Effects of Chronic Roundup Exposure on Medaka Larvae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fish Maintenance
2.2. Chemical Exposure and Sampling
2.3. Phenotype Characterization
2.4. qRT-PCR
2.5. Statistical Analysis
3. Results
3.1. Embryo Survival and Hatching Success
3.2. Development and Growth
3.3. Expression of Thyroid Hormone Receptors
3.4. Expression of Antioxidants and Apoptosis-Related Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Myers, J.P.; Antoniou, M.N.; Blumberg, B.; Carroll, L.; Colborn, T.; Everett, L.G.; Benbrook, C.M. Concerns over use of glyphosate-based herbicides and risks associated with exposures: A consensus statement. Environ. Health 2016, 15, 19. [Google Scholar] [CrossRef] [PubMed]
- Giesy, J.P.; Dobson, S.; Solomon, K.R. Ecotoxicological risk assessment for roundup herbicide. Rev. Environ. Contam. Toxicol. 2000, 167, 35–120. [Google Scholar]
- Sihtmäe, M.; Blinova, I.; Künnis-Beres, K.; Kanarbik, L.; Heinlaan, M.; Kahru, A. Ecotoxicological effects of different glyphosate formulations. Appl. Soil Ecol. 2013, 72, 215–224. [Google Scholar] [CrossRef]
- Gillezeau, C.; van Gerwen, M.; Shaffer, R.M.; Rana, I.; Zhang, L.; Sheppard, L.; Taioli, E. The evidence of human exposure to glyphosate: A review. Environ. Health 2019, 18, 2. [Google Scholar] [CrossRef]
- Annett, R.; Habibi, H.; Hontela, A. Impact of glyphosate and glyphosate-based herbicides on the freshwater environment. J. Appl. Toxicol. 2014, 34, 458–479. [Google Scholar] [CrossRef]
- Gillezeau, C.; Lieberman-Cribbin, W.; Taioli, E. Update on human exposure to glyphosate, with a complete review of exposure in children. Environ. Health 2020, 19, 115. [Google Scholar] [CrossRef] [PubMed]
- Medalie, L.; Baker, N.T.; Shoda, M.E.; Stone, W.W.; Meyer, M.T.; Stets, E.G.; Wilson, M. Influence of land use and region on glyphosate and aminomethylphosphonic acid in streams in the USA. Sci. Total Environ. 2020, 707, 136008. [Google Scholar] [CrossRef]
- Faria, M.; Bedrossiantz, J.; Ramírez, J.R.R.; Mayol, M.; García, G.H.; Bellot, M.; Prats, E.; Garcia-Reyero, N.; Gómez-Canela, C.; Gómez-Oliván, L.M.; et al. Glyphosate targets fish monoaminergic systems leading to oxidative stress and anxiety. Enviorn. Int. 2021, 146, 106253. [Google Scholar] [CrossRef]
- Navarro-Martín, L.; Lanctôt, C.; Jackman, P.; Park, B.J.; Doe, K.; Pauli, B.D.; Trudeau, V.L. Effects of glyphosate-based herbicides on survival, development, growth and sex ratios of wood frogs (Lithobates sylvaticus) tadpoles. I: Chronic laboratory exposures to VisionMax®. Aquat. Toxicol. 2014, 154, 278–290. [Google Scholar] [CrossRef]
- Howe, C.M.; Berrill, M.; Pauli, B.D.; Helbing, C.C.; Werry, K.; Veldhoen, N. Toxicity of glyphosate-based pesticides to four North American frog species. Environ. Toxicol. Chem. 2004, 23, 1928–1938. [Google Scholar] [CrossRef]
- De Souza, J.S.; Kizys, M.M.L.; da Conceição, R.R.; Glebocki, G.; Romano, R.M.; Ortiga-Carvalho, T.M.; Chiamolera, M.I. Perinatal exposure to glyphosate-based herbicide alters the thyrotrophic axis and causes thyroid hormone homeostasis imbalance in male rats. Toxicology 2017, 377, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Uren Webster, T.M.; Laing, L.V.; Florance, H.; Santos, E.M. Effects of Glyphosate and its Formulation, Roundup, on Reproduction in Zebrafish (Danio rerio). Environ. Sci. Technol. 2014, 48, 1271–1279. [Google Scholar] [CrossRef]
- Liu, Z.; Shangguan, Y.; Zhu, P.; Sultan, Y.; Feng, Y.; Li, X.; Ma, J. Developmental toxicity of glyphosate on embryo-larval zebrafish (Danio rerio). Ecotoxicol. Environ. Saf. 2022, 236, 113493. [Google Scholar] [CrossRef] [PubMed]
- Jarrell, Z.R.; Ahammad, M.U.; Benson, A.P. Glyphosate-based herbicide formulations and reproductive toxicity in animals. Vet. Anim. Sci. 2020, 10, 100126. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Lim, W.; Song, G. Reproductive toxicity due to herbicide exposure in freshwater organisms. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2021, 248, 109103. [Google Scholar] [CrossRef]
- Smith, C.M.; Vera, M.K.M.; Bhandari, R.K. Developmental and epigenetic effects of Roundup and glyphosate exposure on Japanese medaka (Oryzias latipes). Aquat. Toxicol. 2019, 210, 215–226. [Google Scholar] [CrossRef]
- Bhandari, R.K. Medaka as a model for studying environmentally induced epigenetic transgenerational inheritance of phenotypes. Environ. Epigenet. 2016, 2, dvv010. [Google Scholar] [CrossRef]
- European Comission. The Use of Plant Protection Products in the European Union, Eurostat; European Commission Publications Office: Luxembourg, 2007. [Google Scholar]
- US EPA. Pesticides Industry Sales and Usage: 2006 and 2007 Market Estimates; US Environmental Protection Agency: Washington, DC, USA, 2011. [Google Scholar]
- Krain, L.P.; Denver, R.J. Developmental expression and hormonal regulation of glucocorticoid and thyroid hormone receptors during metamorphosis in Xenopus laevis. J. Endocrinol. 2004, 181, 91–104. [Google Scholar] [CrossRef]
- Opitz, R.; Hartmann, S.; Blank, T.; Braunbeck, T.; Lutz, I.; Kloas, W. Evaluation of histological and molecular endpoints for enhanced detection of thyroid system disruption in Xenopus laevis tadpoles. Toxicol. Sci. 2006, 902, 337–348. [Google Scholar] [CrossRef]
- Lanctôt, C.; Navarro-Martín, L.; Robertson, C.; Park, B.; Jackman, P.; Pauli, B.D.; Trudeau, V.L. Effects of glyphosate-based herbicides on survival, development, growth and sex ratios of wood frog (Lithobates sylvaticus) tadpoles. II: Agriculturally relevant exposures to Roundup WeatherMax® and Vision® under laboratory conditions. Aquat. Toxicol. 2014, 154, 291–303. [Google Scholar] [CrossRef]
- Manservisi, F.; Lesseur, C.; Panzacchi, S.; Mandrioli, D.; Falcioni, L.; Bua, L.; Manservigi, M.; Spinaci, M.; Galeati, G.; Mantovani, A.; et al. The Ramazzini Institute 13-week pilot study glyphosate-based herbicides administered at human-equivalent dose to Sprague Dawley rats: Effects on development and endocrine system. Environ. Health 2019, 18, 15. [Google Scholar] [CrossRef] [PubMed]
- Hamdaoui, L.; Oudadesse, H.; Lefeuvre, B.; Mahmoud, A.; Naifer, M.; Badraoui, R.; Ayadi, F.; Rebai, T. Sub-chronic exposure to Kalach 360 SL, Glyphosate-based Herbicide, induced bone rarefaction in female Wistar rats. Toxicology 2020, 436, 152412. [Google Scholar] [CrossRef] [PubMed]
- Kongtip, P.; Nankongnab, N.; Pundee, R.; Kallayanatham, N.; Pengpumkiat, S.; Chungcharoen, J.; Phommalachai, C.; Konthonbut, P.; Choochouy, N.; Sowanthip, P.; et al. Acute Changes in Thyroid Hormone Levels among Thai Pesticide Sprayers. Toxics 2021, 9, 16. [Google Scholar] [CrossRef] [PubMed]
- Cyr, D.G.; Eales, J.G. Interrelationships between thyroidal and reproductive endocrine systems in fish. Rev. Fish Biol. Fish. 1996, 6, 165–200. [Google Scholar] [CrossRef]
- Mol, K.A.; Van der Geyten, S.; Darras, V.M.; Visser, T.J.; Kühn, E.R. Characterization of iodothyronine outer ring and inner ring deiodinase activities in the blue tilapia Oreochromis aureus. Endocrinology 1997, 138, 1787–1793. [Google Scholar] [CrossRef]
- Orozco, A.; Silva, J.E.; Valverde, R.C. Rainbow trout liver expresses two iodothyronine phenolic ring deiodinase pathways with the characteristics of mammalian types I and II deiodinases. Endocrinology 1997, 138, 254–258. [Google Scholar] [CrossRef]
- Nayak, P.K.; Mishra, T.K.; Mishra, J.; Ayyappan, S.; Singh, B.N. Changes in thyroid hormones and 5-monodeiodinase activity during embryonic and larval developments in freshwater catfish, Heteropneustes fossilis. Indian J. Anim. Sci. 2000, 70, 1191–1195. [Google Scholar]
- Specker, J.L.; Eales, J.G.; Tagawa, M.; Tyler, W.A., III. Parr–smolt transformation in Atlantic salmon: Thyroid hormone deiodination in liver and brain and endocrine correlates of change in rheotactic behavior. Can. J. Zool. 2000, 78, 696–705. [Google Scholar] [CrossRef]
- Blanton, M.L.; Specker, J.L. The Hypothalamic-Pituitary-Thyroid (HPT) Axis in Fish and Its Role in Fish Development and Reproduction. Crit. Rev. Toxicol. 2007, 37, 97–115. [Google Scholar] [CrossRef]
- Youson, J.H. First metamorphosis. In Fish Physiology, 4th ed.; Hoar, W.S., Randall, D.J., Eds.; Academic Press: San Diego, CA, USA, 1988; pp. 135–196. [Google Scholar]
- Menéndez-Helman, R.J.; Ferreyroa, G.V.; dos Santos Afonso, M.; Salibián, A. Glyphosate as an Acetylcholinesterase Inhibitor in Cnesterodon decemmaculatus. Bull. Environ. Contam. Toxicol. 2012, 88, 6–9. [Google Scholar] [CrossRef]
- Behra, M.; Cousin, X.; Bertrand, C.; Vonesch, J.-L.; Biellmann, D.; Chatonnet, A.; Strahle, U. Acetylcholinesterase is required for neuronal and muscular development in the zebrafish embryo. Nat. Neurosci. 2002, 5, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Ames, J.; Severo, E.S.; da Costa-Silva, D.G.; Storck, T.R.; do Amaral, A.M.B.; Miragem, A.A.; Rosemberg, D.B.; Loro, V.L. Glyphosate-based herbicide (GBH) causes damage in embryo-larval stages of zebrafish (Danio rerio). Neurotoxicol. Teratol. 2023, 95, 107147. [Google Scholar] [CrossRef] [PubMed]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3--new capabilities and interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Killian, D.; Faheem, M.; Reh, B.; Wang, X.; Bhandari, R.K. Effects of Chronic Roundup Exposure on Medaka Larvae. J. Xenobiot. 2023, 13, 500-508. https://doi.org/10.3390/jox13030032
Killian D, Faheem M, Reh B, Wang X, Bhandari RK. Effects of Chronic Roundup Exposure on Medaka Larvae. Journal of Xenobiotics. 2023; 13(3):500-508. https://doi.org/10.3390/jox13030032
Chicago/Turabian StyleKillian, Deborah, Mehwish Faheem, Beh Reh, Xuegeng Wang, and Ramji Kumar Bhandari. 2023. "Effects of Chronic Roundup Exposure on Medaka Larvae" Journal of Xenobiotics 13, no. 3: 500-508. https://doi.org/10.3390/jox13030032
APA StyleKillian, D., Faheem, M., Reh, B., Wang, X., & Bhandari, R. K. (2023). Effects of Chronic Roundup Exposure on Medaka Larvae. Journal of Xenobiotics, 13(3), 500-508. https://doi.org/10.3390/jox13030032