The Therapeutic Mechanisms of Honey in Mitigating Toxicity from Anticancer Chemotherapy Toxicity: A Review
Abstract
:1. Introduction
2. Mechanism of Anticancer Chemotherapy Toxicity
Anticancer Agents | ||
---|---|---|
Type | Drug | References |
Alkylating Agents | Cisplatin | [37] |
Temozolomide | [38] | |
Busulfan | [39] | |
Ifosfamide | [40] | |
Cyclophosphamide | [41] | |
Protein Kinase Inhibitors | Duvelisib | [42] |
Crizotinib | [43] | |
Lenvatinib | [44] | |
Olaparib | [45] | |
Monoclonal Antibodies | Necitumumab | [46] |
Rituximab | [47] | |
Durvalumab | [48] | |
Moxetumomab | [49] | |
Antibiotics | Bleomycin | [50] |
Idarubicin | [51] | |
Valrubicin | [52] | |
Daunorubicin | [53] | |
Doxorubicin | [7] | |
Vinca Alkaloids | Vinblastine | [54] |
Vincristine | [55] | |
Vinorelbine | [56] | |
Hormonal Agents | Flutamide | [57] |
Cyproterone | [58] | |
Triptorelin | [59] | |
Tamoxifen | [60] | |
Antimetabolites | Methotrexate | [61] |
Fluorouracil | [62] | |
Mercaptopurine | [63] | |
Azacitidine | [64] | |
Taxanes | Paclitaxel | [65] |
Docetaxel | [65] | |
Cabazitaxel | [65] | |
Others | Omacetaxine | [66] |
Tazemetostat | [67] | |
Lenalidomide | [68] | |
Thalidomide | [69] |
3. Honey: A Natural Food Product
3.1. Geographical Heterogeneity of Honey
3.2. Natural Compounds in Honey and Their Bioactivity
3.3. Honey and Its Pharmacological Properties
Honey | Origin | Components | Bioactivity | Reference |
---|---|---|---|---|
Tualang honey | Malaysia | Neurotransmitters (choline and acetylcholine) | Anti-depressant | [142] |
Thyme honey | Greece | H2O2 activity and low acidity | Anti-microbial | [143] |
Sidr honey | Kingdom of Saudi Arabia and Pakistan | Polyphenols (caffeic acid and its phenyl esters) | Anticancer | [144] |
Heather honey | Romania | Phenolics | Antibacterial | [145] |
Avocado honey | Spain | o-vanillin, ellagic acid, ferulic acid, and hydroxycinnamic acid | Anti-Alzheimer’s | [146] |
Buckwheat honey | United States | Sugar | Antibacterial | [147] |
Agastache honey | Australia | Phenol, 2,4-bis(1,1-dimethylethyl) | Antifungal | [148] |
Aroeira honey | Brazil | Phenolics | Antifungal | [149] |
Tupelo honey | United States | Sugars | Antimutagenic | [150] |
Sage honey | United States | Sugars (lactulose, lactitol, and inulin) | Prebiotic effect | [83] |
Buckwheat honey | United States | Sugars | Antibacterial | [147] |
Safflower honey | China | Polyphenolics (protocatechuic acid, naringin, gallic acid, myricetin, and quercetin) | Anti-inflammatory | [151] |
Sourwood honey | Malaysia | Phenolics, flavonoids and ascorbic acid | Antioxidant | [152] |
Gelam honey | Malaysia | Amino acids (glycine, methionine, arginine, and proline) | Wound healing | [153] |
Malicia honey | Brazil | Phenolics (procyanidins B1 and B2, epicatechin, and naringin) | Anxiolytic | [154] |
Rhododendron honey | Turkey | Flavanones (hesperetin and luteolin) | Gastrointestinal protective | [155] |
Manuka honey | New Zealand | Organic compound (methyl glyoxal) | Antibacterial properties | [156] |
Red clover honey | Croatia | Volatile compounds (lilac aldehyde, phenylacetaldehyde, and benzaldehyde) | Anti-diabetic | [157] |
Litchi honey | India | Protein (Major Royal Jelly Protein 1) | Anti-proliferative | [78] |
Kanuka honey | New Zealand | Non-volatile compounds (syringic acid, 4-methoxyphenyllactic acid, and methyl syringate) | Anti-viral | [158] |
Sesame honey | India | Phenolic compounds (rutin, apigenin, and quercetin) | Probiotic effects | [159] |
Acacia honey | Malaysia | Flavones and flavanones (acacetin, chrysin, pinocembrin, and epicatechin) | Reduce adiposity and triglyceride levels | [160] |
4. Clinical and Preclinical Evidence on Honey’s Mitigation of AC Toxicity
4.1. Antioxidant Mechanism of Mitigation
4.2. Anti-Inflammatory Mechanism of Mitigation
4.3. Anti-Apoptotic Mechanism of Mitigation
4.4. Immunomodulatory Mechanism of Mitigation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Anand, U.; Dey, A.; Chandel, A.K.S.; Sanyal, R.; Mishra, A.; Pandey, D.K.; De Falco, V.; Upadhyay, A.; Kandimalla, R.; Chaudhary, A.; et al. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis. 2023, 10, 1367–1401. [Google Scholar] [CrossRef] [PubMed]
- Famurewa, A.C.; Mukherjee, A.G.; Wanjari, U.R.; Sukumar, A.; Murali, R.; Renu, K.; Vellingiri, B.; Dey, A.; Gopalakrishnan, A.V. Repurposing FDA-approved drugs against the toxicity of platinum-based anticancer drugs. Life Sci. 2022, 305, 120789. [Google Scholar] [CrossRef]
- Gui, Y.; Famurewa, A.C.; Olatunji, O.J. Naringin ameliorates 5-fluorouracil induced cardiotoxicity: An insight into its modulatory impact on oxidative stress, inflammatory and apoptotic parameters. Tissue Cell 2023, 81, 102035. [Google Scholar] [CrossRef] [PubMed]
- Famurewa, A.C.; Aja, P.M.; Maduagwuna, E.K.; Ekeleme-Egedigwe, C.A.; Ufebe, O.G.; Azubuike-Osu, S.O. Antioxidant and anti-inflammatory effects of virgin coconut oil supplementation abrogate acute chemotherapy oxidative nephrotoxicity induced by anticancer drug methotrexate in rats. Biomed. Pharmacother. 2017, 96, 905–911. [Google Scholar] [CrossRef]
- Zhou, P.; Wang, Z.; Chen, C.; Famurewa, A.C.; Olatunji, O.J. Naringin ameliorates 5-fluorouracil elicited neurotoxicity by curtailing oxidative stress and iNOS/NF-ĸB/caspase-3 pathway. Open Chem. 2023, 21, 20230126. [Google Scholar] [CrossRef]
- Al-Amarat, W.; Abukhalil, M.H.; Alruhaimi, R.S.; Alqhtani, H.A.; Aldawood, N.; Alfwuaires, M.A.; Althunibat, O.Y.; Aladaileh, S.H.; Algefare, A.I.; Alanezi, A.A.; et al. Upregulation of Nrf2/HO-1 signaling and attenuation of oxidative stress, inflammation, and cell death mediate the protective effect of apigenin against cyclophosphamide hepatotoxicity. Metabolites 2022, 12, 648. [Google Scholar] [CrossRef]
- Ouyang, Z.-Q.; Shao, L.-S.; Wang, W.-P.; Ke, T.-F.; Chen, D.; Zheng, G.-R.; Duan, X.-R.; Chu, J.-X.; Zhu, Y.; Yang, L.; et al. Low intensity pulsed ultrasound ameliorates Adriamycin-induced chronic renal injury by inhibiting ferroptosis. Redox Rep. Commun. Free Radic. Res. 2023, 28, 2251237. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, Y.; Hamano, H.; Horinouchi, Y.; Miyamoto, L.; Hirayama, T.; Nagasawa, H.; Tamaki, T.; Tsuchiya, K. Role of ferroptosis in cisplatin-induced acute nephrotoxicity in mice. J. Med. Biol. 2021, 67, 126798. [Google Scholar] [CrossRef]
- Tadokoro, T.; Ikeda, M.; Ide, T.; Deguchi, H.; Ikeda, S.; Okabe, K.; Ishikita, A.; Matsushima, S.; Koumura, T.; Yamada, K.-I.; et al. Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity. JCI Insight 2020, 5, e132747. [Google Scholar] [CrossRef]
- Nainu, F.; Masyita, A.; Bahar, M.A.; Raihan, M.; Prova, S.R.; Mitra, S.; Bin Emran, T.; Simal-Gandara, J. Pharmaceutical Prospects of Bee Products: Special Focus on Anticancer, Antibacterial, Antiviral, and Antiparasitic Properties. Antibiotics 2021, 10, 822. [Google Scholar] [CrossRef]
- Alturkistani, H.A.; Abuzinadah, O.A.H.; Kelany, A.M.; El-Aziz, G.S.A.; Alrafiah, A.R. The combined effect of honey and olive oil against methotrexate mediated hepatotoxicity in rats: A biochemical, histological and immunohistological study. Histol. Histopathol. Cell. Mol. Biol. 2019, 34, 1313–1327. [Google Scholar]
- Zayed Mohamed, N.; Aly, H.F.; El-Mezayen, H.A.M.; El-Salamony, H.E. Effect of co-administration of Bee honey and some chemotherapeutic drugs on dissemination of hepatocellular carcinoma in rats. Toxicol. Rep. 2019, 6, 875–888. [Google Scholar] [CrossRef] [PubMed]
- Neamatallah, T.A.; El-Shitany, N.A.; Abbas, A.T.; Ali, S.S.; Eid, B.G. Honey protects against cisplatin-induced hepatic and renal toxicity through inhibition of NF-κB-mediated COX-2 expression and the oxidative stress dependent BAX/Bcl-2/caspase-3 apoptotic pathway. Food Funct. 2018, 9, 3743–3754. [Google Scholar] [CrossRef]
- Hamad, R.T.; Jayakumar, C.; Ranganathan, P.; Mohamed, R.; El-Hamamy, M.M.I.; Dessouki, A.A.; Ibrahim, A.; Ramesh, G. Honey feeding protects kidney against cisplatin nephrotoxicity through suppression of inflammation. Clin. Exp. Pharmacol. Physiol. 2015, 42, 843–848. [Google Scholar] [CrossRef]
- Rao, K.V.; Faso, A. Chemotherapy-induced nausea and vomiting: Optimizing prevention and management. Am. Health Drug Benefits 2012, 5, 232–240. [Google Scholar]
- Jameus, A.; Kennedy, A.E.; Thome, C. Hematological Changes Following Low Dose Radiation Therapy and Comparison to Current Standard of Care Cancer Treatments. Dose-Response 2021, 19, 15593258211056196. [Google Scholar] [CrossRef] [PubMed]
- Kuter, D.J. Treatment of chemotherapy-induced thrombocytopenia in patients with non-hematologic malignancies. Haematologica 2022, 107, 1243–1263. [Google Scholar] [CrossRef]
- Ullah, I.; Ayaz, M. A re-consideration of neural/receptor mechanisms in chemotherapy-induced nausea and vomiting: Current scenario and future perspective. Pharmacol. Rep. 2023, 75, 1126–1137. [Google Scholar] [CrossRef] [PubMed]
- Florescu, M.; Cinteza, M.; Vinereanu, D. Chemotherapy-induced Cardiotoxicity. Maedica 2013, 8, 59–67. [Google Scholar]
- Zajączkowska, R.; Kocot-Kępska, M.; Leppert, W.; Wrzosek, A.; Mika, J.; Wordliczek, J. Mechanisms of Chemotherapy-Induced Peripheral Neuropathy. Int. J. Mol. Sci. 2019, 20, 1451. [Google Scholar] [CrossRef]
- Mudd, T.W.; Guddati, A.K. Management of hepatotoxicity of chemotherapy and targeted agents. Am. J. Cancer Res. 2021, 11, 3461–3474. [Google Scholar]
- Lameire, N.H. Nephrotoxicity of recent anti-cancer agents. Clin. Kidney J. 2013, 7, 11–22. [Google Scholar]
- Rodríguez-Caballero, Á.; Torres-Lagares, D.; Robles-García, M.; Pachón-Ibáñez, J.; González-Padilla, D.; Gutiérrez-Pérez, J.L. Cancer treatment-induced oral mucositis: A critical review. Int. J. Oral Maxillofac. Surg. 2012, 41, 225–238. [Google Scholar] [CrossRef]
- Murillo, L.C.; Sutachan, J.J.; Albarracin, S.L. An update on neurobiological mechanisms involved in the development of chemotherapy-induced cognitive impairment (CICI). Toxicol. Rep. 2023, 10, 544–553. [Google Scholar] [CrossRef]
- Calistri, L.; Rastrelli, V.; Nardi, C.; Maraghelli, D.; Vidali, S.; Pietragalla, M.; Colagrande, S. Imaging of the chemotherapy-induced hepatic damage: Yellow liver, blue liver, and pseudocirrhosis. World J. Gastroenterol. 2021, 27, 7866. [Google Scholar] [CrossRef]
- Gersten, B.K.; Fitzgerald, T.S.; Fernandez, K.A.; Cunningham, L.L. Ototoxicity and Platinum Uptake Following Cyclic Administration of Platinum-Based Chemotherapeutic Agents. JARO J. Assoc. Res. Otolaryngol. 2020, 21, 303–321. [Google Scholar] [CrossRef] [PubMed]
- Verschoor, Y.L.; van de Haar, J.; Berg, J.G.v.D.; van Sandick, J.W.; Kodach, L.L.; van Dieren, J.M.; Balduzzi, S.; Grootscholten, C.; Ijsselsteijn, M.E.; Veenhof, A.A.F.A.; et al. Neoadjuvant atezolizumab plus chemotherapy in gastric and gastroesophageal junction adenocarcinoma: The phase 2 PANDA trial. Nat. Med. 2024, 30, 519–530. [Google Scholar] [CrossRef]
- Abdul-Rahman, T.; Dunham, A.; Huang, H.; Awais Bukhari, S.M.; Mehta, A.; Awuah, W.A.; Ede-Imafidon, D.; Cantu-Herrera, A.; Talukder, S.; Joshi, A.; et al. Chemotherapy Induced Cardiotoxicity: A State of the Art Review on General Mechanisms, Prevention, Treatment and Recent Advances in Novel Therapeutics. Curr. Probl. Cardiol. 2023, 48, 101591. [Google Scholar] [CrossRef]
- Ghafouri-Fard, S.; Shoorei, H.; Abak, A.; Seify, M.; Mohaqiq, M.; Keshmir, F.; Taheri, M.; Ayatollahi, S.A. Effects of chemotherapeutic agents on male germ cells and possible ameliorating impact of antioxidants. Biomed. Pharmacother. 2021, 142, 112040. [Google Scholar] [CrossRef]
- Spears, N.; Lopes, F.; Stefansdottir, A.; Rossi, V.; De Felici, M.; Anderson, R.A.; Klinger, F.G. Ovarian damage from chemotherapy and current approaches to its protection. Hum. Reprod. Update 2019, 25, 673–693. [Google Scholar] [CrossRef] [PubMed]
- Triarico, S.; Rivetti, S.; Capozza, M.A.; Romano, A.; Maurizi, P.; Mastrangelo, S.; Attinà, G.; Ruggiero, A. Transplacental passage and fetal effects of antineoplastic treatment during pregnancy. Cancers 2022, 14, 3103. [Google Scholar] [CrossRef]
- Tvsvgk, T.; Handa, A.; Kumar, K.; Mutreja, D.; Subramanian, S. Chemotherapy-associated pulmonary toxicity-case series from a single center. South Asian J. Cancer 2021, 10, 255–260. [Google Scholar] [CrossRef]
- Morelli, M.B.; Bongiovanni, C.; Da Pra, S.; Miano, C.; Sacchi, F.; Lauriola, M.; D’uva, G. Cardiotoxicity of Anticancer Drugs: Molecular Mechanisms and Strategies for Cardioprotection. Front. Cardiovasc. Med. 2022, 9, 847012. [Google Scholar] [CrossRef]
- Nagoor Meeran, M.F.; Arunachalam, S.; Azimullah, S.; Saraswathiamma, D.; Albawardi, A.; Almarzooqi, S.; Jha, N.K.; Subramanya, S.; Beiram, R.; Ojha, S. α-Bisabolol, a Dietary Sesquiterpene, Attenuates Doxorubicin-Induced Acute Cardiotoxicity in Rats by Inhibiting Cellular Signaling Pathways, Nrf2/Keap-1/HO-1, Akt/mTOR/GSK-3β, NF-κB/p38/MAPK, and NLRP3 Inflammasomes Regulating Oxidative Stress and Inflammatory Cascades. Int. J. Mol. Sci. 2023, 24, 14013. [Google Scholar] [CrossRef]
- Abd El-Twab, S.M.; Hozayen, W.G.; Hussein, O.E.; Mahmoud, A.M. 18beta-Glycyrrhetinic acid protects against methotrexate-induced kidney injury by up-regulating the Nrf2/ARE/HO-1 pathway and endogenous antioxidants. Ren. Fail. 2016, 38, 1516–1527. [Google Scholar] [CrossRef]
- Jian, B.; Pang, J.; Xiong, H.; Zhang, W.; Zhan, T.; Su, Z.; Lin, H.; Zhang, H.; He, W.; Zheng, Y. Autophagy-dependent Ferroptosis Contributes to Cisplatin-Induced Hearing Loss. Toxicol. Lett. 2021, 350, 249–260. [Google Scholar] [CrossRef]
- Dasari, S.; Tchounwou, P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 2014, 740, 364–378. [Google Scholar] [CrossRef]
- Bae, S.H.; Park, M.-J.; Lee, M.M.; Kim, T.M.; Lee, S.-H.; Cho, S.Y.; Kim, Y.-H.; Kim, Y.J.; Park, C.-K.; Kim, C.-Y. Toxicity profile of temozolomide in the treatment of 300 malignant glioma patients in Korea. J. Korean Med. Sci. 2014, 29, 980–984. [Google Scholar] [CrossRef]
- Schofield, R.C.; Landau, H.J.; Giralt, S.A.; Shah, G.L.; Scordo, M.; Lin, A.; Zanutto, E.; Ramanathan, L.V.; Pessin, M.S.; Carlow, D.C. Measurement of the DNA alkylating agents busulfan and melphalan in human plasma by mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019, 1125, 121711. [Google Scholar] [CrossRef]
- Stone, J.B.; Deangelis, L. Cancer-treatment-induced neurotoxicity—Focus on newer treatments. Nat. Rev. Clin. Oncol. 2016, 13, 92–105. [Google Scholar] [CrossRef]
- Famurewa, A.C.; Aja, P.M.; Medewase, J.O.; Abi, I.; Ogbonna, O.C.; Ofor, C.C.; Nwonuma, C.O.; Asogwa, N.T.; Erejuwa, O.O. Dipeptidyl peptidase-4 inhibitor sitagliptin exhibits antioxidant mechanism for abrogation of cyclophosphamide-induced cardiac damage and oxidative hepatorenal toxicity in rats. Drug Res. 2022, 72, 396–403. [Google Scholar] [CrossRef]
- Flinn, I.W.; Miller, C.B.; Ardeshna, K.M.; Tetreault, S.; Assouline, S.E.; Mayer, J.; Merli, M.; Lunin, S.D.; Pettitt, A.R.; Nagy, Z.; et al. DYNAMO: A Phase II Study of Duvelisib (IPI-145) in Patients With Refractory Indolent Non-Hodgkin Lymphoma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2019, 37, 912–922. [Google Scholar] [CrossRef]
- George, S.; Shahi, S.R.; Ali, Z.; Abaza, A.; Jamil, A.; Gutlapalli, S.D.; Ali, M.; Oble, M.J.P.; Sonia, S.N.; Hamid, P.; et al. Adverse Side Effects of Crizotinib in the Treatment of Anaplastic Lymphoma Kinase-Mutated Non-small Cell Lung Cancer: A Systematic Review. Cureus 2023, 15, e45517. [Google Scholar] [CrossRef]
- Cabanillas, M.E.; Takahashi, S. Managing the adverse events associated with lenvatinib therapy in radioiodine-refractory differentiated thyroid cancer. In Seminars in Oncology; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Zhou, Y.; Zhao, S.; Wu, T.; Zhang, H. Comparison of Adverse Reactions Caused by Olaparib for Different Indications. Front. Pharmacol. 2022, 13, 968163. [Google Scholar] [CrossRef]
- Ilic, I.M.; Sipetic, S.; Grujicic, J.; Ilic, M. Effects of adding necitumumab to first-line chemotherapy in patients with stage IV non-small-cell lung cancer: Meta-analysis. J. Oncol. Pharm. Pract. 2019, 26, 1331–1342. [Google Scholar] [CrossRef]
- Kasi, P.M.; Tawbi, H.A.; Oddis, C.V.; Kulkarni, H.S. Clinical review: Serious adverse events associated with the use of rituximab—A critical care perspective. Crit. Care 2012, 16, 231. [Google Scholar] [CrossRef]
- Fahmy, O.; Ahmed, O.A.A.; Khairul-Asri, M.G.; Alhakamy, N.A.; Alharbi, W.S.; Fahmy, U.A.; El-Moselhy, M.A.; Fresta, C.G.; Caruso, G.; Caraci, F. Adverse Events and Tolerability of Combined Durvalumab and Tremelimumab versus Durvalumab Alone in Solid Cancers: A Systematic Review and Meta-Analysis. Biomedicines 2022, 10, 1101. [Google Scholar] [CrossRef]
- Nobre, C.F.; Newman, M.J.; DeLisa, A.; Newman, P. Moxetumomab pasudotox-tdfk for relapsed/refractory hairy cell leukemia: A review of clinical considerations. Cancer Chemother. Pharmacol. 2019, 84, 255–263. [Google Scholar] [CrossRef]
- Kawai, K.; Akaza, H. Bleomycin-induced pulmonary toxicity in chemotherapy for testicular cancer. Expert Opin. Drug Saf. 2003, 2, 587–596. [Google Scholar] [CrossRef]
- Woelich, S.K.; Braun, J.T.; Schoen, M.W.; Ramlal, R.; Freter, C.E.; Petruska, P.J.; Lionberger, J.M. Efficacy and Toxicity of Induction Therapy with Cladribine, Idarubicin, and Cytarabine (IAC) for Acute Myeloid Leukemia. Anticancer Res. 2017, 37, 713–717. [Google Scholar] [CrossRef]
- Cookson, M.S.; Chang, S.S.; Lihou, C.; Li, T.; Harper, S.Q.; Lang, Z.; Tutrone, R.F. Use of intravesical valrubicin in clinical practice for treatment of nonmuscle-invasive bladder cancer, including carcinoma in situ of the bladder. Ther. Adv. Urol. 2014, 6, 181–191. [Google Scholar] [CrossRef]
- Liu, Q.-G.; Zhao, X.; Xu, N.; Wu, L.H.; Li, S.Z.; Mi, Y.C. Organ toxicity and efficacy of high-dose daunorubicin-based chemotherapy in the treatment of acute leukemia. Chin. J. Hematol. 2013, 34, 587–590. [Google Scholar]
- Grisold, W.; Cavaletti, G.; Windebank, A.J. Peripheral neuropathies from chemotherapeutics and targeted agents: Diagnosis, treatment, and prevention. Neuro-Oncology 2012, 14 (Suppl. S4), iv45–iv54. [Google Scholar] [CrossRef] [PubMed]
- Suresh, P.; Kapoor, R.; Kapur, B. Severe neurotoxicity due to Vinblastine in Hodgkin lymphoma. South Asian J. Cancer 2014, 3, 147–148. [Google Scholar] [CrossRef]
- Hatzl, S.; Posch, F.; Rezai, A.; Gornicec, M.; Beham-Schmid, C.; Magnes, T.; Wangner, S.; Deutsch, A.; Greinix, H.; Uhl, B.; et al. Vinorelbine as substitute for vincristine in patients with diffuse large B cell lymphoma and vincristine-induced neuropathy. Support. Care Cancer 2021, 29, 5197–5207. [Google Scholar] [CrossRef]
- Oh, W.K.; Manola, J.; Bittmann, L.; Brufsky, A.; Kaplan, I.D.; Smith, M.R.; Kaufman, D.S.; Kantoff, P.W. Finasteride and flutamide therapy in patients with advanced prostate cancer: Response to subsequent castration and long-term follow-up. Urology 2003, 62, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Green, H.J.; Pakenham, K.; Headley, B.; Yaxley, J.; Nicol, D.; Mactaggart, P.; Swanson, C.; Watson, R.; Gardiner, R. Altered cognitive function in men treated for prostate cancer with luteinizing hormone-releasing hormone analogues and cyproterone acetate: A randomized controlled trial. BJU Int. 2002, 90, 427–432. [Google Scholar] [CrossRef]
- Lundström, E.A.; Rencken, R.K.; van Wyk, J.H.; Coetzee, L.J.E.; Bahlmann, J.C.M.; Reif, S.; Strasheim, E.A.; Bigalke, M.C.; Pontin, A.R.; Goedhals, L.; et al. Triptorelin 6-month formulation in the management of patients with locally advanced and metastatic prostate cancer: An open-label, non-comparative, multicentre, phase III study. Clin. Drug Investig. 2009, 29, 757–765. [Google Scholar] [CrossRef]
- Howell, A.; Robertson, J.F.; Abram, P.; Lichinitser, M.R.; Elledge, R.; Bajetta, E.; Watanabe, T.; Morris, C.; Webster, A.; Dimery, I.; et al. Comparison of fulvestrant versus tamoxifen for the treatment of advanced breast cancer in postmenopausal women previously untreated with endocrine therapy: A multinational, double-blind, randomized trial. J. Clin. Oncol. 2004, 22, 1605–1613. [Google Scholar] [CrossRef]
- Bhojwani, D.; Sabin, N.D.; Pei, D.; Yang, J.J.; Khan, R.B.; Panetta, J.C.; Krull, K.R.; Inaba, H.; Rubnitz, J.E.; Metzger, M.L.; et al. Methotrexate-induced neurotoxicity and leukoencephalopathy in childhood acute lymphoblastic leukemia. J. Clin. Oncol. 2014, 32, 949–959. [Google Scholar] [CrossRef]
- Land, S.R.; Kopec, J.A.; Cecchini, R.S.; Ganz, P.A.; Wieand, H.S.; Colangelo, L.H.; Murphy, K.; Kuebler, J.P.; Seay, T.E.; Needles, B.M.; et al. Neurotoxicity from oxaliplatin combined with weekly bolus fluorouracil and leucovorin as surgical adjuvant chemotherapy for stage II and III colon cancer: NSABP C-07. J. Clin. Oncol. 2007, 25, 2205–2211. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.J.; Nightingale, G.; Baer, M.R. Mercaptopurine-Induced Fever: Hypersensitivity Reaction in a Patient with Acute Lymphoblastic Leukemia. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2010, 30, 113. [Google Scholar] [CrossRef]
- Ravandi, F.; Roboz, G.J.; Wei, A.H.; Döhner, H.; Pocock, C.; Selleslag, D.; Montesinos, P.; Sayar, H.; Musso, M.; Figuera-Alvarez, A.; et al. Management of adverse events in patients with acute myeloid leukemia in remission receiving oral azacitidine: Experience from the phase 3 randomized QUAZAR AML-001 trial. J. Hematol. Oncol. 2021, 14, 133. [Google Scholar] [CrossRef] [PubMed]
- Çomaklı, S.; Ozdemir, S.; Güloglu, M. Chrysin attenuates paclitaxel-induced hepatorenal toxicity in rats by suppressing oxidative damage, inflammation, and apoptosis. Life Sci. 2023, 332, 122096. [Google Scholar] [CrossRef]
- Cortes, J.; Digumarti, R.; Parikh, P.; Wetzler, M.; Lipton, J.; Hochhaus, A.; Craig, A.; Benichou, A.; Nicolini, F.; Kantarjian, H.; et al. Phase 2 study of subcutaneous omacetaxine mepesuccinate for chronic-phase chronic myeloid leukemia patients resistant to or intolerant of tyrosine kinase inhibitors. Am. J. Hematol. 2013, 88, 350–354. [Google Scholar] [CrossRef]
- Vejmělková, K.; Pokorna, P.; Noskova, K.; Faustmannova, A.; Drabova, K.; Pavelka, Z.; Bajciova, V.; Broz, M.; Tinka, P.; Jezova, M.; et al. Tazemetostat in the therapy of pediatric INI1-negative malignant rhabdoid tumors. Sci. Rep. 2023, 13, 21623. [Google Scholar] [CrossRef]
- Pawlyn, C.; Khan, M.S.; Muls, A.; Sriskandarajah, P.; Kaiser, M.F.; Davies, F.E.; Morgan, G.J.; Andreyev, H.J.N. Lenalidomide-induced diarrhea in patients with myeloma is caused by bile acid malabsorption that responds to treatment. Blood 2014, 124, 2467–2468. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, A.; Waage, A.; Hulin, C.; Beksac, M.; Zweegman, S.; Gay, F.; Gimsing, P.; Leleu, X.; Wijermans, P.; Sucak, G.; et al. Safety of thalidomide in newly diagnosed elderly myeloma patients: A meta-analysis of data from individual patients in six randomized trials. Haematologica 2013, 98, 87–94. [Google Scholar] [CrossRef]
- Sui, S.; Xu, S.; Pang, D. Emerging role of ferroptosis in breast cancer: New dawn for overcoming tumor progression. Pharmacol. Ther. 2021, 232, 107992. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, X.; Jin, S.; Chen, Y.; Guo, R. Ferroptosis in cancer therapy: A novel approach to reversing drug resistance. Mol. Cancer 2022, 21, 47. [Google Scholar] [CrossRef] [PubMed]
- Dhanya, S.; Ramesh, N.V.; Mishra, A. Traditional methods of food habits and dietary preparations in Ayurveda—The Indian system of medicine. J. Ethn. Foods 2019, 6, 14. [Google Scholar]
- Walkikar, S.S. Importance of Madhu in Classical Ayurvedic Text. AYUSHDHARA, 2023. Available online: https://ayushdhara.in/index.php/ayushdhara/article/view/1204 (accessed on 16 July 2024).
- Hills, S.P.; Mitchell, P.; Wells, C.; Russell, M. Honey Supplementation and Exercise: A Systematic Review. Nutrients 2019, 11, 1586. [Google Scholar] [CrossRef]
- Nolan, V.C.; Harrison, J.; Wright, J.E.E.; Cox, J.A.G. Clinical Significance of Manuka and Medical-Grade Honey for Antibiotic-Resistant Infections: A Systematic Review. Antibiotics 2020, 9, 766. [Google Scholar] [CrossRef] [PubMed]
- Hashemian, F.; Baghbanian, N.; Majd, Z.; Rouini, M.R.; Jahanshahi, J.; Hashemian, F. The effect of thyme honey nasal spray on chronic rhinosinusitis: A double-blind randomized controlled clinical trial. Eur. Arch. Oto-Rhino-Laryngol. 2015, 272, 1429–1435. [Google Scholar] [CrossRef]
- Biglari, B.; Swing, T.; Büchler, A.; Ferbert, T.; Simon, A.; Schmidmaier, G.; Moghaddam, A. Medical honey in professional wound care. Expert Rev. Dermatol. 2013, 8, 51–56. [Google Scholar] [CrossRef]
- Bose, D.; Chaudhary, A.; Padmavati, M.; Chatterjee, J.; Banerjee, R. In vitro evaluation of anti-proliferative activity of protein from Litchi chinensis honey against human cervical cancer cell line (HeLa). J. Herb. Med. 2022, 31, 100518. [Google Scholar] [CrossRef]
- Johnson, D.W.; van Eps, C.; Mudge, D.W.; Wiggins, K.J.; Armstrong, K.; Hawley, C.M.; Campbell, S.B.; Isbel, N.M.; Nimmo, G.R.; Gibbs, H. Randomized, controlled trial of topical exit-site application of honey (Medihoney) versus mupirocin for the prevention of catheter-associated infections in hemodialysis patients. J. Am. Soc. Nephrol. JASN 2005, 16, 1456–1462. [Google Scholar] [CrossRef]
- Samarghandian, S.; Azimi-Nezhad, M.; Shahri, A.M.P.; Farkhondeh, T. Antidotal or protective effects of honey and chrysin, its major polyphenols, against natural and chemical toxicities. Acta Bio Medica Atenei Parm. 2019, 90, 533–550. [Google Scholar]
- Kowalczuk, I.; Gębski, J.; Stangierska, D.; Szymańska, A. Determinants of Honey and Other Bee Products Use for Culinary, Cosmetic, and Medical Purposes. Nutrients 2023, 15, 737. [Google Scholar] [CrossRef]
- Burlando, B.; Cornara, L. Honey in dermatology and skin care: A review. J. Cosmet. Dermatol. 2013, 12, 306–313. [Google Scholar] [CrossRef]
- Shin, H.-S.; Ustunol, Z. Carbohydrate composition of honey from different floral sources and their influence on growth of selected intestinal bacteria: An in vitro comparison. Food Res. Int. 2005, 38, 721–728. [Google Scholar] [CrossRef]
- Rodríguez, I.; Tananaki, C.; Galán-Soldevilla, H.; Pérez-Cacho, P.R.; Serrano, S. Sensory Profile of Greek Islands Thyme Honey. Appl. Sci. 2021, 11, 9548. [Google Scholar] [CrossRef]
- El-Senduny, F.F.; Hegazi, N.M.; Elghani, G.E.A.; Farag, M.A. Manuka honey, a unique mono-floral honey. A comprehensive review of its bioactives, metabolism, action mechanisms, and therapeutic merits. Food Biosci. 2021, 42, 101038. [Google Scholar] [CrossRef]
- Bodó, A.; Radványi, L.; Kőszegi, T.; Csepregi, R.; Nagy, D.U.; Farkas, Á.; Kocsis, M. Quality evaluation of light-and dark-colored Hungarian honeys, focusing on botanical origin, antioxidant capacity and mineral content. Molecules 2021, 26, 2825. [Google Scholar] [CrossRef] [PubMed]
- Gül, A.; Pehlivan, T. Antioxidant activities of some monofloral honey types produced across Turkey. Saudi J. Biol. Sci. 2018, 25, 1056–1065. [Google Scholar] [CrossRef] [PubMed]
- Combarros-Fuertes, P.; Fresno, J.M.; Estevinho, M.M.; Sousa-Pimenta, M.; Tornadijo, M.E.; Estevinho, L.M. Honey: Another alternative in the fight against antibiotic-resistant bacteria? Antibiotics 2020, 9, 774. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, G.R.; Roubik, D.W.; Colli-Ucán, W. Extinction of Melipona beecheii and traditional beekeeping in the Yucatán peninsula. Bee World 2005, 86, 35–41. [Google Scholar] [CrossRef]
- Conti, M.E.; Finoia, M.G.; Fontana, L.; Mele, G.; Botrè, F.; Iavicoli, I. Characterization of Argentine honeys on the basis of their mineral content and some typical quality parameters. Chem. Cent. J. 2014, 8, 44. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Suo, Z.; Zhao, P.; Cheng, N.; Gao, H.; Zhao, J.; Cao, W. Jujube honey from China: Physicochemical characteristics and mineral contents. J. Food Sci. 2013, 78, C387–C394. [Google Scholar] [CrossRef]
- Irish, J.; Blair, S.E.; Carter, D.A. The Antibacterial Activity of Honey Derived from Australian Flora. PLoS ONE 2011, 6, e18229. [Google Scholar] [CrossRef]
- Machado, A.M.; Miguel, M.G.; Vilas-Boas, M.; Figueiredo, A.C. Honey Volatiles as a Fingerprint for Botanical Origin—A Review on their Occurrence on Monofloral Honeys. Molecules 2020, 25, 374. [Google Scholar] [CrossRef]
- Almasi, R.; Sekarappa, B. Analysis of unifloral and multifloral honey for physico-chemical properties in Southern Karnataka, India. Int. J. Recent Sci. Res. 2019, 10, 32469–32473. [Google Scholar]
- Singh, I.; Singh, S. Honey moisture reduction and its quality. J. Food Sci. Technol. 2018, 55, 3861–3871. [Google Scholar] [CrossRef]
- Bogdanov, S.; Jurendic, T.; Sieber, R.; Gallmann, P. Honey for nutrition and health: A review. J. Am. Coll. Nutr. 2008, 27, 677–689. [Google Scholar] [CrossRef]
- Ajibola, A.; Chamunorwa, J.P.; Erlwanger, K.H. Nutraceutical values of natural honey and its contribution to human health and wealth. Nutr. Metab. 2012, 9, 61. [Google Scholar] [CrossRef]
- Eteraf-Oskouei, T.; Najafi, M. Traditional and Modern Uses of Natural Honey in Human Diseases: A Review. Iran. J. Basic Med. Sci. 2013, 16, 731–742. [Google Scholar]
- Kostić, A.Ž.; Milinčić, D.D.; Barać, M.B.; Shariati, M.A.; Tešić, L.; Pešić, M.B. The Application of Pollen as a Functional Food and Feed Ingredient—The Present and Perspectives. Biomolecules 2020, 10, 84. [Google Scholar] [CrossRef]
- Sommano, S.R.; Bhat, F.M.; Wongkeaw, M.; Sriwichai, T.; Sunanta, P.; Chuttong, B.; Burgett, M. Amino Acid Profiling and Chemometric Relations of Black Dwarf Honey and Bee Pollen. Front. Nutr. 2020, 7, 558579. [Google Scholar] [CrossRef]
- Albaridi, N.A. Antibacterial potency of honey. Int. J. Microbiol. 2019, 2019, 2464507. [Google Scholar] [CrossRef] [PubMed]
- Khalil, M.; Sulaiman, S.F. The potential role of honey and its polyphenols in preventing heart diseases: A review. Afr. J. Tradit. Complement. Altern. Med. AJTCAM 2010, 7, 315–321. [Google Scholar] [CrossRef]
- Hungerford, N.L.; Yates, H.S.; Smith, T.J.; Fletcher, M.T. Organic acid profiles of Australian stingless bee honey samples determined by ion chromatography. J. Food Compos. Anal. 2023, 122, 105466. [Google Scholar] [CrossRef]
- Weston, R.J. The contribution of catalase and other natural products to the antibacterial activity of honey: A review. Food Chem. 2000, 71, 235–239. [Google Scholar] [CrossRef]
- Mavric, E.; Wittmann, S.; Barth, G.; Henle, T. Identification and quantification of methylglyoxal as the dominant antibacterial constituent of Manuka (Leptospermum scoparium) honeys from New Zealand. Mol. Nutr. Food Res. 2008, 52, 483–489. [Google Scholar] [CrossRef]
- Almasaudi, S. The antibacterial activities of honey. Saudi J. Biol. Sci. 2021, 28, 2188–2196. [Google Scholar] [CrossRef]
- Chua, L.S.; Rahaman, N.L.A.; Adnan, N.A.; Tan, T.T.E. Antioxidant activity of three honey samples in relation with their biochemical components. J. Anal. Methods Chem. 2013, 2013, 313798. [Google Scholar] [CrossRef]
- Samarghandian, S.; Farkhondeh, T.; Samini, F. Honey and Health: A Review of Recent Clinical Research. Pharmacogn. Res. 2017, 9, 121–127. [Google Scholar]
- Kishore, R.; Halim, A.S.; Syazana, M.; Sirajudeen, K. Tualang honey has higher phenolic content and greater radical scavenging activity compared with other honey sources. Nutr. Res. 2011, 31, 322–325. [Google Scholar] [CrossRef] [PubMed]
- Zamri, N.A.; Ghani, N.; Ismail, C.A.N.; Zakaria, R.; Shafin, N. Honey on brain health: A promising brain booster. Front. Aging Neurosci. 2023, 14, 1092596. [Google Scholar] [CrossRef]
- Al-Waili, N.; Salom, K.; Al-Ghamdi, A. Honey for Wound Healing, Ulcers, and Burns; Data Supporting Its Use in Clinical Practice. Sci. World J. 2011, 11, 766–787. [Google Scholar] [CrossRef]
- Erejuwa, O.O.; Sulaiman, S.A.; Wahab, M.S. Effects of honey and its mechanisms of action on the development and progression of cancer. Molecules 2014, 19, 2497–2522. [Google Scholar] [CrossRef]
- Mohammadimanesh, A.; Vahidiniya, A.A.; Doaei, S.; Gholamalizadeh, M.; Shahvegharasl, Z.; Salehi, I.; Fayyaz, N.; Khosravi, H.M. The effect of different types of honey on the lipid profile of streptozotocin-induced diabetic rats. Arch. Med. Sci. Atheroscler. Dis. 2019, 4, e113–e118. [Google Scholar] [CrossRef] [PubMed]
- Alkhalifah, M.K.; Alabduljabbar, K.A.; Alkhenizan, A.H. Effect of natural honey on lowering lipid profile. Saudi Med. J. 2021, 42, 473. [Google Scholar] [CrossRef]
- Wheeler, M.M.; Robinson, G.E. Diet-dependent gene expression in honey bees: Honey vs. sucrose or high fructose corn syrup. Sci. Rep. 2014, 4, 5726. [Google Scholar] [CrossRef]
- Bt Hj Idrus, R.; Sainik, N.Q.A.V.; Nordin, A.; Bin Saim, A.; Sulaiman, N. Cardioprotective effects of honey and its constituent: An evidence-based review of laboratory studies and clinical trials. Int. J. Environ. Res. Public Health 2020, 17, 3613. [Google Scholar] [CrossRef] [PubMed]
- Tuñón, J.; Badimón, L.; Bochaton-Piallat, M.-L.; Cariou, B.; Daemen, M.J.; Egido, J.; Evans, P.C.; Hoefer, I.E.; Ketelhuth, D.F.J.; Lutgens, E.; et al. Identifying the anti-inflammatory response to lipid lowering therapy: A position paper from the working group on atherosclerosis and vascular biology of the European Society of Cardiology. Cardiovasc. Res. 2018, 115, 10–19. [Google Scholar] [CrossRef]
- Ahmed, S.; Sulaiman, S.A.; Baig, A.A.; Ibrahim, M.; Liaqat, S.; Fatima, S.; Jabeen, S.; Shamim, N.; Othman, N.H. Honey as a potential natural antioxidant medicine: An insight into its molecular mechanisms of action. Oxidative Med. Cell. Longev. 2018, 2018, 8367846. [Google Scholar] [CrossRef]
- Mesaik, M.A.; Azim, M.K.; Mohiuddin, S. Honey modulates oxidative burst of professional phagocytes. Phytother. Res. 2008, 22, 1404–1408. [Google Scholar] [CrossRef]
- Masad, R.J.; Haneefa, S.M.; Mohamed, Y.A.; Al-Sbiei, A.; Bashir, G.; Fernandez-Cabezudo, M.J.; Al-Ramadi, B.K. The Immunomodulatory Effects of Honey and Associated Flavonoids in Cancer. Nutrients 2021, 13, 1269. [Google Scholar] [CrossRef]
- Talebi, M.; Talebi, M.; Farkhondeh, T.; Samarghandian, S. Molecular Mechanism-Based Therapeutic Properties of honey. Biomed. Pharmacother. 2020, 130, 110590. [Google Scholar] [CrossRef]
- Abel, S.D.; Dadhwal, S.; Gamble, A.B.; Baird, S.K. Honey reduces the metastatic characteristics of prostate cancer cell lines by promoting a loss of adhesion. PeerJ 2018, 6, e5115. [Google Scholar] [CrossRef]
- Saiful Yazan, L.; Zali, M.F.S.M.; Ali, R.M.; Zainal, N.A.; Esa, N.; Sapuan, S.; Ong, Y.S.; Tor, Y.S.; Gopalsamy, B.; Voon, F.L.; et al. Chemopreventive Properties and Toxicity of Kelulut Honey in Sprague Dawley Rats Induced with Azoxymethane. BioMed Res. Int. 2016, 2016, 4036926. [Google Scholar] [CrossRef]
- Fadzil, M.A.M.; Mustar, S.; Rashed, A.A. The Potential Use of Honey as a Neuroprotective Agent for the Management of Neurodegenerative Diseases. Nutrients 2023, 15, 1558. [Google Scholar] [CrossRef]
- Ph, R. Role of mitochondria in neurodegenerative diseases: Mitochondria as a therapeutic target in Alzheimer’s disease. CNS Spectr. 2009, 14, 8–13. [Google Scholar]
- Othman, Z.; Zakaria, R.; Hussain, N.H.N.; Hassan, A.; Shafin, N.; Al-Rahbi, B.; Ahmad, A.H. Potential Role of Honey in Learning and Memory. Med. Sci. 2015, 3, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.-K.; Atigadda, V.R.; Brzeminski, P.; Fabisiak, A.; Tang, E.K.Y.; Tuckeyk, R.C.; Reiter, R.J.; Andrzej, T. Slominski Detection of Serotonin, Melatonin, and Their Metabolites in Honey. ACS Food Sci. Technol. 2021, 1, 1228–1235. [Google Scholar] [CrossRef]
- Shoaib, A.; Alqahtani, S.S.; Azmi, L.; Anwer, T.; Khan, A.; Al Shahrani, S.; Ahmad, A. An Assay on Mechanisms of the Anti-Fibrotic Effects of Honey. Ther. Appl. Honey Its Phytochem. Vol. II 2020, 85–112. [Google Scholar] [CrossRef]
- Imtara, H.; Al-Waili, N.; Bakour, M.; Al-Waili, W.; Lyoussi, B. Evaluation of antioxidant, diuretic, and wound healing effect of Tulkarm honey and its effect on kidney function in rats. Vet. World 2018, 11, 1491–1499. [Google Scholar] [CrossRef]
- Banihani, S.A. Mechanisms of honey on testosterone levels. Heliyon 2019, 5, e02029. [Google Scholar] [CrossRef] [PubMed]
- Henderson, K.; Aldhirgham, T.; Nigam, P.S.; Owusu-Apenten, R. Evaluation of Manuka Honey Estrogen Activity Using the MCF-7 Cell Proliferation Assay. J. Adv. Biol. Biotechnol. 2016, 10, 1–11. [Google Scholar] [CrossRef]
- Münstedt, K.; Voss, B.; Kullmer, U.; Schneider, U.; Hübner, J. Bee pollen and honey for the alleviation of hot flushes and other menopausal symptoms in breast cancer patients. Mol. Clin. Oncol. 2015, 3, 869–874. [Google Scholar] [CrossRef]
- Malone, L.A.; Gatehouse, H.S.; Tregidga, E.L. Effects of time, temperature, and honey on Nosema apis (Microsporidia: Nosematidae), a parasite of the honeybee, Apis mellifera (Hymenoptera: Apidae). J. Invertebr. Pathol. 2001, 77, 258–268. [Google Scholar] [CrossRef]
- Sinha, S.; Sinha, S.; Prakash, A.; Sehgal, R. Comparative effect of manuka honey on anaerobic parasitic protozoans with standard drug therapy under in vitro conditions: A preliminary study. Indian J. Pharmacol. 2018, 50, 197–203. [Google Scholar]
- Mandal, M.; Mandal, S. Honey: Its medicinal property and antibacterial activity. Asian Pac. J. Trop. Biomed. 2011, 1, 154–160. [Google Scholar] [CrossRef]
- Tashkandi, H. Honey in wound healing: An updated review. Open Life Sci. 2021, 16, 1091–1100. [Google Scholar] [CrossRef] [PubMed]
- Schell, K.R.; Fernandes, K.E.; Shanahan, E.; Wilson, I.; Blair, S.E.; Carter, D.A.; Cokcetin, N.N. The Potential of Honey as a Prebiotic Food to Re-engineer the Gut Microbiome Toward a Healthy State. Front. Nutr. 2022, 9, 957932. [Google Scholar] [CrossRef]
- Angioi, R.; Morrin, A.; White, B. The rediscovery of honey for skin repair: Recent advances in mechanisms for honey-mediated wound healing and scaffolded application techniques. Appl. Sci. 2021, 11, 5192. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Panyoyai, N.; Kasapis, S.; Pang, E.; Mantri, N. Honey and Its Role in Relieving Multiple Facets of Atherosclerosis. Nutrients 2019, 11, 167. [Google Scholar] [CrossRef] [PubMed]
- Poznyak, A.V.; Sadykhov, N.K.; Kartuesov, A.G.; Borisov, E.E.; Melnichenko, A.A.; Grechko, A.V.; Orekhov, A.N. Hypertension as a risk factor for atherosclerosis: Cardiovascular risk assessment. Front. Cardiovasc. Med. 2022, 9, 959285. [Google Scholar] [CrossRef]
- Kamaruzzaman, M.A.; Chin, K.-Y.; Ramli, E.S.M. A Review of Potential Beneficial Effects of Honey on Bone Health. Evid.-Based Complement. Altern. Med. eCAM 2019, 2019. [Google Scholar] [CrossRef]
- Azman, K.F.; Zakaria, R. Honey as an antioxidant therapy to reduce cognitive ageing. Iran. J. Basic Med. Sci. 2019, 22, 1368. [Google Scholar] [PubMed]
- Masoura, M.; Gkatzionis, K. The antimicrobial mechanism of Greek thyme honeys against Methicillin-resistant Staphylococcus aureus (MRSA) clinical isolates: A case study of comparison with Manuka honey. Int. J. Food Sci. Technol. 2022, 57, 7076–7084. [Google Scholar] [CrossRef]
- Ghramh, H.A.; Ibrahim, E.H.; Kilany, M. Study of anticancer, antimicrobial, immunomodulatory, and silver nanoparticles production by Sidr honey from three different sources. Food Sci. Nutr. 2019, 8, 445–455. [Google Scholar] [CrossRef]
- Dezmirean, D.; Mărghitaş, L.A.; Fiţ, N.; Chirilă, F.; Gherman, B.; Mărgăoan, R.; Aurori, A.; Bobiş, O. Antibacterial effect of heather honey (Calluna vulgaris) against different microorganisms of clinical importance. Bull. UASVM Anim. Sci. Biotechnol. 2015, 72, 1. [Google Scholar] [CrossRef] [PubMed]
- Romero-Márquez, J.M.; Navarro-Hortal, M.D.; Orantes, F.J.; Esteban-Muñoz, A.; Pérez-Oleaga, C.M.; Battino, M.; Sánchez-González, C.; Rivas-García, L.; Giampieri, F.; Quiles, J.L.; et al. In Vivo Anti-Alzheimer and Antioxidant Properties of Avocado (Persea americana Mill.) Honey from Southern Spain. Antioxidants 2023, 12, 404. [Google Scholar] [CrossRef]
- Hammond, E.N.; Duster, M.; Musuuza, J.S.; Safdar, N. Effect of United States buckwheat honey on antibiotic-resistant hospital acquired pathogens. Pan Afr. Med. J. 2016, 25, 212. [Google Scholar] [CrossRef]
- Anand, S.; Deighton, M.; Livanos, G.; Pang, E.C.K.; Mantri, N. Agastache honey has superior antifungal activity in comparison with important commercial honeys. Sci. Rep. 2019, 9, 18197. [Google Scholar] [CrossRef]
- Lima, W.G.; Brito, J.C.M.; Nizer, W.S.d.C.; de Assis, D.C.S. Antifungal, antibiofilm and anti-resistance activities of Brazilian monofloral honeys against Candida spp. Biocatal. Agric. Biotechnol. 2022, 42, 102335. [Google Scholar] [CrossRef]
- Wang, X.-H.; Andrae, L.M.; Engeseth, N.J. Antimutagenic effect of various honeys and sugars against Trp-p-1. J. Agric. Food Chem. 2002, 50, 6923–6928. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Shi, F.F.; Zhang, W.W.; Zhang, Z.H.; Wang, K. Antioxidant and Anti-Inflammatory Activities of Safflower (Carthamus tinctorius L.) Honey Extract. Foods 2020, 9, 1039. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Sulaiman, S.A.; Khalil, I.; Gan, S.H. Evaluation of physicochemical and antioxidant properties of sourwood and other Malaysian honeys: A comparison with manuka honey. Chem. Cent. J. 2013, 7, 138. [Google Scholar] [CrossRef]
- Tan, M.K.; Adli, D.S.H.; Tumiran, M.A.; Abdulla, M.A.; Yusoff, K.M. The Efficacy of Gelam Honey Dressing towards Excisional Wound Healing. Evid.-Based Complement. Altern. Med. eCAM 2012, 2012, 805932. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, M.L.R.; Gouveia-Nhanca, M.; Andrade, A.D.A.d.S.; Pinheiro, R.O.; Alves, A.F.; Sousa, M.C.d.P.; Lima, M.d.S.; Magnani, M.; Aquino, J.d.S. Malicia honey (Mimosa quadrivalvis L.) produced by the jandaíra bee (Melipona subnitida D.) improves depressive-like behaviour, somatic, biochemical and inflammatory parameters of obese rats. Food Res. Int. 2023, 164, 112391. [Google Scholar] [CrossRef]
- Sibel, S.; Enis, Y.M.; Hüseyin, S.; Timucin, A.A.; Duran, O. Analysis of grayanatoxin in Rhododendron honey and effect on antioxidant parameters in rats. J. Ethnopharmacol. 2014, 156, 155–161. [Google Scholar] [CrossRef]
- Johnston, M.; McBride, M.; Dahiya, D.; Owusu-Apenten, R.; Nigam, P.S. Antibacterial activity of Manuka honey and its components: An overview. AIMS Microbiol. 2018, 4, 655–664. [Google Scholar] [CrossRef]
- Jerković, I.; Radonić, A.; Kranjac, M.; Zekić, M.; Marijanović, Z.; Gudićc, S.; Kliškić, M. Red clover (Trifolium pratense L.) honey: Volatiles chemical-profiling and unlocking antioxidant and anticorrosion capacity. Chem. Pap. 2016, 70, 726–736. [Google Scholar] [CrossRef]
- Stephens, J.M.; Schlothauer, R.C.; Morris, B.D.; Yang, D.; Fearnley, L.; Greenwood, D.R.; Loomes, K.M. Phenolic compounds and methylglyoxal in some New Zealand manuka and kanuka honeys. Food Chem. 2010, 120, 78–86. [Google Scholar] [CrossRef]
- Das, A.; Datta, S.; Mukherjee, S.; Bose, S.; Ghosh, S.; Dhar, P. Evaluation of antioxidative, antibacterial and probiotic growth stimulatory activities of Sesamum indicum honey containing phenolic compounds and lignans. LWT-Food Sci. Technol. 2015, 61, 244–250. [Google Scholar] [CrossRef]
- Samat, S.; Enchang, F.K.; Hussein, F.N.; Ismail, W.I.W. Four-Week Consumption of Malaysian Honey Reduces Excess Weight Gain and Improves Obesity-Related Parameters in High Fat Diet Induced Obese Rats. Evid.-Based Complement. Altern. Med. eCAM 2017, 2017, 1342150. [Google Scholar] [CrossRef] [PubMed]
- Moini Jazani, A.; Arabzadeh, A.; Haghi-Aminjan, H.; Azgomi, R.N.D. The role of ginseng derivatives against chemotherapy-induced cardiotoxicity: A systematic review of non-clinical studies. Front. Cardiovasc. Med. 2023, 10, 1022360. [Google Scholar] [CrossRef]
- Jakobušić Brala, C.; Marković, A.K.; Kugić, A.; Torić, J.; Barbarić, M. Combination chemotherapy with selected polyphenols in preclinical and clinical studies—An update overview. Molecules 2023, 28, 3746. [Google Scholar] [CrossRef]
- Famurewa, A.C.; Ekeleme-Egedigwe, C.A.; Onwe, C.S.; Egedigwe, U.O.; Okoro, C.O.; Egedigwe, U.J.; Asogwa, N.T. Ginger juice prevents cisplatin-induced oxidative stress, endocrine imbalance and NO/iNOS/NF-κB signalling via modulating testicular redox-inflammatory mechanism in rats. Andrologia 2020, 52, e13786. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.-Y.; Wang, F.-X.; Jia, K.-K.; Kong, L.-D. Natural Product Interventions for Chemotherapy and Radiotherapy-Induced Side Effects. Front. Pharmacol. 2018, 9, 1253. [Google Scholar] [CrossRef]
- Friend, A.J.; Rubagumya, F.; Cartledge, P.T. Global Health Journal Club: Is Honey Effective as a Treatment for Chemotherapy-induced Mucositis in Paediatric Oncology Patients? J. Trop. Pediatr. 2018, 64, 162–168. [Google Scholar] [CrossRef]
- Ibrahim, A.; Eldaim, M.A.A.; Abdel-Daim, M.M. Nephroprotective effect of bee honey and royal jelly against subchronic cisplatin toxicity in rats. Cytotechnology 2016, 68, 1039–1048. [Google Scholar] [CrossRef] [PubMed]
- Bhalchandra, W.; Alqadhi, Y.A. Administration of honey and royal jelly ameliorate cisplatin induced changes in liver and kidney function in rat. Biomed. Pharmacol. J. 2018, 11, 2191–2199. [Google Scholar]
- Alhumaydhi, F.A. Biochemical studies on the protective effect of honey against doxorubicin-induced toxicity in BALB/C mice. Int. J. Health Sci. 2020, 14, 31. [Google Scholar]
- Ganash, M.A.; Mujallid, M.I.; Al-Robai, A.A.; Bazzaz, A.A. Cytoprotectivity of the natural honey against the toxic effects of Doxorubicin in mice. Adv. Biosci. Biotechnol. 2014, 5, 252–260. [Google Scholar] [CrossRef]
- El Kutry, M.S. Potential Protection Effect of Using Honey, Ginger, and Turmeric as a Natural Treatment against Chemotherapy of Intestinal Toxicity. J. Biol. Act. Prod. Nat. 2020, 10, 86–99. [Google Scholar] [CrossRef]
- Abdelhafiz, H.A.; El-kott, A.F.; Elesh, M.R. Hepatoprotective effect of royal jelly against cisplatin-induced biochemical, oxidative stress, anti-oxidants and histopathological abnormalities. Adv. Life Sci. Technol. 2014, 27, 28–38. [Google Scholar]
- Osama, H.; Abdullah, A.; Gamal, B.; Emad, D.; Sayed, D.; Hussein, E.; Mahfouz, E.; Tharwat, J.; Sayed, S.; Medhat, S.; et al. Effect of Honey and Royal Jelly against Cisplatin-Induced Nephrotoxicity in Patients with Cancer. J. Am. Coll. Nutr. 2017, 36, 342–346. [Google Scholar] [CrossRef]
- Hussein, S.Z.; Mohd Yusoff, K.; Makpol, S.; Mohd Yusof, Y.A. Gelam Honey Attenuates Carrageenan-Induced Rat Paw Inflammation via NF-κB Pathway. PLoS ONE 2013, 8, e72365. [Google Scholar] [CrossRef]
- Xu, J.-L.; Xia, R.; Sun, Z.-H.; Sun, L.; Min, X.; Liu, C.; Zhang, H.; Zhu, Y.-M. Effects of honey use on the management of radio/chemotherapy-induced mucositis: A meta-analysis of randomized controlled trials. Int. J. Oral Maxillofac. Surg. 2016, 45, 1618–1625. [Google Scholar] [CrossRef]
- Rashad, U.M.; Al-Gezawy, S.M.; El-Gezawy, E.; Azzaz, A.N. Honey as topical prophylaxis against radiochemotherapy-induced mucositis in head and neck cancer. J. Laryngol. Otol. 2008, 123, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Gong, G.; Jin, E.; Han, X.; Zhuo, Y.; Yang, S.; Song, B.; Zhang, Y.; Piao, C. Topical application of honey in the management of chemo/radiotherapy-induced oral mucositis: A systematic review and network meta-analysis. Int. J. Nurs. Stud. 2019, 89, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Kurniawan, A.R.; Sampepajung, D.; Syamsu, S.A.; Prihantono, P. Effectiveness of Dorsata Honey Suplement on Interleukin-3 Levels in Breast Cancer Patients Who Underwent Chemotherapy. Indian J. Public Health Res. Dev. 2020, 11, 947. [Google Scholar] [CrossRef]
- Mohamed, W.R.; Kotb, A.S.; Abd El-Raouf, O.M.; Mohammad Fikry, E. Apigenin alleviated acetaminophen-induced hepatotoxicity in low protein-fed rats: Targeting oxidative stress, STAT3, and apoptosis signals. J. Biochem. Mol. Toxicol. 2020, 34, e22472. [Google Scholar] [CrossRef]
- Rafiee, Z.; Moaiedi, M.Z.; Gorji, A.V.; Mansouri, E. p-Coumaric Acid Mitigates Doxorubicin-Induced Nephrotoxicity Through Suppression of Oxidative Stress, Inflammation and Apoptosis. Arch. Med. Res. 2020, 51, 32–40. [Google Scholar] [CrossRef]
- Mohamed, H.K.; Mobasher, M.A.; Ebiya, R.A.; Hassen, M.T.; Hagag, H.M.; El-Sayed, R.; Abdel-Ghany, S.; Said, M.M.; Awad, N.S. Anti-Inflammatory, Anti-Apoptotic, and Antioxidant Roles of Honey, Royal Jelly, and Propolis in Suppressing Nephrotoxicity Induced by Doxorubicin in Male Albino Rats. Antioxidants 2022, 11, 1029. [Google Scholar] [CrossRef]
- Syam, Y.; Prihantono, P.; Majid, S.; Sjattar, E.L.; Kana, M.; Usman, A.N. The effect of apis Dorsata honey as a complementary therapy to interleukin-6 (IL-6) levels and T lymphocytes of post-chemotherapy breast cancer patients. Breast Dis. 2021, 40, S97–S101. [Google Scholar] [CrossRef]
- Zidan, J.; Shetver, L.; Gershuny, A.; Abzah, A.; Tamam, S.; Stein, M.; Friedman, E. Prevention of chemotherapy-induced neutropenia by special honey intake. Med. Oncol. 2006, 23, 549–552. [Google Scholar] [CrossRef]
- Hao, S.; Ji, L.; Wang, Y. Effect of Honey on Pediatric Radio/Chemotherapy-Induced Oral Mucositis (R/CIOM): A Systematic Review and Meta-Analysis. Evid.-Based Complement. Altern. Med. eCAM 2022, 2022, 6906439. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yin, Y.; Simons, A.; Francisco, N.M.; Wen, F.; Patil, S. Use of Honey in the Management of Chemotherapy-Associated Oral Mucositis in Paediatric Patients. Cancer Manag. Res. 2022, 14, 2773–2783. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bose, D.; Famurewa, A.C.; Akash, A.; Othman, E.M. The Therapeutic Mechanisms of Honey in Mitigating Toxicity from Anticancer Chemotherapy Toxicity: A Review. J. Xenobiot. 2024, 14, 1109-1129. https://doi.org/10.3390/jox14030063
Bose D, Famurewa AC, Akash A, Othman EM. The Therapeutic Mechanisms of Honey in Mitigating Toxicity from Anticancer Chemotherapy Toxicity: A Review. Journal of Xenobiotics. 2024; 14(3):1109-1129. https://doi.org/10.3390/jox14030063
Chicago/Turabian StyleBose, Debalina, Ademola C. Famurewa, Aman Akash, and Eman M. Othman. 2024. "The Therapeutic Mechanisms of Honey in Mitigating Toxicity from Anticancer Chemotherapy Toxicity: A Review" Journal of Xenobiotics 14, no. 3: 1109-1129. https://doi.org/10.3390/jox14030063
APA StyleBose, D., Famurewa, A. C., Akash, A., & Othman, E. M. (2024). The Therapeutic Mechanisms of Honey in Mitigating Toxicity from Anticancer Chemotherapy Toxicity: A Review. Journal of Xenobiotics, 14(3), 1109-1129. https://doi.org/10.3390/jox14030063