Bioaccumulation of Organic and Inorganic Pollutants in Fish from Thermaikos Gulf: Preliminary Human Health Risk Assessment Assisted by a Computational Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Chemicals, Materials, and Standard Solutions
2.3. Sample Preparation
2.3.1. Pesticide Residues and Pharmaceuticals Analysis
2.3.2. Trace and Macro Elements Analysis
2.4. Instrumental Analysis
2.4.1. Liquid Chromatography Electron Spray Ionization Tandem Mass Spectrometry (LC-ESI-MS/MS)
2.4.2. Gas Chromatography Tandem Mass Spectrometry (GC-MS/MS)
2.4.3. Inductive Coupled Plasma Mass Spectrometry (ICP-MS)
2.5. Quantification and Quality Assurance
2.5.1. Pesticide Residues
2.5.2. Pharmaceuticals
2.5.3. Trace and Macro Elements
2.6. Health Risk Assessment
2.7. In Silico Calculations
3. Results
3.1. Analytical Methods Validation
3.2. Levels of Pesticide Residues in Fish Samples from Thermaikos Gulf
3.3. Levels of Pharmaceuticals in Fish Samples from Thermaikos Gulf
3.4. Levels of Trace and Macro Elements in Fish Samples from Thermaikos Gulf
3.5. Human Health Risk Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nunes, M.; Leston, S. Coastal Pollution: An Overview. In Life Below Water; Encyclopedia of the UN Sustainable Development Goals; Springer: Cham, Switzerland, 2020; pp. 1–11. [Google Scholar]
- Directive-2008/56/EC. Directive 2008/56/EC of the European Parliament and of the Council: Establishing a Framework for Community Action in the Field of Marine Environmental Policy (Marine Strategy Framework Directive); Official Journal of the European Union: Luxembourg, 2008. [Google Scholar]
- Madikizela, L.M.; Ncube, S.; Tutu, H.; Richards, H.; Newman, B.; Ndungu, K.; Chimuka, L. Pharmaceuticals and their metabolites in the marine environment: Sources, analytical methods and occurrence. Trends Environ. Anal. 2020, 28, e00104. [Google Scholar] [CrossRef]
- Nödler, K.; Voutsa, D.; Licha, T. Polar organic micropollutants in the coastal environment of different marine systems. Mar. Pollut. Bull. 2014, 85, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.M.; Ronning, H.T.; Alarif, W.; Kallenborn, R.; Al-Lihaibi, S.S. Occurrence of pharmaceuticals and personal care products in effluent-dominated Saudi Arabian coastal waters of the Red Sea. Chemosphere 2017, 175, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Shahjahan, M.; Taslima, K.; Rahman, M.S.; Al-Emran, M.; Alam, S.I.; Faggio, C. Effects of heavy metals on fish physiology—A review. Chemosphere 2022, 300, 134519. [Google Scholar] [CrossRef] [PubMed]
- Javed, M.; Usmani, N. An overview of the adverse effects of heavy metal contamination on fish health. Proc. Natl. Acad. Sci. USA 2019, 89, 389–403. [Google Scholar] [CrossRef]
- Rohani, M.F. Pesticides toxicity in fish: Histopathological and hemato-biochemical aspects—A review. Emerg Contam 2023, 9, 100234. [Google Scholar] [CrossRef]
- Emmanouil, C.; Smart, D.J.; Hodges, N.J.; Chipman, J.K. Oxidative damage produced by Cr(VI) and repair in mussel (Mytilus edulis L.) gill. Mar. Environ. Res. 2006, 62, S292–S296. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Choi, H.; Hwang, U.K.; Kang, J.C.; Kang, Y.J.; Kim, K.I.; Kim, J.H. Toxic effects of lead exposure on bioaccumulation, oxidative stress, neurotoxicity, and immune responses in fish: A review. Environ. Toxicol. Pharmacol. 2019, 68, 101–108. [Google Scholar] [CrossRef]
- Martínez-Megías, C.; Arenas-Sánchez, A.; Manjarrés-López, D.; Pérez, S.; Soriano, Y.; Picó, Y.; Rico, A. Pharmaceutical and pesticide mixtures in a Mediterranean coastal wetland: Comparison of sampling methods, ecological risks, and removal by a constructed wetland. Environ. Sci. Pollut. Res. 2024, 31, 14593–14609. [Google Scholar] [CrossRef]
- Palma, P.; Fialho, S.; Lima, A.; Catarino, A.; Costa, M.J.; Barbieri, M.V.; Monllor-Alcaraz, L.S.; Postigo, C.; de Alda, M.L. Occurrence and risk assessment of pesticides in a Mediterranean Basin with strong agricultural pressure (Guadiana Basin: Southern of Portugal). Sci. Total Environ. 2021, 794, 148703. [Google Scholar] [CrossRef]
- Ardila, P.A.R.; Alvarez-Alonso, R.; Arcega-Cabrera, F.; Valsero, J.J.D.; García, R.M.; Lamas-Cosío, E.; Oceguera-Vargas, I.; DelValls, A. Assessment and review of heavy metals pollution in sediments of the Mediterranean Sea. Appl. Sci. 2024, 14, 1435. [Google Scholar] [CrossRef]
- Dimarchopoulou, D.; Tsagarakis, K.; Sylaios, G.; Tsikliras, A.C. Ecosystem trophic structure and fishing effort simulations of a major fishing ground in the northeastern Mediterranean Sea (Thermaikos Gulf). Estuar. Coast. Shelf Sci. 2022, 264, 107667. [Google Scholar] [CrossRef]
- iSea-Thermaikos. Available online: https://isea.com.gr/thermaikos-gulf-mpa/?lang=en (accessed on 2 September 2023).
- Markantonatou, V.; Giakoumi, S.; Koukourouvli, N.; Maina, I.; Gonzalez-Mirelis, G.; Sini, M.; Maistrelis, K.; Stithou, M.; Gadolou, E.; Petza, D.; et al. Marine spatial plans focusing on biodiversity conservation: The case of the Aegean Sea. Aquat. Conserv. 2021, 31, 2278–2292. [Google Scholar] [CrossRef]
- Dimarchopoulou, D.; Dogrammatzi, A.; Karachle, P.K.; Tsikliras, A.C. Spatial fishing restrictions benefit demersal stocks in the northeastern Mediterranean Sea. Sci Rep. 2018, 8, 5967. [Google Scholar] [CrossRef]
- Stergiou, K.; Moutopoulos, D.K.; Tsikliras, A. Spatial and temporal variability in Hellenic marine fisheries landings: State of Hellenic fisheries. In State of Hellenic Fisheries; Papaconstantinou, C., Zenetos, A., Vassilopoulou, V., Tserpes, G., Eds.; Hellenic Centre for Marine Research: Athens, Greece, 2007; pp. 141–150. [Google Scholar]
- Sylaios, G.K.; Koutroumanidis, T.; Tsikliras, A.C. Ranking and classification of fishing areas using fuzzy models and techniques. Fisheries Manag. Ecol. 2010, 17, 240–253. [Google Scholar] [CrossRef]
- Vetsis, E.; Kalantzi, I.; Pergantis, S.A.; Kokokiris, L.; Karakassis, I. Metals in tissues of marine fish from the Thermaikos Gulf, Eastern Mediterranean Sea: Detection of changes with trophic level. Mar. Pollut. Bull. 2021, 173, 113024. [Google Scholar] [CrossRef] [PubMed]
- Catsiki, V.A.; Florou, H. Study on the behavior of the heavy metals Cu, Cr, Ni, Zn, Fe, Mn and Cs in an estuarine ecosystem using as a bioindicator species: The case of Thermaikos gulf, Greece. J. Environ. Radioactiv. 2006, 86, 31–44. [Google Scholar] [CrossRef]
- Pell, A.; Kokkinis, G.; Malea, P.; Pergantis, S.A.; Rubio, R.; Lopez-Sanchez, J.F. LC-ICP-MS analysis of arsenic compounds in dominant seaweeds from the Thermaikos Gulf (Northern Aegean Sea, Greece). Chemosphere 2013, 93, 2187–2194. [Google Scholar] [CrossRef]
- Christophoridis, C.; Dedepsidis, D.; Fytianos, K. Occurrence and distribution of selected heavy metals in the surface sediments of Thermaikos Gulf, N. Greece. Assessment using pollution indicators. J. Hazard. Mater. 2009, 168, 1082–1091. [Google Scholar] [CrossRef]
- Christophoridis, C.; Bourliva, A.; Evgenakis, E.; Papadopoulou, L.; Fytianos, K. Effects of anthropogenic activities on the levels of heavy metals in marine surface sediments of the Thessaloniki Bay, Northern Greece: Spatial distribution, sources and contamination assessment. Microchem. J. 2019, 149, 104001. [Google Scholar] [CrossRef]
- Malea, P.; Rijstenbil, J.W.; Haritonidis, S. Effects of cadmium, zinc and nitrogen status on non-protein thiols in the macroalgae spp. from the Scheldt Estuary (SW Netherlands, Belgium) and Thermaikos Gulf (N Aegean Sea, Greece). Mar. Environ. Res. 2006, 62, 45–60. [Google Scholar] [CrossRef] [PubMed]
- Haritonidis, S.; Malea, P. Bioaccumulation of metals by the green alga from Thermaikos Gulf, Greece. Environ. Pollut. 1999, 104, 365–372. [Google Scholar] [CrossRef]
- Albanis, T.A.; Danis, T.G.; Kourgia, M.K. Transportation of pesticides in estuaries of the Axios, Loudias and Aliakmon rivers (Thermaikos Gulf), Greece. Sci. Total Environ. 1994, 156, 11–22. [Google Scholar] [CrossRef]
- FishBase; Froese, R.; Pauly, D. (Eds.) World Wide Web Electronic Publication. Version 02/2024. 2024. Available online: www.fishbase.org (accessed on 15 February 2024).
- Fish-Sampling. Available online: https://environment.des.qld.gov.au/__data/assets/pdf_file/0031/90787/biological-assessment-fish-collection-and-the-dissection-for-the-purpose-of-chemical-analysis-of-tissues.pdf (accessed on 2 April 2021).
- Kasiotis, K.M.; Anagnostopoulos, C.; Anastasiadou, P.; Machera, K. Pesticide residues in honeybees, honey and bee pollen by LC-MS/MS screening: Reported death incidents in honeybees. Sci. Total Environ. 2014, 485–486, 633–642. [Google Scholar] [CrossRef]
- Kasiotis, K.M.; Tzouganaki, Z.D.; Machera, K. Chromatographic determination of monoterpenes and other acaricides in honeybees: Prevalence and possible synergies. Sci. Total Environ. 2018, 625, 96–105. [Google Scholar] [CrossRef]
- Kasiotis, K.M.; Zafeiraki, E.; Kapaxidi, E.; Manea-Karga, E.; Antonatos, S.; Anastasiadou, P.; Milonas, P.; Machera, K. Pesticides residues and metabolites in honeybees: A Greek overview exploring Varroa and Nosema potential synergies. Sci. Total Environ. 2021, 769, 145213. [Google Scholar] [CrossRef] [PubMed]
- Zafeiraki, E.; Kasiotis, K.M.; Nisianakis, P.; Manea-Karga, E.; Machera, K. Occurrence and human health risk assessment of mineral elements and pesticides residues in bee pollen. Food Chem. Toxicol. 2022, 161, 112826. [Google Scholar] [CrossRef] [PubMed]
- Shaaban, H.; Mostafa, A. Simultaneous determination of antibiotics residues in edible fish muscle using eco-friendly SPE-UPLC-MS/MS: Occurrence, human dietary exposure and health risk assessment for consumer safety. Toxicol. Rep. 2023, 10, 1–10. [Google Scholar] [CrossRef]
- Vitale, D.; Pico, Y.; Alvarez-Ruiz, R. Determination of organic pollutants in Anguilla anguilla by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). MethodsX 2021, 8, 101342. [Google Scholar] [CrossRef]
- Drabova, L.; Dvorakova, D.; Urbancova, K.; Gramblicka, T.; Hajslova, J.; Pulkrabova, J. Critical assessment of clean-up techniques employed in simultaneous analysis of persistent organic pollutants and polycyclic aromatic hydrocarbons in fatty samples. Toxics 2022, 10, 12. [Google Scholar] [CrossRef]
- Zafeiraki, E.; Sabo, R.; Kasiotis, K.M.; Machera, K.; Sabova, L.; Majchrak, T. Adult honeybees and beeswax as indicators of trace elements pollution in a vulnerable environment: Distribution among different apicultural compartments. Molecules 2022, 27, 6629. [Google Scholar] [CrossRef] [PubMed]
- SANTE/11312/2021. Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticides Residues Analysis in Food and Feed. Available online: https://www.eurl-pesticides.eu/userfiles/file/EurlALL/SANTE_11312_2021.pdf (accessed on 5 June 2021).
- US-EPA-2000; Risk Based Concentration Table; United States Environmental Protection Agency: Philadelphia, PA, USA. Available online: https://archive.epa.gov/region9/superfund/web/html/index-23.html (accessed on 1 September 2023).
- Fish-Consumption. Available online: https://oceans-and-fisheries.ec.europa.eu/facts-and-figures/facts-and-figures-common-fisheries-policy/consumption_en (accessed on 6 January 2024).
- Barnhoorn, I.; van Dyk, C. The first report of selected herbicides and fungicides in water and fish from a highly utilized and polluted freshwater urban impoundment. Environ. Sci. Pollut. Res. Int. 2020, 27, 33393–33398. [Google Scholar] [CrossRef] [PubMed]
- Ccanccapa, A.; Masia, A.; Andreu, V.; Pico, Y. Spatio-temporal patterns of pesticide residues in the Turia and Jucar Rivers (Spain). Sci. Total Environ. 2016, 540, 200–210. [Google Scholar] [CrossRef] [PubMed]
- EU-MRLs. Available online: https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/start/screen/mrls (accessed on 2 October 2023).
- Codex-Alimentarius. Available online: https://www.fao.org/fao-who-codexalimentarius/codex-texts/dbs/pestres/pesticides/en/ (accessed on 2 October 2023).
- US-EPA-MRLs. Available online: https://www.ecfr.gov/current/title-40/chapter-I/subchapter-E/part-180 (accessed on 2 October 2023).
- Australian-MRLs. Available online: https://www.legislation.gov.au/F2023L01350/latest/versions (accessed on 2 October 2023).
- EU-REG-2023/915. Commission Regulation (EU) 2023/915 of 25 April 2023 on Maximum Levels for Certain Contaminants in Food and Repealing Regulation (EC) No 1881/2006. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32023R0915 (accessed on 2 February 2024).
- Lead-EFSA. Scientific Opinion on Lead in Food. Efsa J. 2010, 8, 1570. [Google Scholar]
- Arsenic-EFSA. Scientific Opinion on Arsenic in Food. Efsa J. 2009, 7, 1351. [Google Scholar] [CrossRef]
- Chromium-EFSA. Scientific Opinion on the risks to public health related to the presence of chromium in food and drinking water: EFSA Panel on Contaminants in the Food Chain (CONTAM). Efsa J. 2014, 12, 3595. [Google Scholar]
- Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.; Leblanc, J.C.; Nebbia, C.S.; et al. Update of the risk assessment of nickel in food and drinking water. Efsa J. 2020, 18, e06268. [Google Scholar] [CrossRef] [PubMed]
- Mercury-EFSA. Scientific Opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFSA J. 2012, 10, 2985. [Google Scholar]
- Bellisai, G.; Bernasconi, G.; Brancato, A.; Cabrera, L.C.; Castellan, I.; Ferreira, L.; Giner, G.; Greco, L.; Jarrah, S.; Leuschner, R.; et al. Evaluation of confirmatory data following the Article 12 MRL review for thiabendazole. Efsa J. 2022, 20, e07539. [Google Scholar] [CrossRef]
- Arena, M.; Auteri, D.; Barmaz, S.; Brancato, A.; Brocca, D.; Bura, L.; Cabrera, L.C.; Chiusolo, A.; Civitella, C.; Marques, D.C.; et al. Peer review of the pesticide risk assessment of the active substance cypermethrin. Efsa J. 2018, 16, e05402. [Google Scholar] [CrossRef]
- Bellisai, G.; Bernasconi, G.; Brancato, A.; Cabrera, L.C.; Castellan, I.; Del Aguila, M.; Ferreira, L.; Santonja, G.G.; Greco, L.; Jarrah, S.; et al. Setting of import tolerance for tricyclazole in rice. Efsa J. 2023, 21, e07757. [Google Scholar] [CrossRef]
- Sorell, T.L. Approaches to the Development of Human Health Toxicity Values for Active Pharmaceutical Ingredients in the Environment. AAPS J. 2016, 18, 92–101. [Google Scholar] [CrossRef]
- Weight-Conversion-Factor. Available online: http://www.cresp.org/Amchitka/Final_WW_DW_3_13_06.pdf (accessed on 2 May 2023).
- Fatema, K.; Islam, M.J.; Sarker, M.A.I.; Elahi, K.S.; Alam, M.J.; Hasan, S.J.; Rashid, H. Occurrence of microplastics in fish gastrointestinal tracts belongs to different feeding habits from the Bangladesh coast of the Bay of Bengal. Environ. Sci. Pollut. Res. Int. 2024, 31, 24329–24343. [Google Scholar] [CrossRef] [PubMed]
- SANTE/10254/2021. Nature of Pesticides Residues in Fish. Available online: https://food.ec.europa.eu/document/download/3cb924c2-a651-45d0-89d7-7ce8de6b6dd1_en?filename=pesticides_mrl_guidelines_app-j-10254-2021_en.pdf (accessed on 5 May 2024).
- Hossain, M.B.; Tanjin, F.; Rahman, M.S.; Yu, J.; Akhter, S.; Abu Noman, M.; Sun, J. Metals bioaccumulation in 15 commonly consumed fishes from the lower Meghna River and adjacent areas of Bangladesh and associated human health hazards. Toxics 2022, 10, 139. [Google Scholar] [CrossRef]
- Lloris, D. A world overview of species of interest to fisheries. Chapter: Dicentrarchus labrax: 3p. FIGIS Species Fact Sheets. In Species Identification and Data Programme-SIDP; FAO-FIGIS, 2002; Available online: https://www.fao.org/fishery-divisional-structure/en (accessed on 1 May 2024).
- Amankwaa, G.; Lu, Y.; Liu, T.; Wang, N.; Luan, Y.; Cao, Y.; Huang, W.; Ni, X.; Gyimah, E. Heavy metals concentration profile of an aquatic environment and health implications of human exposure to fish and prawn species from an urban river (Densu). Iran J. Fish Sci. 2021, 20, 529–546. [Google Scholar] [CrossRef]
- Ismukhanova, L.; Choduraev, T.; Opp, C.; Madibekov, A. Accumulation of heavy metals in bottom sediment and their migration in the water ecosystem of Kapshagay reservoir in Kazakhstan. Appl. Sci. 2022, 12, 11474. [Google Scholar] [CrossRef]
- Rejomon, G.; Nair, M.; Joseph, T. Trace metal dynamics in fishes from the southwest coast of India. Environ. Monit. Assess. 2010, 167, 243–255. [Google Scholar] [CrossRef]
- EFSA-Scientific-Committee. SCIENTIFIC OPINION: Statement on the benefits of fish/seafood consumption compared to the risks of methylmercury in fish/seafood. EFSA J. 2015, 13, 3982. [Google Scholar] [CrossRef]
- Neff, J.M. Arsenic in the Ocean. In Bioaccumulation in Marine Organisms: Effect of Contaminants from Oil Well Produced Water; Elsevier Science: Amsterdam, The Netherlands, 2002; pp. 57–78. [Google Scholar]
- Smedley, P.L.; Kinniburgh, D.G. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517–568. [Google Scholar] [CrossRef]
- Bundschuh, J.; Maity, J.P. Geothermal arsenic: Occurrence, mobility and environmental implications. Renew. Sust. Energ Rev. 2015, 42, 1214–1222. [Google Scholar] [CrossRef]
- Golfinopoulos, S.K.; Varnavas, S.P.; Alexakis, D.E. The status of arsenic pollution in the Greek and Cyprus environment: An overview. Water 2021, 13, 224. [Google Scholar] [CrossRef]
- Martínez-López, S.; Martínez-Sánchez, M.J.; Gómez-Martínez, M.D.; Pérez-Sirvent, C. Arsenic zoning in a coastal area of the Mediterranean Sea as a base for management and recovery of areas contaminated by old mining activities. Appl. Clay Sci. 2020, 199, 105881. [Google Scholar] [CrossRef]
- Wang, N.X.; Ye, Z.J.; Huang, L.P.; Zhang, C.S.; Guo, Y.X.; Zhang, W. Arsenic occurrence and cycling in the aquatic environment: A comparison between freshwater and seawater. Water 2023, 15, 147. [Google Scholar] [CrossRef]
- Pappa, F.K.; Tsabaris, C.; Ioannidou, A.; Patiris, D.L.; Kaberi, H.; Pashalidis, I.; Eleftheriou, G.; Androulakaki, E.G.; Vlastou, R. Radioactivity and metal concentrations in marine sediments associated with mining activities in Ierissos Gulf, North Aegean Sea, Greece. Appl. Radiat. Isot. 2016, 116, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Perin, M.; Dallegrave, A.; da Costa, J.S.; Streit, L.; Gomes, A.D.; Pizzolato, T.M. Identification of the organic compounds in surface water: Suspect screening using liquid chromatography high-resolution mass spectrometry and in silico toxicity evaluation. Int. J. Mass Spectrom. 2023, 484, 116982. [Google Scholar] [CrossRef]
- Larson, A.M.; Polson, J.; Fontana, R.J.; Davern, T.J.; Lalani, E.; Hynan, L.S.; Reisch, J.S.; Schiodt, F.V.; Ostapowicz, G.; Shakil, A.O.; et al. Acetaminophen-induced acute liver failure: Results of a United States multicenter, prospective study. Hepatology 2005, 42, 1364–1372. [Google Scholar] [CrossRef]
ADD (μg/Kg/day) * | HQ ** | ||||||
---|---|---|---|---|---|---|---|
Elements | TDI (μg/Kg/day) | Concentration (μg/Kg) | Adults | Children | Adults | Children | |
Pb | 2 [48] | 38 | 0.03 | 0.14 | 0.02 | 0.07 | |
As | 0.3 [49] | 125 | 0.10 | 0.47 | 0.33 | 1.56 | |
Cr | 3 [50] | 796 | 0.64 | 2.97 | 0.21 | 0.99 | |
Ni | 13 [51] | 1422 | 1.14 | 5.31 | 0.09 | 0.41 | |
Hg | 0.1 [52] | 128 | 0.10 | 0.48 | 1.02 | 4.76 | |
ADD (μg/Kg/day) | HQ | ||||||
Compounds | TDI (μg/Kg/day) | Concentration (μg/Kg fish) | Concentration (μg/Kg d.w.) | Adults | Children | Adults | Children |
Thiabendazole | 100 [53] | 13.7 | 68.5 | 5.48 × 10−2 | 2.56 × 10−1 | 5.48 × 10−4 | 2.56 × 10−3 |
Cypermethrin | 5 [54] | 8.7 | 43.5 | 3.48 × 10−2 | 1.62 × 10−1 | 6.96 × 10−3 | 3.25 × 10−2 |
Tricyclazole | 50 [55] | 0.9 | 4.5 | 3.60 × 10−3 | 1.68 × 10−2 | 7.20 × 10−5 | 3.36 × 10−4 |
Caffeine | 2.5 [56] | 3.8 | 19 | 1.52 × 10−2 | 7.09 × 10−2 | 6.08 × 10−3 | 2.84 × 10−2 |
Acetaminophen | 300 [56] | 1.5 | 7.5 | 6.00 × 10−3 | 2.80 × 10−2 | 2.00 × 10−5 | 9.33 × 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasiotis, K.M.; Zafeiraki, E.; Manea-Karga, E.; Kouretas, D.; Tekos, F.; Skaperda, Z.; Doumpas, N.; Machera, K. Bioaccumulation of Organic and Inorganic Pollutants in Fish from Thermaikos Gulf: Preliminary Human Health Risk Assessment Assisted by a Computational Approach. J. Xenobiot. 2024, 14, 701-716. https://doi.org/10.3390/jox14020041
Kasiotis KM, Zafeiraki E, Manea-Karga E, Kouretas D, Tekos F, Skaperda Z, Doumpas N, Machera K. Bioaccumulation of Organic and Inorganic Pollutants in Fish from Thermaikos Gulf: Preliminary Human Health Risk Assessment Assisted by a Computational Approach. Journal of Xenobiotics. 2024; 14(2):701-716. https://doi.org/10.3390/jox14020041
Chicago/Turabian StyleKasiotis, Konstantinos M., Effrosyni Zafeiraki, Electra Manea-Karga, Demetrios Kouretas, Fotis Tekos, Zoi Skaperda, Nikolaos Doumpas, and Kyriaki Machera. 2024. "Bioaccumulation of Organic and Inorganic Pollutants in Fish from Thermaikos Gulf: Preliminary Human Health Risk Assessment Assisted by a Computational Approach" Journal of Xenobiotics 14, no. 2: 701-716. https://doi.org/10.3390/jox14020041
APA StyleKasiotis, K. M., Zafeiraki, E., Manea-Karga, E., Kouretas, D., Tekos, F., Skaperda, Z., Doumpas, N., & Machera, K. (2024). Bioaccumulation of Organic and Inorganic Pollutants in Fish from Thermaikos Gulf: Preliminary Human Health Risk Assessment Assisted by a Computational Approach. Journal of Xenobiotics, 14(2), 701-716. https://doi.org/10.3390/jox14020041