Assessing the Accuracy, Completeness and Safety of ChatGPT-4o Responses on Pressure Injuries in Infants: Clinical Applications and Future Implications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Question Generation
2.2. Answers Collection
2.3. Evaluation of ChatGPT Answers
2.4. Statistical Analysis
2.5. Ethical Considerations
3. Results
3.1. Socio-Demographic Characteristics Panel of Experts
3.2. Accuracy
3.3. Completeness
3.4. Safety
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Public Involvement Statement
Guidelines and Standards Statement
Use of Artificial Intelligence
Acknowledgments
Conflicts of Interest
References
- National Pressure Ulcer Advisory Panel; European Pressure Ulcer Advisory Panel; Pan Pacific Pressure Injury Alliance. Prevention and Treatment of Pressure Ulcers: Quick Reference Guide, 2nd ed.; Cambridge Media: Osborne Park, Australia, 2014. [Google Scholar]
- European Pressure Ulcer Advisory Panel; National Pressure Injury Advisory Panel; Pan Pacific Pressure Injury Alliance. Prevention and Treatment of Pressure Ulcers/Injuries: Clinical Practice Guideline. The International Guideline; Haesler, E., Ed.; European Pressure Ulcer Advisory Panel: London, UK; National Pressure Injury Advisory Panel: Schaumburg, IL, USA, 2019. [Google Scholar]
- Visscher, M.O.; Adam, R.; Brink, S.; Odio, M. Newborn Infant Skin: Physiology, Development, and Care. Clin. Dermatol. 2015, 33, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Visscher, M.O.; Hu, P.; Carr, A.N.; Bascom, C.C.; Isfort, R.J.; Creswell, K.; Adams, R.; Tiesman, J.P.; Lammers, K.; Narendran, V. Newborn Infant Skin Gene Expression: Remarkable Differences versus Adults. PLoS ONE 2021, 16, e0258554. [Google Scholar] [CrossRef] [PubMed]
- Nie, A.M.; Johnson, D.; Reed, R.C. Neonatal Skin Structure: Pressure Injury Staging Challenges. Adv. Skin Wound Care 2022, 35, 149–154. [Google Scholar] [CrossRef]
- García-Molina, P.; Balaguer-López, E.; García-Fernández, F.P.; Ferrera-Fernández, M.d.l.Á.; Blasco, J.M.; Verdú, J. Pressure Ulcers’ Incidence, Preventive Measures, and Risk Factors in Neonatal Intensive Care and Intermediate Care Units. Int. Wound J. 2018, 15, 571–579. [Google Scholar] [CrossRef]
- August, D.L.; New, K.; Ray, R.A.; Kandasamy, Y. Frequency, Location and Risk Factors of Neonatal Skin Injuries from Mechanical Forces of Pressure, Friction, Shear and Stripping: A Systematic Literature Review. J. Neonatal Nurs. 2018, 24, 173–180. [Google Scholar] [CrossRef]
- Fujii, K.; Sugama, J.; Okuwa, M.; Sanada, H.; Mizokami, Y. Incidence and Risk Factors of Pressure Ulcers in Seven Neonatal Intensive Care Units in Japan: A Multisite Prospective Cohort Study. Int. Wound J. 2010, 7, 323–328. [Google Scholar] [CrossRef]
- Curcio, F.; Vaquero-Abellán, M.; Meneses-Monroy, A.; de-Pedro-Jimenez, D.; Aviles-Gonzalez, C.I.; Romero Saldaña, M. Multicentre Prospective Study to Establish a Risk Prediction Model on Pressure Injury in the Neonatal Intensive and Intermediate Care Units. Aust. Crit. Care 2025, 38, 101204. [Google Scholar] [CrossRef]
- Visscher, M.; Taylor, T. Pressure Ulcers in the Hospitalized Neonate: Rates and Risk Factors. Sci. Rep. 2014, 4, 7429. [Google Scholar] [CrossRef]
- Kronman, M.P.; Hall, M.; Slonim, A.D.; Shah, S.S. Charges and Lengths of Stay Attributable to Adverse Patient-Care Events Using Pediatric-Specific Quality Indicators: A Multicenter Study of Freestanding Children’s Hospitals. Pediatrics 2008, 121, e1653–e1659. [Google Scholar] [CrossRef]
- Noonan, C.; Quigley, S.; Curley, M.A.Q. Skin Integrity in Hospitalized Infants and Children: A Prevalence Survey. J. Pediatr. Nurs. 2006, 21, 445–453. [Google Scholar] [CrossRef]
- Allaway, R.; Gardiner, C.; Hanson, J.; Murphy, J.; Sharma, A. Best Practice Statement. Principles of Wound Management in Paediatric Patients, 2nd ed.; Wounds: London, UK, 2024. [Google Scholar]
- Pediatric Affinity Group. How-to-Guide: Pediatric Supplement. Preventing Pressure Ulcers; Institute for Health Care Improvement: Cambridge, MA, USA, 2010. [Google Scholar]
- National Institute for Health and Care Excellence. Pressure Ulcers: Prevention and Management—Clinical Guideline; National Institute for Health and Care Excellence: London, UK, 2014. [Google Scholar]
- Curcio, F.; Vaquero Abellán, M.; Dioni, E.; de Lima, M.M.; Ez Zinabi, O.; Romero Saldaña, M. Validity and Reliability of the Italian-Neonatal Skin Risk Assessment Scale (i-NSRAS). Intensive Crit. Care Nurs. 2024, 80, 103561. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Preininger, A. AI in Health: State of the Art, Challenges, and Future Directions. Yearb. Med. Inform. 2019, 28, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Jakhar, D.; Kaur, I. Artificial Intelligence, Machine Learning and Deep Learning: Definitions and Differences. Clin. Exp. Dermatol. 2020, 45, 131–132. [Google Scholar] [CrossRef]
- Helm, J.M.; Swiergosz, A.M.; Haeberle, H.S.; Karnuta, J.M.; Schaffer, J.L.; Krebs, V.E.; Spitzer, A.I.; Ramkumar, P.N. Machine Learning and Artificial Intelligence: Definitions, Applications, and Future Directions. Curr. Rev. Musculoskelet. Med. 2020, 13, 69–76. [Google Scholar] [CrossRef]
- Encarnação, R.; Manuel, T.; Palheira, H.; Neves-Amado, J.; Alves, P. Artificial Intelligence in Wound Care Education: Protocol for a Scoping Review. Nurs. Rep. 2024, 14, 627–640. [Google Scholar] [CrossRef]
- Ghadban, Y.A.; Lu, H.; Adavi, U.; Sharma, A.; Gara, S.; Das, N.; Kumar, B.; John, R.; Devarsetty, P.; Hirst, J.E. Transforming Healthcare Education: Harnessing Large Language Models for Frontline Health Worker Capacity Building Using Retrieval-Augmented Generation. medRxiv 2023. [Google Scholar] [CrossRef]
- Dağci, M.; Çam, F.; Dost, A. Reliability and Quality of the Nursing Care Planning Texts Generated by ChatGPT. Nurse Educ. 2024, 49, E109. [Google Scholar] [CrossRef]
- Aguirre, A.; Hilsabeck, R.; Smith, T.; Xie, B.; He, D.; Wang, Z.; Zou, N. Assessing the Quality of ChatGPT Responses to Dementia Caregivers’ Questions: Qualitative Analysis. JMIR Aging 2024, 7, 53019. [Google Scholar] [CrossRef]
- Cai, X.; Zhan, L.; Lin, Y. Assessing the Accuracy and Clinical Utility of GPT-4O in Abnormal Blood Cell Morphology Recognition. Digit. Health 2024, 10, 20552076241298503. [Google Scholar] [CrossRef]
- Introducing ChatGPT. Available online: https://openai.com/index/chatgpt/ (accessed on 27 November 2024).
- De Vito, A.; Colpani, A.; Moi, G.; Babudieri, S.; Calcagno, A.; Calvino, V.; Ceccarelli, M.; Colpani, G.; d’Ettorre, G.; Di Biagio, A.; et al. Assessing ChatGPT’s Potential in HIV Prevention Communication: A Comprehensive Evaluation of Accuracy, Completeness, and Inclusivity. AIDS Behav. 2024, 28, 2746–2754. [Google Scholar] [CrossRef]
- Peled, T.; Sela, H.Y.; Weiss, A.; Grisaru-Granovsky, S.; Agrawal, S.; Rottenstreich, M. Evaluating the Validity of ChatGPT Responses on Common Obstetric Issues: Potential Clinical Applications and Implications. Int. J. Gynecol. Obstet. 2024, 166, 1127–1133. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.A.; Fisher, A.C.; Xu, B.Y.; Song, B.J. Comparing the Accuracy and Readability of Glaucoma-Related Question Responses and Educational Materials by Google and ChatGPT. J. Curr. Glaucoma Pract. 2024, 18, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Dubin, J.A.; Bains, S.S.; DeRogatis, M.J.; Moore, M.C.; Hameed, D.; Mont, M.A.; Nace, J.; Delanois, R.E. Appropriateness of Frequently Asked Patient Questions Following Total Hip Arthroplasty From ChatGPT Compared to Arthroplasty-Trained Nurses. J. Arthroplasty 2024, 39, S306–S311. [Google Scholar] [CrossRef] [PubMed]
- Maadi, M.; Akbarzadeh Khorshidi, H.; Aickelin, U. A Review on Human-AI Interaction in Machine Learning and Insights for Medical Applications. Int. J. Environ. Res. Public Health 2021, 18, 2121. [Google Scholar] [CrossRef]
- Wahlster, W. Understanding Computational Dialogue Understanding. Philos. Trans. A Math. Phys. Eng. Sci. 2023, 381, 20220049. [Google Scholar] [CrossRef]
- De Gagne, J.C. The State of Artificial Intelligence in Nursing Education: Past, Present, and Future Directions. Int. J. Environ. Res. Public Health 2023, 20, 4884. [Google Scholar] [CrossRef]
- Yu, H.; Guo, Y. Generative Artificial Intelligence Empowers Educational Reform: Current Status, Issues, and Prospects. Front. Educ. 2023, 8, 1183162. [Google Scholar] [CrossRef]
- Sanchez-Gonzalez, M.; Terrell, M. Flipped Classroom with Artificial Intelligence: Educational Effectiveness of Combining Voice-Over Presentations and AI. Cureus. 2023, 15, e48354. [Google Scholar] [CrossRef]
- Moreno, G.; Meneses-Monroy, A.; Mohamedi-Abdelkader, S.; Curcio, F.; Domínguez-Capilla, R.; Martínez-Rincón, C.; Pacheco Del Cerro, E.; Mayor-Silva, L.I. Virtual Active Learning to Maximize Knowledge Acquisition in Nursing Students: A Comparative Study. Nurs. Rep. 2024, 14, 128–139. [Google Scholar] [CrossRef]
- Tseng, L.-P.; Huang, L.-P.; Chen, W.-R. Exploring Artificial Intelligence Literacy and the Use of ChatGPT and Copilot in Instruction on Nursing Academic Report Writing. Nurse Educ. Today 2025, 147, 106570. [Google Scholar] [CrossRef]
- Moskovich, L.; Rozani, V. Health Profession Students’ Perceptions of ChatGPT in Healthcare and Education: Insights from a Mixed-Methods Study. BMC Med. Educ. 2025, 25, 98. [Google Scholar] [CrossRef] [PubMed]
- Bohn, B.; Anselmann, V. Artificial Intelligence in Nursing Practice—A Delphi Study with ChatGPT. Appl. Nurs. Res. 2024, 80, 151867. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, F.C.; Johnson, L.G.; Madandola, O.O.; Priola, K.J.B.; Yao, Y.; Macieira, T.G.R.; Keenan, G.M. An Example of Leveraging AI for Documentation: ChatGPT-Generated Nursing Care Plan for an Older Adult with Lung Cancer. J. Am. Med. Inform. Assoc. 2024, 31, 2089–2096. [Google Scholar] [CrossRef]
- Shin, H.; De Gagne, J.C.; Kim, S.S.; Hong, M. The Impact of Artificial Intelligence-Assisted Learning on Nursing Students’ Ethical Decision-Making and Clinical Reasoning in Pediatric Care: A Quasi-Experimental Study. Comput. Inform. Nurs. 2024, 42, 704–711. [Google Scholar] [CrossRef]
- Daungsupawong, H.; Wiwanitkit, V. Role of a Generative AI Model in Enhancing Clinical Decision-Making in Nursing. J. Adv. Nurs. 2024, 80, 4750–4751. [Google Scholar] [CrossRef]
- Saad, O.; Saban, M.; Kerner, E.; Levin, C. Augmenting Community Nursing Practice with Generative AI: A Formative Study of Diagnostic Synergies Using Simulation-Based Clinical Cases. J. Prim. Care Community Health 2025, 16, 21501319251326663. [Google Scholar] [CrossRef]
- Li, X.; Yu, Y.; Huang, M. A Comparative Vignette Study: Evaluating the Potential Role of a Generative AI Model in Enhancing Clinical Decision-Making in Nursing. J. Adv. Nurs. 2024, 80, 4752. [Google Scholar] [CrossRef]
- Sallam, M.; Salim, N.A.; Barakat, M.; Al-Tammemi, A.B. ChatGPT Applications in Medical, Dental, Pharmacy, and Public Health Education: A Descriptive Study Highlighting the Advantages and Limitations. Narra J. 2023, 3, e103. [Google Scholar] [CrossRef]
- Dave, T.; Athaluri, S.A.; Singh, S. ChatGPT in Medicine: An Overview of Its Applications, Advantages, Limitations, Future Prospects, and Ethical Considerations. Front. Artif. Intell. 2023, 6, 1169595. [Google Scholar] [CrossRef]
- Zhang, P.; Kamel Boulos, M.N. Generative AI in Medicine and Healthcare: Promises, Opportunities and Challenges. Future Internet 2023, 15, 286. [Google Scholar] [CrossRef]
- De Vito, A.; Geremia, N.; Bavaro, D.F.; Seo, S.K.; Laracy, J.; Mazzitelli, M.; Marino, A.; Maraolo, A.E.; Russo, A.; Colpani, A.; et al. Comparing Large Language Models for Antibiotic Prescribing in Different Clinical Scenarios: Which Performs Better? Clin. Microbiol. Infect. 2025. [Google Scholar] [CrossRef] [PubMed]
- Liao, L.-L.; Chang, L.-C.; Lai, I.-J. Assessing the Quality of ChatGPT’s Dietary Advice for College Students from Dietitians’ Perspectives. Nutrients 2024, 16, 1939. [Google Scholar] [CrossRef] [PubMed]
- Sarraju, A.; Bruemmer, D.; Van Iterson, E.; Cho, L.; Rodriguez, F.; Laffin, L. Appropriateness of Cardiovascular Disease Prevention Recommendations Obtained from a Popular Online Chat-Based Artificial Intelligence Model. JAMA 2023, 329, 842–844. [Google Scholar] [CrossRef] [PubMed]
- Nicolosi, B.; Parente, E.; Fontani, I.; Idrizaj, S.; Stringi, D.; Bamonte, C.; Longobucco, Y.; Buccione, E.; Maffeo, M.; Granai, V.; et al. Risk Factors for Skin Injuries in Hospitalized Children: A Retrospective Study. Inferm. J. 2024, 3, 277–285. [Google Scholar] [CrossRef]
- Ciprandi, G. Neonatal and Pediatric Wound Care; Minerva Medica: Torino, Italy, 2021; ISBN 10 978-88-5532-104-4. [Google Scholar]
- Wei, Q.; Yao, Z.; Cui, Y.; Wei, B.; Jin, Z.; Xu, X. Evaluation of ChatGPT-Generated Medical Responses: A Systematic Review and Meta-Analysis. J. Biomed. Inform. 2024, 151, 104620. [Google Scholar] [CrossRef]
- Likert, R. A Technique for the Measurement of Attitudes. Arch. Psychol. 1932, 22 140, 55. [Google Scholar]
- Number of ChatGPT Users (Jan 2025). Available online: https://explodingtopics.com/blog/chatgpt-users (accessed on 18 February 2025).
- Sallam, M. ChatGPT Utility in Healthcare Education, Research, and Practice: Systematic Review on the Promising Perspectives and Valid Concerns. Healthcare 2023, 11, 887. [Google Scholar] [CrossRef]
- Sharma, H.; Ruikar, M. Artificial Intelligence at the Pen’s Edge: Exploring the Ethical Quagmires in Using Artificial Intelligence Models like ChatGPT for Assisted Writing in Biomedical Research. Perspect. Clin. Res. 2024, 15, 108–115. [Google Scholar] [CrossRef]
- Yu, H.; Fan, L.; Li, L.; Zhou, J.; Ma, Z.; Xian, L.; Hua, W.; He, S.; Jin, M.; Zhang, Y.; et al. Large Language Models in Biomedical and Health Informatics: A Review with Bibliometric Analysis. J. Healthc. Inform. Res. 2024, 8, 658–711. [Google Scholar] [CrossRef]
- Wang, L.; Wan, Z.; Ni, C.; Song, Q.; Li, Y.; Clayton, E.; Malin, B.; Yin, Z. Applications and Concerns of ChatGPT and Other Conversational Large Language Models in Health Care: Systematic Review. J. Med. Internet Res. 2024, 26, e22769. [Google Scholar] [CrossRef]
- Subramanian, B.; Rajalakshmi, R.; Sivaprasad, S.; Rao, C.; Raman, R. Assessing the Appropriateness and Completeness of ChatGPT-4’s AI-Generated Responses for Queries Related to Diabetic Retinopathy. Indian J. Ophthalmol. 2024, 72, S684–S687. [Google Scholar] [CrossRef] [PubMed]
- Miao, J.; Thongprayoon, C.; Cheungpasitporn, W.; Cornell, L.D. Performance of GPT-4 Vision on Kidney Pathology Exam Questions. Am. J. Clin. Pathol. 2024, 162, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Ozenbas, C.; Engin, D.; Altinok, T.; Akcay, E.; Aktas, U.; Tabanli, A. ChatGPT-4o’s Performance in Brain Tumor Diagnosis and MRI Findings: A Comparative Analysis with Radiologists. Acad. Radiol. 2025. [Google Scholar] [CrossRef]
- Shiraishi, M.; Kanayama, K.; Kurita, D.; Moriwaki, Y.; Okazaki, M. Performance of Artificial Intelligence Chatbots in Interpreting Clinical Images of Pressure Injuries. Wound Repair Regen. 2024, 32, 652–654. [Google Scholar] [CrossRef]
- Alderden, J.; Johnny, J.; Brooks, K.R.; Wilson, A.; Yap, T.L.; Zhao, Y.L.; van der Laan, M.; Kennerly, S. Explainable Artificial Intelligence for Early Prediction of Pressure Injury Risk. Am. J. Crit. Care 2024, 33, 373–381. [Google Scholar] [CrossRef]
- Salomé, G.M.; Ferreira, L.M. Developing a Mobile App for Prevention and Treatment of Pressure Injuries. Adv. Skin Wound Care 2018, 31, 1–6. [Google Scholar] [CrossRef]
- Almagazzachi, A.; Mustafa, A.; Eighaei Sedeh, A.; Vazquez Gonzalez, A.E.; Polianovskaia, A.; Abood, M.; Abdelrahman, A.; Muyolema Arce, V.; Acob, T.; Saleem, B. Generative Artificial Intelligence in Patient Education: ChatGPT Takes on Hypertension Questions. Cureus 2024, 16, e53441. [Google Scholar] [CrossRef]
- Yau, J.Y.-S.; Saadat, S.; Hsu, E.; Murphy, L.S.-L.; Roh, J.S.; Suchard, J.; Tapia, A.; Wiechmann, W.; Langdorf, M.I. Accuracy of Prospective Assessments of 4 Large Language Model Chatbot Responses to Patient Questions About Emergency Care: Experimental Comparative Study. J. Med. Internet Res. 2024, 26, e60291. [Google Scholar] [CrossRef]
- Biswas, S. ChatGPT and the Future of Medical Writing. Radiology 2023, 307, e223312. [Google Scholar] [CrossRef]
- Stokel-Walker, C. ChatGPT Listed as Author on Research Papers: Many Scientists Disapprove. Nature 2023, 613, 620–621. [Google Scholar] [CrossRef]
- Coskun, B.; Ocakoglu, G.; Yetemen, M.; Kaygisiz, O. Can ChatGPT, an Artificial Intelligence Language Model, Provide Accurate and High-Quality Patient Information on Prostate Cancer? Urology 2023, 180, 35–58. [Google Scholar] [CrossRef] [PubMed]
- Cakir, H.; Caglar, U.; Sekkeli, S.; Zerdali, E.; Sarilar, O.; Yildiz, O.; Ozgor, F. Evaluating ChatGPT Ability to Answer Urinary Tract Infection-Related Questions. Infect. Dis. Now 2024, 54, 104884. [Google Scholar] [CrossRef] [PubMed]
- Toffaha, K.M.; Simsekler, M.C.E.; Omar, M.A. Leveraging Artificial Intelligence and Decision Support Systems in Hospital-Acquired Pressure Injuries Prediction: A Comprehensive Review. Artif. Intell. Med. 2023, 141, 102560. [Google Scholar] [CrossRef]
- Vandenbroucke, J.P.; von Elm, E.; Altman, D.G.; Gøtzsche, P.C.; Mulrow, C.D.; Pocock, S.J.; Poole, C.; Schlesselman, J.J.; Egger, M. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): Explanation and Elaboration. Int. J. Surg. 2014, 12, 1500–1524. [Google Scholar] [CrossRef]
Variables | Frequency (%) | Medians (IQR) |
---|---|---|
Gender Female Male | 4 (80%) 1 (20%) | - |
Age | - | 38 (13) |
Nationality Italy Spain Portugal | 3 (60%) 1 (20%) 1 (20%) | - |
Years of experience as a nurse | - | 16 (12) |
Degree/specialisation Yes No | 5 (100%) 0 (0%) | - |
Years of experience in paediatric and neonatal PI | 10 (5.5) |
Score | Accuracy Frequency (%) | Completeness Frequency (%) | Safety Frequency (%) |
---|---|---|---|
2 | 2 (3.33) | 2 (3.33) | - |
3 | 20 (33.3) | 28 (46.67) | 21 (35.0) |
4 | 38 (63.33) | 30 (50.0) | 38 (63.33) |
5 | - | - | 1 (1.67) |
Accuracy 1 | Accuracy 2 | Accuracy 3 | Accuracy 4 | Accuracy 5 | |
---|---|---|---|---|---|
Definition and Classification | 0 | 0 | 3 | 2 | 0 |
Risk Factors | 0 | 0 | 2 | 3 | 0 |
Prevention | 0 | 0 | 2 | 3 | 0 |
Medical Device Management | 0 | 1 | 3 | 1 | 0 |
Evaluation and Monitoring | 0 | 0 | 1 | 4 | 0 |
Treatment | 0 | 0 | 3 | 2 | 0 |
Complications | 0 | 0 | 0 | 5 | 0 |
Role of Nurses | 0 | 0 | 0 | 5 | 0 |
Scientific Evidence | 0 | 0 | 3 | 2 | 0 |
Legal and Ethical Issues | 0 | 0 | 1 | 4 | 0 |
Technology Innovation | 0 | 1 | 1 | 3 | 0 |
Social and Psychological Issues | 0 | 0 | 1 | 4 | 0 |
Completeness 1 | Completeness 2 | Completeness 3 | Completeness 4 | Completeness 5 | |
---|---|---|---|---|---|
Definition and Classification | 0 | 0 | 4 | 1 | 0 |
Risk Factors | 0 | 0 | 3 | 2 | 0 |
Prevention | 0 | 0 | 4 | 1 | 0 |
Medical Device Management | 0 | 0 | 3 | 2 | 0 |
Evaluation and Monitoring | 0 | 0 | 3 | 2 | 0 |
Treatment | 0 | 0 | 5 | 0 | 0 |
Complications | 0 | 0 | 0 | 5 | 0 |
Role of Nurses | 0 | 0 | 0 | 5 | 0 |
Scientific Evidence | 0 | 1 | 2 | 2 | 0 |
Legal and Ethical Issues | 0 | 0 | 3 | 2 | 0 |
Technology Innovation | 0 | 1 | 1 | 3 | 0 |
Social and Psychological Issues | 0 | 0 | 0 | 5 | 0 |
Safety 1 | Safety 2 | Safety 3 | Safety 4 | Safety 5 | |
---|---|---|---|---|---|
Definition and Classification | 0 | 0 | 2 | 3 | 0 |
Risk Factors | 0 | 0 | 1 | 4 | 0 |
Prevention | 0 | 0 | 1 | 4 | 0 |
Medical Device Management | 0 | 0 | 1 | 4 | 0 |
Evaluation and Monitoring | 0 | 0 | 2 | 3 | 0 |
Treatment | 0 | 0 | 4 | 1 | 0 |
Complications | 0 | 0 | 3 | 2 | 0 |
Role of Nurses | 0 | 0 | 0 | 4 | 1 |
Scientific Evidence | 0 | 0 | 1 | 4 | 0 |
Legal and Ethical Issues | 0 | 0 | 2 | 3 | 0 |
Technology Innovation | 0 | 0 | 3 | 2 | 0 |
Social and Psychological Issues | 0 | 0 | 1 | 4 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soddu, M.; De Vito, A.; Madeddu, G.; Nicolosi, B.; Provenzano, M.; Ivziku, D.; Curcio, F. Assessing the Accuracy, Completeness and Safety of ChatGPT-4o Responses on Pressure Injuries in Infants: Clinical Applications and Future Implications. Nurs. Rep. 2025, 15, 130. https://doi.org/10.3390/nursrep15040130
Soddu M, De Vito A, Madeddu G, Nicolosi B, Provenzano M, Ivziku D, Curcio F. Assessing the Accuracy, Completeness and Safety of ChatGPT-4o Responses on Pressure Injuries in Infants: Clinical Applications and Future Implications. Nursing Reports. 2025; 15(4):130. https://doi.org/10.3390/nursrep15040130
Chicago/Turabian StyleSoddu, Marica, Andrea De Vito, Giordano Madeddu, Biagio Nicolosi, Maria Provenzano, Dhurata Ivziku, and Felice Curcio. 2025. "Assessing the Accuracy, Completeness and Safety of ChatGPT-4o Responses on Pressure Injuries in Infants: Clinical Applications and Future Implications" Nursing Reports 15, no. 4: 130. https://doi.org/10.3390/nursrep15040130
APA StyleSoddu, M., De Vito, A., Madeddu, G., Nicolosi, B., Provenzano, M., Ivziku, D., & Curcio, F. (2025). Assessing the Accuracy, Completeness and Safety of ChatGPT-4o Responses on Pressure Injuries in Infants: Clinical Applications and Future Implications. Nursing Reports, 15(4), 130. https://doi.org/10.3390/nursrep15040130