors in adult medical and surgical settings: A systematic review. Ther. Adv. Drug Saf. 2020, 11, 2042098620968309. [Google Scholar] [CrossRef] [PubMed]
- Syyrilä, T.; Vehviläinen-Julkunen, K.; Härkänen, M. Communication issues contributing to medication incidents: Mixed-method analysis of hospitals’ incident reports using indicator phrases based on literature. J. Clin. Nurs. 2020, 29, 2466–2481. [Google Scholar] [CrossRef]
Hospital ID | Number of Wards | Total Number of Patients | Age | Sex: Male | Surgical Patient | Nursing Time per Patient | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Day Shift (8 h) | Night Shift (16 h) | |||||||||||
Mean | SD | Number | % | Number | % | Mean | SD | Mean | SD | |||
Hospital 1 | 5 | 4249 | 73.11 | 14.86 | 2179 | 54.9 | 2114 | 53.2 | 1.96 | 0.61 | 1.38 | 0.19 |
Hospital 2 | 9 | 8438 | 72.87 | 15.97 | 4386 | 54.5 | 4580 | 56.9 | 1.98 | 0.53 | 1.59 | 0.19 |
Hospital 3 | 8 | 6253 | 71.39 | 14.93 | 3169 | 53.4 | 3564 | 60.1 | 1.99 | 0.52 | 1.47 | 0.27 |
Hospital 4 | 6 | 5883 | 70.96 | 15.85 | 2842 | 51.0 | 3044 | 54.6 | 2.08 | 0.53 | 1.55 | 0.23 |
Hospital 5 | 5 | 3823 | 73.57 | 14.33 | 2044 | 57.0 | 1780 | 49.7 | 2.08 | 0.60 | 1.45 | 0.23 |
Hospital 6 | 9 | 7014 | 70.57 | 15.28 | 3826 | 57.3 | 3599 | 53.9 | 1.95 | 0.47 | 1.49 | 0.19 |
Hospital 7 | 7 | 6318 | 70.00 | 15.66 | 3313 | 56.9 | 3073 | 52.8 | 2.42 | 0.60 | 1.62 | 0.25 |
Hospital 8 | 8 | 6305 | 72.81 | 14.14 | 3330 | 56.5 | 3250 | 55.1 | 2.01 | 0.48 | 1.26 | 0.17 |
Hospital 9 | 12 | 9642 | 69.74 | 14.39 | 4864 | 52.2 | 4811 | 51.6 | 1.37 | 0.20 | 1.39 | 0.21 |
Hospital 10 | 8 | 6262 | 70.65 | 14.76 | 3435 | 56.1 | 3565 | 58.3 | 2.27 | 0.54 | 1.49 | 0.26 |
Total | 77 | 64,187 | 71.43 | 15.08 | 33,388 | 54.8 | 33,380 | 54.8 | 1.96 | 0.58 | 1.46 | 0.24 |
Non-Medication Error Group N = 23,840 | Medication Error Group N = 3789 | p * | |||
---|---|---|---|---|---|
Mean | SD | Mean | SD | ||
Nursing time per patient | |||||
Day shift (8 h), hours | 1.95 | 0.58 | 2.06 | 0.58 | <0.01 |
Night shift (16 h), hours | 1.46 | 0.24 | 1.46 | 0.24 | 0.828 |
Patients’ background | |||||
65 years old and over, % | 71.96 | 74.14 | 73.17 | 75.00 | <0.01 |
Men, % | 57.67 | 58.33 | 57.96 | 58.49 | 0.64 |
Discharge, % | 6.87 | 6.25 | 7.12 | 6.45 | 0.01 |
Admission, % | 5.99 | 4.88 | 6.20 | 5.36 | <0.01 |
Hospital death, % | 0.19 | 0.00 | 0.19 | 0.00 | 0.58 |
Sedative hypotics, % | 13.03 | 12.00 | 13.29 | 12.50 | <0.01 |
Psychotropic, % | 9.73 | 8.33 | 10.44 | 9.09 | <0.01 |
Hypertention, % | 33.72 | 31.25 | 33.34 | 30.61 | 0.09 |
Osteoporosis, % | 4.89 | 3.45 | 4.86 | 3.64 | 0.22 |
Anemia, % | 14.67 | 12.77 | 13.96 | 12.07 | <0.01 |
CCI score 1, % | 23.82 | 23.26 | 24.05 | 23.53 | 0.13 |
CCI score 2, % | 15.83 | 15.38 | 15.81 | 15.38 | 0.70 |
CCI score 3, % | 10.85 | 10.00 | 10.42 | 9.62 | <0.01 |
CCI score 4 or more, % | 8.03 | 6.52 | 7.56 | 6.25 | <0.01 |
Emergency hospitalization, % | 0.93 | 0.00 | 0.92 | 0.00 | 0.91 |
Surgery, % | 1.41 | 0.00 | 1.46 | 0.00 | 0.18 |
Injection, % | 26.77 | 26.00 | 27.98 | 26.83 | <0.01 |
Non-Medication Error Group N = 23,840 | Medication Error Group N = 3789 | p * | |||
---|---|---|---|---|---|
Mean | SD | Mean | SD | ||
≪Monitoring and treatment≫ | |||||
Wound treatment (excluding treatment of pressure ulcer), % | 4.72 | 2.33 | 4.60 | 2.27 | 0.05 |
Treatment of pressure ulcers, % | 0.28 | 0.00 | 0.29 | 0.00 | 0.40 |
Respiratory care (except for only sputum aspiration), % | 9.00 | 6.90 | 9.46 | 7.50 | <0.01 |
Management of three or more intravenous lines at the same time, % | 5.91 | 3.70 | 6.07 | 3.77 | 0.42 |
ECG monitor management, % | 19.71 | 15.69 | 19.59 | 15.69 | 0.93 |
Syringe driver management, % | 2.11 | 0.00 | 2.40 | 0.00 | <0.01 |
Management of blood transfusion and blood product, % | 1.86 | 0.00 | 2.00 | 0.00 | 0.03 |
Professional treatment, % | 25.91 | 23.53 | 25.98 | 23.53 | 0.72 |
Use of antineoplastic agents (injection only), % | 2.02 | 0.00 | 2.18 | 0.00 | 0.08 |
Management of oral administration of antineoplastic agents, % | 1.70 | 0.00 | 1.67 | 0.00 | 0.51 |
Use of narcotics (injection only), % | 2.05 | 0.00 | 2.20 | 0.00 | 0.07 |
Internal use of narcotics, application, management of suppositories, % | 1.67 | 0.00 | 1.63 | 0.00 | 0.86 |
Radiation therapy, % | 1.52 | 0.00 | 1.64 | 0.00 | <0.01 |
Immunosuppressant management, % | 9.45 | 6.67 | 9.28 | 6.82 | 0.28 |
Use of pressor agent (injection only), % | 1.59 | 0.00 | 1.60 | 0.00 | 0.34 |
Use of antiarrhythmic agent (injection only), % | 0.36 | 0.00 | 0.38 | 0.00 | 0.73 |
Use of continuous infusion of antithrombotic embolic drug, % | 3.09 | 2.08 | 3.10 | 2.08 | 0.72 |
Drainage management, % | 5.86 | 3.03 | 5.63 | 2.63 | <0.01 |
Treatment in a sterile treatment room, % | 1.51 | 0.00 | 1.64 | 0.00 | 0.25 |
≪Patients’ functional state≫ | |||||
Turnover (Partly assisted), % | 24.89 | 21.43 | 26.61 | 22.22 | 0.03 |
Turnover (Fully assisted), % | 16.64 | 14.89 | 16.52 | 14.89 | 0.94 |
Transfer (Partly assisted), % | 30.36 | 29.17 | 30.34 | 28.95 | 0.81 |
Transfer (Fully assisted), % | 12.24 | 10.34 | 12.33 | 10.34 | 0.98 |
Oral care, % | 43.18 | 45.93 | 43.75 | 0.07 | |
Meal intake (Partly assisted), % | 25.75 | 24.07 | 25.42 | 24.39 | 0.52 |
Meal intake (Fully assisted), % | 10.55 | 7.89 | 10.39 | 8.16 | 0.03 |
Personal dressing (Partly assisted), % | 27.08 | 26.67 | 26.22 | 25.81 | 0.04 |
Personal dressing (Fully assisted), % | 21.69 | 19.15 | 21.76 | 19.57 | 0.11 |
No able to receive directions on medical care and treatment, % | 19.87 | 13.33 | 20.42 | 13.73 | 0.04 |
Engaged in dangerous behavior, % | 9.62 | 6.82 | 9.45 | 7.14 | 0.09 |
≪Surgery and emergency care≫ | |||||
Craniotomy (within 7 days from the day of surgery), % | 0.13 | 0.00 | 0.12 | 0.00 | 0.28 |
Thoracotomy (within 7 days from the day of surgery), % | 0.10 | 0.00 | 0.11 | 0.00 | 0.69 |
Laparotomy (within 4 days from the day of surgery), % | 0.50 | 0.00 | 0.53 | 0.00 | 0.38 |
Bone surgery (within 5 days from the day of surgery), % | 1.60 | 0.00 | 1.73 | 0.00 | 0.59 |
Thoracoscopic/laparoscopic surgery (within 3 days from the day of surgery), % | 1.02 | 0.00 | 0.97 | 0.00 | 0.05 |
General anesthesia/spinal anesthesia surgery (within 2 days from the day of surgery), % | 2.88 | 0.00 | 3.03 | 0.00 | 0.22 |
Percutaneous endovascular treatment, % | 0.37 | 0.00 | 0.47 | 0.00 | <0.01 |
Treatment such as percutaneous myocardial ablation, % | 0.33 | 0.00 | 0.41 | 0.00 | <0.01 |
Invasive gastrointestinal treatment, % | 0.63 | 0.00 | 0.80 | 0.00 | <0.01 |
Eye surgery, % | 0.14 | 0.00 | 0.18 | 0.00 | <0.01 |
β | Odds | Odds 95% CI※1 | p | ||
---|---|---|---|---|---|
Lower | Upper | ||||
Nursing time per patient: day shift (8 h), hour | 0.27 | 1.31 | 1.21 | 1.42 | <0.01 |
Nursing time per patient: night shift (16 h), hour | −0.59 | 0.55 | 0.46 | 0.67 | <0.01 |
Use of narcotics (injection only), % | 0.05 | 1.05 | 1.03 | 1.07 | <0.01 |
Percutaneous endovascular treatment, % | 0.03 | 1.03 | 1.01 | 1.06 | <0.01 |
Treatment such as percutaneous myocardial ablation, % | 0.04 | 1.04 | 1.02 | 1.06 | <0.01 |
Invasive gastrointestinal treatment, % | 0.03 | 1.03 | 1.02 | 1.05 | <0.01 |
Oral care, % | 0.00 | 1.00 | 1.00 | 1.01 | <0.01 |
Surgery, % | −0.04 | 0.96 | 0.94 | 0.98 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moriwaki, M.; Tanaka, M.; Kakehashi, M.; Koizumi, M.; Horiguchi, H.; Hayashida, K. Influence of Nursing Time and Staffing on Medication Errors: A Cross-Sectional Analysis of Administrative Data. Nurs. Rep. 2025, 15, 12. https://doi.org/10.3390/nursrep15010012
Moriwaki M, Tanaka M, Kakehashi M, Koizumi M, Horiguchi H, Hayashida K. Influence of Nursing Time and Staffing on Medication Errors: A Cross-Sectional Analysis of Administrative Data. Nursing Reports. 2025; 15(1):12. https://doi.org/10.3390/nursrep15010012
Chicago/Turabian StyleMoriwaki, Mutsuko, Michiko Tanaka, Masayuki Kakehashi, Masato Koizumi, Hiromasa Horiguchi, and Kenshi Hayashida. 2025. "Influence of Nursing Time and Staffing on Medication Errors: A Cross-Sectional Analysis of Administrative Data" Nursing Reports 15, no. 1: 12. https://doi.org/10.3390/nursrep15010012
APA StyleMoriwaki, M., Tanaka, M., Kakehashi, M., Koizumi, M., Horiguchi, H., & Hayashida, K. (2025). Influence of Nursing Time and Staffing on Medication Errors: A Cross-Sectional Analysis of Administrative Data. Nursing Reports, 15(1), 12. https://doi.org/10.3390/nursrep15010012