Internal Cumulated Dose of Toxic Metal(loid)s in a Population Residing near Naturally Occurring Radioactive Material Waste Stacks and an Industrial Heavily Polluted Area with High Mortality Rates in Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Study Population
2.3. Toenail Sampling, Laboratory Analyses, and Calibration
2.4. Statistical and Spatial Analyses
3. Results
3.1. Descriptive Statistics Analysis
3.2. Spearman Correlation Coefficient Analysis and Principal Component Analysis (PCA)
3.3. Spatial Variability
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nieto, J.M.; Sarmiento, A.S.; Olías, M.; Canovas, C.R.; Riba, I.; Kalman, J.; Delvalls, T.A. Acid mine drainage pollution in the Tinto and Odiel rivers (Iberian Pyrite Belt, SW Spain) and bioavailability of the transported metals to the Huelva Estuary. Environ. Int. 2020, 33, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Torre, B.M.; Borrero-Santiago, A.R.; Fabbri, E.; Guerra, R. Trace metal levels and toxicity in the Huelva Estuary (Spain): A case study with comparisons to historical levels from the past decades. Environ. Chem. Ecotox. 2019, 1, 12–18. [Google Scholar] [CrossRef]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef] [PubMed]
- Forghani Tehrani, G.; Rubinos, D.A.; Kelm, U.; Ghadimi, S. Environmental and human health risks of potentially harmful elements in mining-impacted soils: A case study of the Angouran Zn–Pb Mine, Iran. J. Environ. Manag. 2023, 334, 117470. [Google Scholar] [CrossRef]
- Alguacil, J.; Ballester, F.; Donado-Campos, J.; Pollán, M.; Rodríguez-Artalejo, F. Dictamen Realizado por Encargo del Defensor del Pueblo Andaluz Sobre El Exceso de Mortalidad y Morbilidad Detectado en Varias Investigaciones en La Ría de Huelva; Grupo de Trabajo de la Sociedad Española de Epidemiología: Seville, Spain, 2014; Available online: https://www.defensordelpuebloandaluz.es/informe-epidemiologico-ria-de-huelva (accessed on 15 September 2024).
- Benach, J.; Yasui, Y.; Borrell, C.; Rosa, E.; Pasarín, M.I.; Benach, N.; Español, E.; Martínez, J.M.; Daponte, A. Examining geographic patterns of mortality: The Atlas of mortality in small areas in Spain (1987–1995). Eur. J. Public Health 2003, 13, 115–123. [Google Scholar] [CrossRef] [PubMed]
- López-Abente, G.; Aragones, N.; Ramis, R.; Hernandez-Barrera, V.; Perez-Gomez, B.; Escolar- Pujolar, A.; Pollan, M. Municipal distribution of bladder cancer mortality in Spain: Possible role of mining and industry. BMC Public Health 2006, 6, 17. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Beneito, M.A.; Botella-Rocamora, P.; Corpas-Burgos, F.; Vergara-Hernández, C.; Pérez-Panadés, J.; Perpiñán-Fabuel, H. Atlas Nacional de Mortalidad en España (ANDEES); Fundación FISABIO y Dirección General de Salud Pública de la Generalitat Valenciana: Valencia, Spain, 2024; Available online: http://andees.fisabio.san.gva.es/ (accessed on 25 September 2024).
- Environmental Restoration Project of the Huelva Phosphogypsum Stacks (RESTORE2030). Available online: https://restore2030.com/ (accessed on 23 June 2024).
- Aguilera, I.; Daponte, A.; Gil, F.; Hernández, A.F.; Godoy, P.; Pla, A.; Ramos, J.L.; DASAHU group. Biomonitoring of urinary metals in a population living in the vicinity of industrial sources: A comparison with the general population of Andalusia, Spain. Sci. Total Environ. 2008, 407, 669–678. [Google Scholar] [CrossRef] [PubMed]
- Middleton, D.R.S.; Watts, M.J.; Lark, M.R.; Milne, C.J.; Polya, D.A. Assessing urinary flow rate, creatinine, osmolality and other hydration adjustment methods for urinary biomonitoring using NHANES arsenic, iodine, lead and cadmium data. Environ. Health 2016, 15, 68–81. [Google Scholar] [CrossRef] [PubMed]
- Wongsasuluk, P.; Chotpantarat, S.; Siriwong, W.; Robson, M. Using urine as a biomarker in human exposure risk associated with arsenic and other heavy metals contaminating drinking groundwater in intensively agricultural areas of Thailand. Environ. Geochem. Health 2018, 40, 323–348. [Google Scholar] [CrossRef]
- Bencko, V. Use of human hair as a biomarker in the assessment of exposure to pollutants in occupational and environmental settings. Toxicology 1995, 101, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-González, E.; Garcia-Esquinas, E.; Fernadez de Larrea-Baz, N.; Salcedo-Bellido, I.; Navas-Acien, A.; Lope, V.; Gomez-Ariza, J.L.; Pastor, R.; Pollan, M.; Perez-Gomez, B. Toenails as a biomarker to essential trace metals: A review. Environ. Res. 2019, 179, 108787. [Google Scholar] [CrossRef] [PubMed]
- Salcedo-Bellido, I.; Gutiérrez-González, E.; García-Esquinas, E.; Fernández de Larrea-Baz, N.; Navas-Acien, A.; Téllez-Plaza, M.; Pastor-Barriuso, R.; Lope, V.; Gómez-Ariza, J.L.; García-Barrera, T.; et al. Toxic metals in toenails as biomarkers of exposure: A review. Environ. Res. 2021, 197, 111028. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, K.; Morita, M.; Quan, H.; Uehiro, T.; Fuwa, K. Preparation and certification of human hair powder reference material. Clin. Chem. 1986, 31, 1592–1597. [Google Scholar] [CrossRef]
- Sukumar, A. Human Nails as a Biomarker of Element Exposure. In Reviews of Environmental Contamination and Toxicology; Ware, G.W., Nigg, H.N., Doerge, D.R., Eds.; Springer: New York, NY, USA, 2006; Volume 185. [Google Scholar] [CrossRef]
- Garland, M.; Morris, J.S.; Rosner, B.A.; Stampfer, M.J.; Spate, V.L.; Baskett, C.J.; Willett, W.C.; Hunter, D.J. Toenail trace element levels as biomarkers: Reproducibility over a 6-year period. Cancer Epidemiol. Biomark. Prev. 1993, 2, 493–497. [Google Scholar]
- Webster, R.; Oliver, M. Geostatistics for Environmental Scientists; John Willey and Sons, Ltd.: New York, NY, USA, 2001. [Google Scholar] [CrossRef]
- Michael, R.; O’Lenick, C.R.; Monaghan, A.; Wilhelmi, O.; Wiedinmyer, C.; Hayden, M.; Estes, M. Application of geostatistical approaches to predict the spatio-temporal distribution of summer ozone in Houston, Texas. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 806–820. [Google Scholar] [CrossRef] [PubMed]
- Shit, P.K.; Bhunia, G.S.; Maiti, R. Spatial analysis of soil properties using GIS based geostatistics models. Model. Earth Syst. Environ. 2016, 2, 107. [Google Scholar] [CrossRef]
- Zierold, K.M.; Myers, J.V.; Brock, G.N.; Sears, C.G.; Sears, L.L.; Zhang, C.H. Nail Samples of Children Living near Coal Ash Storage Facilities Suggest Fly Ash Exposure and Elevated Concentrations of Metal(loid)s. Environ. Sci. Technol. 2021, 55, 9074–9086. [Google Scholar] [CrossRef] [PubMed]
- Contreras-Llanes, M.; Santos-Sánchez, V.; Alguacil, J.; Castillo, J.M. Delineating distinct sediment pollution signatures from diverse sources in a heavily contaminated estuary near an area of high cancer and cardiovascular mortality. Sci. Total Environ. 2024, 957, 177715. [Google Scholar] [CrossRef] [PubMed]
- Leistel, J.M.; Marcoux, E.; Thieblemont, D.; Quesada, C.; Sanchez, A.; Almodovar, G.R.; Pascual, E.; Saez, R. The volcanic-hosted massive sulphide deposits of the Iberian Pyrite Belt. Miner. Deposita 1998, 33, 2–30. [Google Scholar] [CrossRef]
- Pérez-López, R.; Millán-Becerro, R.; Basallote, M.D.; Carrero, S.; Parviainen, A.; Freydier, R.; Macías, F.; Cánovas, C.R. Effects of estuarine water mixing on the mobility of trace elements in acid mine drainage leachates. Mar. Pollut. Bull. 2023, 187, 114491. [Google Scholar] [CrossRef] [PubMed]
- Blasco, J.; Sáenz, V.; Gómez-Parra, A. Heavy metal fluxes at the sediment–water interface of three coastal ecosystems from south-west of the Iberian Peninsula. Sci. Total Environ. 2000, 247, 189–199. [Google Scholar] [CrossRef]
- Santos Bermejo, J.C.; Beltrán, R.; Gómez Ariza, J.L. Spatial variations of heavy metals contamination in sediments from Odiel river (Southwest Spain). Environ. Int. 2003, 29, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Barba-Brioso, C.; Fernández-Caliani, J.C.; Miras, A.; Cornejo, J.; Galán, E. Multi-source water pollution in a highly anthropized wetland system associated with the estuary of Huelva (SW Spain). Mar. Pollut. Bull. 2010, 60, 1259–1269. [Google Scholar] [CrossRef]
- Rosado, D.; Usero, J.; Morillo, J. Assessment of heavy metals bioavailability and toxicity toward Vibrio fischeri in sediment of the Huelva estuary. Chemosphere 2016, 153, 7–10. [Google Scholar] [CrossRef]
- Sainz, A.; Grande, J.A.; de la Torre, M.L. Characterisation of heavy metal discharge into the Ria of Huelva. Environ. Int. 2004, 30, 557–566. [Google Scholar] [CrossRef] [PubMed]
- Davila, J.M.; Sarmiento, A.M.; Santisteban, M.; Luís, A.T.; Fortes, J.C.; Diaz-Curiel, J.; Valbuena, C.; Grande, J.A. The UNESCO national biosphere reserve (Marismas del Odiel, SW Spain): An area of 18,875 ha affected by mining waste. Environ. Sci. Pollut. Res. 2019, 26, 33594–33606. [Google Scholar] [CrossRef]
- Contreras-Llanes, M.; Pérez-López, R.; Gázquez, M.J.; Morales, V.; Santos, A.; Esquivias, L.M.; Bolívar, J.P. Fractionation and fluxes of metals and radionuclides during the recycling process of phosphogypsum wastes applied to mineral CO2 sequestration. Waste Manag. 2015, 45, 412–419. [Google Scholar] [CrossRef]
- Rentería-Villalobos, M.; Vioque, I.; Mantero, J.; Manjón, G. Radiological, chemical and morphological characterizations of phosphate rock and phosphogypsum from phosphoric acid factories in SW Spain. J. Hazard. Mater. 2010, 181, 193–203. [Google Scholar] [CrossRef]
- Contreras, M. Valorisation of Inorganic Waste for Obtaining Construction Materials. Ph.D. Thesis, University of Huelva, Huelva, Spain, 19 July 2017. Available online: http://hdl.handle.net/10272/16090 (accessed on 2 September 2024).
- Silva, L.F.O.; Oliveira, M.L.S.; Crissien, T.J.; Santosh, M.; Bolivar, J.P.; Shao, L.; Dotto, G.L.; Gasparotto, J.; Schindler, M. A review on the environmental impact of phosphogypsum and potential health impacts through the release of nanoparticles. Chemosphere 2022, 286, 131513. [Google Scholar] [CrossRef]
- Lieberman, R.N.; Izquierdo, M.; Córdoba, P.; Moreno Palmerola, N.; Querol, X.; Sánchez de la Campa, A.M.; Font, O.; Cohen, H.; Knop, Y.; Torres-Sánchez, R.; et al. The evolution of brines from phosphogypsum deposits in Huelva (SW Spain) and its environmental implications. Sci. Total Environ. 2020, 700, 134444. [Google Scholar] [CrossRef] [PubMed]
- Pérez-López, R.; Nieto, J.M.; López-Coto, I.; Aguado, J.L.; Bolívar, J.P.; Santisteban, M. Dynamics of contaminants in phosphogypsum of the fertilizer industry of Huelva (SW Spain): From phosphate rock ore to the environment. Appl. Geochem. 2010, 25, 705–715. [Google Scholar] [CrossRef]
- International Atomic Energy Agency (IAEA). Safety Standards Series. Application of the Concepts of Exclusion Exemption and Clearance, Safety Guide; No. RS-G 17, STI/PUB/1202; IAEA: Vienna, Austria, 2004. [Google Scholar]
- Castaño-Vinyals, G.; Aragonés, N.; Pérez-Gómez, B.; Martín, V.; Llorca, J.; Moreno, V.; Altzibar, J.M.; Ardanaz, E.; de Sanjosé, S.; Jiménez-Moleón, J.J.; et al. Population-based multicase-control study in common tumors in Spain (MCC-Spain): Rationale and study design. Gac. Sanit. 2015, 29, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-González, E.; Fernández-Navarro, P.; Pastor-Barriuso, R.; García-Pérez, J.; Castaño-Vinyals, G.; Martín-Sánchez, V.; Amiano, P.; Gómez-Acebo, I.; Guevara, M.; Fernández-Tardón, G.; et al. Toenail zinc as a biomarker: Relationship with sources of environmental exposure and with genetic variability in MCC-Spain study. Environ. Int. 2022, 169, 107525. [Google Scholar] [CrossRef]
- Thomsen, V.; Schatzlein, D.; Mercuro, D. Limits of detection in spectroscopy. Spectroscopy 2003, 18, 112–114. [Google Scholar]
- Paz-González, A.; Vieira, S.R.; Tabeada, M.T. The effect of cultivation on the spatial variability of selected properties of an umbric horizon. Geoderma 2000, 97, 273–292. [Google Scholar] [CrossRef]
- Demir, S.; Saral, A.; Ertürk, F.; Kuzu, L. Combined Use of Principal Component Analysis (PCA) and Chemical Mass Balance (CMB) for Source Identification and Source Apportionment in Air Pollution Modeling Studies. Water Air Soil Pollut. 2010, 212, 429–439. [Google Scholar] [CrossRef]
- Cui, Z.; Qiao, S.; Bao, Z.; Wu, N. Contamination and distribution of heavy metals in urban and suburban soils in Zhangzhou City, Fujian, China. Environ. Earth Sci. 2011, 64, 1607–1615. [Google Scholar] [CrossRef]
- Alastuey, A.; Querol, X.; Plana, F.; Viana, M.; Ruiz, C.R.; Sanchez de la Campa, A.; de la Rosa, J.; Mantilla, E.; García dos Santos, S. Identification and chemical characterization of industrial particulate matter sources in southwest Spain. J. Air Waste Manag. Assoc. 2006, 56, 993–1006. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Stein, A.F.; Castell, N.; González-Castanedo, Y.; Sánchez de la Campa, A.M.; de la Rosa, J.D. Modeling and evaluation of urban pollution events of atmospheric heavy metals from a large Cu-smelter. Sci. Total Environ. 2016, 539, 17–25. [Google Scholar] [CrossRef]
- González-Castanedo, Y.; Moreno, T.; Fernández-Camacho, R.; Sánchez de la Campa, A.M.; Alastuey, A.; Querol, X.; de la Rosa, J. Size distribution and chemical composition of particulate matter stack emissions in and around a copper smelter. Atmos. Environ. 2014, 98, 271–282. [Google Scholar] [CrossRef]
- Querol, X.; Alastue, A.; de la Rosa, J.; Sánchez-de-la-Campa, A.; Plana, F.; Ruiz, C.R. Source apportionment analysis of atmospheric particulates in an industrialised urban site in southwestern Spain. Atmos. Environ. 2002, 36, 3113–3125. [Google Scholar] [CrossRef]
- Sánchez de la Campa, A.M.; de la Rosa, J.; Querol, X.; Alastuey, A.; Mantilla, E. Geochemistry and origin of PM10 in the Huelva region, southwestern Spain. Environ. Res. 2007, 103, 305–316. [Google Scholar] [CrossRef]
- Sánchez de la Campa, A.M.; Sánchez-Rodas, D.; González Castanedo, Y.; de la Rosa, J.D. Geochemical anomalies of toxic elements and arsenic speciation in airborne particles from Cu mining and smelting activities: Influence on air quality. J. Hazard. Mater. 2015, 291, 8–27. [Google Scholar] [CrossRef] [PubMed]
- Sánchez de la Campa, A.M.; Sánchez-Rodas, D.; Alsioufi, L.; Alastuey, A.; Querol, X.; de la Rosa, J.D. Air quality trends in an industrialised area of SW Spain. J. Clean. Prod. 2018, 186, 465–474. [Google Scholar] [CrossRef]
- Bechtold, P.; Gatti, M.G.; Quattrini, G.; Ferrari, A.; Barbieri, G.; Iacuzio, L.; Carrozzi, G.; Righi, E. Trace elements in toenails in a population living near a modern municipal solid waste incinerator in Modena (Italy). Chemosphere 2021, 263, 128292. [Google Scholar] [CrossRef] [PubMed]
- Butler, L.; Gennings, C.; Peli, M.; Borgese, L.; Placidi, D.; Zimmerman, N.; Hsu, H.L.; Coull, B.A.; Wright, R.O.; Smith, D.R.; et al. Assessing the contributions of metals in environmental media to exposure biomarkers in a region of ferroalloy industry. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 674–687. [Google Scholar] [CrossRef] [PubMed]
- Coelho, P.; Costa, S.; Costa, C.; Silva, S.; Walter, A.; Ranville, J.; Pastorinho, M.R.; Harrington, C.; Taylor, A.; Dall’Armi, V.; et al. Biomonitoring of several toxic metal(loid)s in different biological matrices from environmentally and occupationally exposed populations from Panasqueira mine area, Portugal. Environ. Geochem. Health 2014, 36, 255–269. [Google Scholar] [CrossRef] [PubMed]
- Nakaona, L.; Maseka, K.K.; Hamilton, E.M.; Watts, M.J. Using human hair and nails as biomarkers to assess exposure of potentially harmful elements to populations living near mine waste dumps. Environ. Geochem. Health 2020, 42, 1197–1209. [Google Scholar] [CrossRef]
- Przybylowicz, A.; Chesy, P.; Herman, M.; Parczewski, A.; Walas, S.; Piekoszewski, W. Examination of distribution of trace elements in hair, fingernails and toenails as alternative biological materials. Application of chemometric methods. Cent. Eur. J. Chem. 2012, 10, 1590–1599. [Google Scholar] [CrossRef]
- Rashed, M.N.; Hossam, F. Heavy Metals in Fingernails and Scalp Hair of Children, Adults and Workers from Environmentally Exposed Areas at Aswan, Egypt. Environ. Bioindic. 2007, 2, 131–145. [Google Scholar] [CrossRef]
- Slotnick, M.J.; Nriagu, J.O.; Johnson, M.M.; Linder, A.M.; Savoie, K.L.; Jamil, H.J.; Hammad, A.S. Profiles of trace elements in toenails of Arab-Americans in the Detroit area, Michigan. Biol. Trace Elem. Res. 2005, 107, 113–126. [Google Scholar] [CrossRef] [PubMed]
- Sureda, A.; Bibiloni, M.D.M.; Julibert, A.; Aparicio-Ugarriza, R.; Palacios-Le Blé, G.; Pons, A.; Gonzalez-Gross, M.; Tur, J.A. Trace element contents in toenails are related to regular physical activity in older adults. PLoS ONE 2017, 12, e0185318. [Google Scholar] [CrossRef] [PubMed]
- Van Horne, Y.O.; Farzan, S.F.; Johnston, J.E. Metal-mixtures in toenails of children living near an active industrial facility in Los Angeles County, California. J. Expo. Sci. Environ. Epidemiol. 2021, 31, 427–441. [Google Scholar] [CrossRef] [PubMed]
- Di Ciaula, A.; Gentilini, P.; Diella, G.; Lopuzzo, M.; Ridolfi, R. Biomonitoring of Metals in Children Living in an Urban Area and Close to Waste Incinerators. Int. J. Environ. Res. Public Health 2020, 17, 1919. [Google Scholar] [CrossRef] [PubMed]
- Ojekunle, O.Z.; Rasaki, A.; Taiwo, A.M.; Adegoke, K.A.; Balogun, M.A.; Ojekunle, O.O.; Anumah, A.O.; Ibrahim, A.O.; Adeyemi, A. Health risk assessment of heavy metals in drinking water leaching through improperly managed dumpsite waste in Kurata, Ijoko, Sango area of Ogun State, Nigeria. Groundw. Sustain. Dev. 2022, 18, 100792. [Google Scholar] [CrossRef]
- Yoo, Y.C.; Lee, S.K.; Yang, J.Y.; In, S.W.; Kim, K.W.; Chung, K.H.; Chung, K.G.; Choung, S.Y. Organ Distribution of Heavy Metals in Autopsy Material from Normal Korean. J. Health Sci. 2002, 48, 186–194. [Google Scholar] [CrossRef]
- Aguilera, I.; Daponte, A.; Gil, F.; Hernández, A.F.; Godoy, P.; Pla, A.; Ramos, J.L. Urinary levels of arsenic and heavy metals in children and adolescents living in the industrialised area of Ria of Huelva (SW Spain). Environ. Int. 2010, 36, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Barranco, M.; Lacasaña, M.; Gil, F.; Lorca, A.; Alguacil, J.; Rohlman, D.S.; González-Alzaga, B.; Molina-Villalba, I.; Mendoza, R.; Aguilar-Garduño, C. Cadmium exposure and neuropsychological development in school children in southwestern Spain. Environ. Res. 2014, 134, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Capelo, R.; Rohlman, D.S.; Jara, R.; García, T.; Viñas, J.; Lorca, J.A.; Contreras-Llanes, M.; Alguacil, J. Residence in an Area with Environmental Exposure to Heavy Metals and Neurobehavioral Performance in Children 9–11 Years Old: An Explorative Study. Int. J. Environ. Res. Public Health 2022, 19, 4732. [Google Scholar] [CrossRef]
- Silva-Caicedo, R.F.; Contreras-Llanes, M.; Capelo, R.; Zumel-Marne, A.; García-Sevillano, M.Á.; Santos-Sánchez, V.; Alguacil, J. Impact of Fish, Mollusk and Seafood Consumption before Sample Donation on Urinary and Toenail Metal Levels in Workers Exposed to Heavy Metals. Appl. Sci. 2024, 14, 8174. [Google Scholar] [CrossRef]
- Li, F.; Huang, J.; Zeng, G.; Yuan, X.; Li, X.; Liang, J.; Wang, X.; Tang, X.; Bai, B. Spatial risk assessment and sources identification of heavy metals in surface sediments from the Dongting Lake, Middle China. J. Geochem. Explor. 2013, 132, 75–83. [Google Scholar] [CrossRef]
- Taiwo, A.M.; Harrison, R.M.; Shi, Z.B. A review of receptor modelling of industrially emitted particulate matter. Atmos. Environ. 2014, 97, 109–120. [Google Scholar] [CrossRef]
- Adigun, C.G. Nail Reactions to Poisons and Intoxicants. In Scher and Daniel’s Nails; Rubin, A.I., Jellinek, N.J., Daniel, C.R., Scher, R.K., Eds.; Springer: Cham, Switzerland; Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Egwunye, J.; Cardoso, B.R.; Braat, S.; Ha, T.; Hanieh, S.; Hare, D.; Duan, A.X.; Doronila, A.; Tran, T.; Tuan, T.; et al. The role of fingernail selenium in the association between arsenic, lead and mercury and child development in rural Vietnam: A cross-sectional analysis. Br. J. Nutr. 2023, 129, 1589–1597. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Environmental Health Criterion 58—Selenium; World Health Organization: Geneva, Switzerland, 1987; Available online: https://iris.who.int/bitstream/handle/10665/37268/9241542586-eng.pdf?sequence=1&isAllowed=y (accessed on 19 September 2024).
- Sexton, K.; Hattis, D. Assessing cumulative health risks from exposure to environmental mixtures-three fundamental questions. Environ. Health Perspect. 2007, 115, 825–832. [Google Scholar] [CrossRef]
Forward power | 1500 W |
Plasma gas flow | 15 L min−1 |
Auxiliary gas flow 1 L min−1 | 1 L min−1 |
Carrier gas flow | 0.15 L min−1 |
Sampling depth 7 mm | 7 mm |
Sampling and skimmer cones | Ni |
H2 flow 4 | 4 mL min−1 |
Nebuliser | Microflow (ESI) |
Torch | Shield (with long-life platinum shield plate) |
Qoct −18 V | 18 V |
Qp | −16 V |
Points per peak | 1 |
Integration time | 0.3 s per isotope |
Replicates | 1 |
Isotopes monitored for total metals in nail | 27Al, 75As, 114Cd, 59Co, 52Cr, 63Cu, 56Fe, 55Mn, 98Mo, 58Ni, 208Pb, 80Se, 205Tl, 238U, 51V, 64Zn |
Dead time of detector | 47 s |
n a | AM ± SD b | Median | GM (GSD) c | Min | Max | Skewness | Kurtosis | |
---|---|---|---|---|---|---|---|---|
Al | 55 | 50,234.39 ± 26,471.07 | 42,916.47 | 44,229.43 (1.66) | 12,601.90 | 130,583.32 | 1.13 ± 0.32 | 0.86 ± 0.63 |
As | 54 | 241.48 ± 177.86 | 190.91 | 207.50 (1.64) | 99.24 | 1085.34 | 3.09 ± 0.32 | 11.04 ± 0.63 |
Cd | 54 | 19.53 ± 16.61 | 16.23 | 16.11 (1.79) | 3.80 | 111.46 | 3.94 ± 0.32 | 19.01 ± 0.63 |
Co | 55 | 35.65 ± 29.06 | 28.87 | 28.84 (1.87) | 8.47 | 173.57 | 2.97 ± 0.32 | 10.83 ± 0.63 |
Cr | 55 | 2196.15 ± 2442.15 | 1521.12 | 1388.91 (2.71) | 103.50 | 14,195.03 | 2.90 ± 0.32 | 10.89 ± 0.63 |
Cu | 54 | 4735.88 ± 1065,34 | 4663,39 | 4624.11 (1.25) | 2667,66 | 7972.01 | 0.87 ± 0.32 | 1.63 ± 0.63 |
Fe | 55 | 50,132.19 ± 39,323.87 | 35,329.31 | 38,544.96 (2.06) | 11,039.44 | 164,373.54 | 1.49 ± 0.32 | 1.61 ± 0.63 |
Mn | 55 | 870.41 ± 1292.21 | 590.09 | 608.10 (2.12) | 145.97 | 9608.01 | 5.98 ± 0.32 | 40.20 ± 0.63 |
Mo | 55 | 56.76 ± 53.69 | 40.67 | 47.61 (1.68) | 12.59 | 410.53 | 5.52 ± 0.32 | 35.95 ± 0.63 |
Ni | 55 | 3321.51 ± 6407.36 | 2127.67 | 2054.46 (2.37) | 257.05 | 48,325.41 | 6.65 ± 0.32 | 47.21 ± 0.63 |
Pb | 55 | 827.65 ± 894.39 | 579.75 | 657.42 (1.81) | 175.79 | 6486.15 | 5.09 ± 0.32 | 30.64 ± 0.63 |
Se | 55 | 841.40 ± 180.95 | 815.97 | 822.97 (1.24) | 395.14 | 1463.82 | 0.86 ± 0.32 | 2.10 ± 0.63 |
Tl | 55 | 4.49 ± 1.91 | 3.98 | 4.15 (1.49) | 1.60 | 11.57 | 1.44 ± 0.32 | 3.21 ± 0.63 |
U | 52 | 6.46 ± 5.41 | 4.76 | 5.08 (1.94) | 1.24 | 25.16 | 2.17 ± 0.32 | 4.38 ± 0.63 |
V | 55 | 78.41 ± 64.85 | 59.49 | 64.30 (1.80) | 17.84 | 409.82 | 3.25 ± 0.32 | 13.20 ± 0.63 |
Zn | 55 | 106,042.50 ± 28,459.60 | 100,163.44 | 102,480.18 (1.30) | 60,198.53 | 177,989.35 | 0.66 ± 0.32 | −0.19 ± 0.63 |
Mn | V | Al | Fe | Co | U | Zn | Cr | Pb | Cd | As | Cu | Mo | Tl | Se | Ni | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mn | 1 | |||||||||||||||
V | 0.713 ** | 1 | ||||||||||||||
Al | 0.591 ** | 0.696 ** | 1 | |||||||||||||
Fe | 0.777 ** | 0.673 ** | 0.474 ** | 1 | ||||||||||||
Co | 0.564 ** | 0.623 ** | 0.475 ** | 0.514 ** | 1 | |||||||||||
U | 0.471 ** | 0.527 ** | 0.467 ** | 0.386 ** | 0.526 ** | 1 | ||||||||||
Zn | 0.003 | −0.059 | 0.025 | −0.136 | −0.044 | 0.086 | 1 | |||||||||
Cr | 0.394 ** | 0.453 ** | 0.409 ** | 0.405 ** | 0.217 | 0.330 * | 0.286 * | 1 | ||||||||
Pb | 0.461 ** | 0.522 ** | 0.466 ** | 0.336 * | 0.468 ** | 0.443 ** | 0.101 | 0.393 ** | 1 | |||||||
Cd | 0.318 * | 0.321 * | 0.155 | 0.287 * | 0.202 | 0.389 ** | −0.037 | 0.240 | 0.238 | 1 | ||||||
As | −0.035 | −0.020 | −0.177 | 0.023 | 0.077 | −0.008 | −0.018 | −0.117 | −0.024 | 0.216 | 1 | |||||
Cu | 0.459 ** | 0.373 ** | 0.330 * | 0.296 * | 0.491 ** | 0.376 ** | 0.168 | 0.256 | 0.440 ** | 0.277 * | 0.096 | 1 | ||||
Mo | 0.334 * | 0.468 ** | 0.253 | 0.408 ** | 0.462 ** | 0.233 | 0.144 | 0.063 | 0.185 | 0.075 | 0.029 | 0.274 * | 1 | |||
Tl | 0.343 * | 0.274 * | 0.175 | 0.216 | 0.361 ** | 0.281 * | 0.064 | 0.089 | 0.288 * | 0.066 | 0.181 | 0.268 * | 0.225 | 1 | ||
Se | 0.002 | −0.147 | −0.148 | −0.042 | 0.071 | 0.151 | 0.169 | −0.082 | −0.104 | −0.102 | 0.245 | 0.241 | 0.095 | 0.135 | 1 | |
Ni | 0.491 ** | 0.334 * | 0.451 ** | 0.301 * | 0.536 ** | 0.285 * | −0.200 | 0.139 | 0.275 * | −0.017 | −0.264 | 0.254 | 0.141 | 0.217 | −0.074 | 1 |
PC1 | PC2 | PC3 | PC4 | PC5 | PC6 | |
---|---|---|---|---|---|---|
Mn | 0.880 | 0.005 | 0.093 | −0.043 | 0.050 | −0.015 |
V | 0.845 | −0.055 | 0.115 | 0.368 | −0.014 | −0.088 |
Al | 0.773 | 0.151 | −0.124 | −0.019 | −0.120 | 0.049 |
Fe | 0.762 | 0.103 | 0.034 | 0.244 | −0.105 | −0.072 |
Co | 0.724 | −0.093 | 0.112 | 0.081 | −0.040 | 0.273 |
U | 0.703 | 0.176 | 0.005 | −0.013 | 0.234 | −0.056 |
Zn | −0.088 | 0.800 | 0.046 | −0.047 | −0.001 | −0.127 |
Cr | 0.224 | 0.652 | −0.062 | −0.007 | 0.122 | −0.124 |
Pb | 0.108 | 0.530 | 0.152 | 0.117 | −0.517 | 0.271 |
Cd | −0.041 | 0.078 | 0.821 | −0.066 | −0.098 | −0.064 |
As | 0.112 | −0.093 | 0.794 | 0.029 | 0.190 | −0.092 |
Cu | 0.320 | 0.323 | 0.453 | 0.268 | 0.270 | 0.326 |
Mo | 0.080 | −0.152 | 0.069 | 0.902 | −0.088 | −0.116 |
Tl | 0.208 | 0.204 | −0.137 | 0.545 | 0.257 | 0.164 |
Se | −0.030 | 0.110 | 0.156 | 0.077 | 0.888 | 0.037 |
Ni | −0.022 | −0.200 | −0.141 | −0.039 | −0.023 | 0.841 |
Eigenvalues | 4.318 | 1.793 | 1.537 | 1.246 | 1.145 | 1.028 |
Total of variance (%) | 26.99 | 11.20 | 9.61 | 7.79 | 7.16 | 6.43 |
Cumulative variance (%) | 26.99 | 38.19 | 47.80 | 55.58 | 62.74 | 69.17 |
Researchers | Biological Sample; n a | Study Area and Sources | Al | As | Cd | Co | Cr | Cu | Fe | Mn | Mo | Ni | Pb | Se | Tl | U | V | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Our study | Toenails; n = 55 | People living close to an extremely polluted estuary in Huelva, Spain | 50.2 | 0.24 | 0.02 | 0.04 | 2.195 | 4.74 | 50.1 | 0.87 | 0.06 | 3.32 | 0.83 | 0.84 | 0.005 | 0.007 | 0.08 | 106.0 |
Bechtold et al., 2020 [52] | Toenails; n = 489 | Population living near a municipal solid waste incinerator in Modena (Italy) | N.M. | N.M. | 0.02 ± 0.02 | N.M. | 1.33 ± 2.92 | 4.10 ± 3.4 | N.M. | N.M. | 0.39 ± 0.57 | 1.04 ± 3.08 | 0.86 ± 1.48 | 0.49 ± 0.09 | N.M. | N.M. | N.M. | 95.6 ± 34.6 |
Butler et al., 2019 [53] | Toenails; n = 521 | A region with ferroalloy industry in Brescia, Italy | 70 | N.M. | N.M. | N.M. | 0.15 | 2.66 | N.M. | 0.19 | N.M. | N.M. | 0.10 | N.M. | N.M. | N.M. | N.M. | 110 |
Coelho et al., 2014 [54] | Toenails; n = 122 | Villages near the Panasqueira mine, in central Portugal | N.M. | 0.65 ± 0.56 | 0.05 ± 0.04 | N.M. | 2.17 ± 2.41 | N.M. | N.M. | 2.84 ± 3.17 | N.M. | 4.12 ± 9.20 | 1.25 ± 1.33 | 0.63 ± 0.35 | N.M. | N.M. | N.M. | 136.49 ± 80.72 |
Di Ciaula et al., 2020 [61] | Toenails; n = 62 | Population living in an urban area and close to waste incinerators in Forlì, Italy | 166.48 ± 50.42 | 0.01 ± 0.01 | 0.03 ± 0.004 | 0.04 ± 0.04 | 4.82 ± 3.88 | 6.34 ± 0.70 | 360.08 ± 126.57 | 4.40 ± 1.23 | 0.00 | 2.23 ± 1.51 | 0.32 ± 0.13 | 0.01 ± 0.005 | 0.00 | 0.00 | 0.19 ± 0.11 | 96.27 ± 9.42 |
Nakaona et al., 2020 [55] | Toenails; n = 40 | Community living near a mine waste dump in the Zambian Copperbelt | N.M. | N.M. | 0.1 ± 0.002 | 1.0 ± 0.02 | 0.6 ± 0.08 | 29.6 ± 4.8 | N.M. | 12.0 ± 2.02 | N.M. | 1.7 ± 0.14 | 4.8 ± 0.53 | N.M. | N.M. | N.M. | N.M. | 172 ± 27.4 |
Ojekunle et al., 2022 [62] | Toenails; n = 38 | Neighbourhood close to a dumpsite waste in Nigeria | N.M. | N.M. | 2.1 ± 4.5 | 2.9 ± 6.9 | 55.6 ± 35.2 | 95.4 ± 45.4 | N.M. | 108.5 ± 167.8 | N.M. | 156.0 ± 172.9 | 36.6 ± 89.4 | N.M. | N.M. | N.M. | N.M. | 354.3 ± 333.8 |
Przybylowicz et al., 2012 [56] | Toenails; n = 42 | Adults from environmentally exposed areas at living in the same area (Krakow) | N.M. | N.M. | 0.37 ± 0.41 | 0.04 ± 0.06 | 2.44 ± 1.88 | 4.80 ± 1.25 | 42.9 ± 22.4 | N.M. | N.M. | 2.73 ± 1.24 | 0.66 ± 0.15 | N.M. | N.M. | N.M. | N.M. | 121.4 ± 30.4 |
Rashed and Hossam, 2007 [57] | Toenails; n = 115 | Adults from environmentally exposed areas at Aswan, Egypt | N.M. | N.M. | 1.0 ± 0.4 | N.M. | N.M. | 16.2 ± 1.5 | N.M. | N.M. | N.M. | N.M. | 22.3 ± 3.6 | N.M. | N.M. | N.M. | N.M. | 158 ± 22 |
Slotnick et al. 2004 [58] | Toenails; n = 163 | Residing in a highly industrialised Area in Detroit, USA | 26.9 ± 21.6 | 0.10 ± 0.22 | 0.64 ± 0.79 | 0.17 ± 0.86 | 1.91 ± 1.66 | 5.05 ± 4.64 | N.M. | N.M. | 0.60 ± 1.15 | 32.89 ± 68.97 | 0.74 ± 1.23 | 0.82 ± 0.46 | N.M. | N.M. | 0.04 ± 0.04 | N.M. |
Van Horne et al., 2021 [60] | Toenails; n = 95 | Communities near metalworking industries in Los Angeles, USA | N.M. | 0.23 ± 0.20 | 0.05 ± 0.08 | N.M. | N.M. | N.M. | N.M. | 1.72 ± 1.65 | N.M. | N.M. | 0.84 ± 0.89 | 0.94 ± 0.52 | N.M. | N.M. | 0.15 ± 0.13 | N.M. |
Yoo et al., 2002 [63] | Toenails; n = 150 | Distribution of heavy metals in autopsy materials from normal Korean | 176 ± 94 | 10 ± 13 | 0.7 ± 0.9 | N.M. | 2.9 ± 2.9 | 8.8 ± 7.0 | 141 ± 99 | 2.9 ± 2.8 | 1.9 ± 2.5 | 5.5 ± 5.8 | 12 ± 11 | 6.9 ± 7.9 | N.M. | N.M. | 2.7 ± 2.8 | 97 ± 38 |
Di Ciaula et al., 2020 [61] | Toenails; n = 158 | People residing in an unpolluted area in Forlì, Italy | 103.24 ± 11.01 | 0.00 | 0.07 ± 0.02 | 0.00 | 1.28 ± 0.44 | 4.74 ± 0.36 | 164.49 ± 21.06 | 2.47 ± 0.35 | 0.00 | 0.43 ± 0.18 | 0.95 ± 0.47 | 0.01 ± 0.003 | 0.00 | 0.00 | 0.02 ± 0.02 | 95.30 ± 3.09 |
Sureda et al., 2017 [59] | Toenails; n = 100 | Unpolluted area in Mallorca, Spain | N.M | N.M | N.M | 0.01 | 0.55 | N.M | 14.0 | N.M | N.M | 0.99 | N.M | 0.57 | N.M | N.M | N.M | 106.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Contreras-Llanes, M.; Alguacil, J.; Capelo, R.; Gómez-Ariza, J.L.; García-Pérez, J.; Pérez-Gómez, B.; Martin-Olmedo, P.; Santos-Sánchez, V. Internal Cumulated Dose of Toxic Metal(loid)s in a Population Residing near Naturally Occurring Radioactive Material Waste Stacks and an Industrial Heavily Polluted Area with High Mortality Rates in Spain. J. Xenobiot. 2025, 15, 29. https://doi.org/10.3390/jox15010029
Contreras-Llanes M, Alguacil J, Capelo R, Gómez-Ariza JL, García-Pérez J, Pérez-Gómez B, Martin-Olmedo P, Santos-Sánchez V. Internal Cumulated Dose of Toxic Metal(loid)s in a Population Residing near Naturally Occurring Radioactive Material Waste Stacks and an Industrial Heavily Polluted Area with High Mortality Rates in Spain. Journal of Xenobiotics. 2025; 15(1):29. https://doi.org/10.3390/jox15010029
Chicago/Turabian StyleContreras-Llanes, Manuel, Juan Alguacil, Rocío Capelo, José Luis Gómez-Ariza, Javier García-Pérez, Beatriz Pérez-Gómez, Piedad Martin-Olmedo, and Vanessa Santos-Sánchez. 2025. "Internal Cumulated Dose of Toxic Metal(loid)s in a Population Residing near Naturally Occurring Radioactive Material Waste Stacks and an Industrial Heavily Polluted Area with High Mortality Rates in Spain" Journal of Xenobiotics 15, no. 1: 29. https://doi.org/10.3390/jox15010029
APA StyleContreras-Llanes, M., Alguacil, J., Capelo, R., Gómez-Ariza, J. L., García-Pérez, J., Pérez-Gómez, B., Martin-Olmedo, P., & Santos-Sánchez, V. (2025). Internal Cumulated Dose of Toxic Metal(loid)s in a Population Residing near Naturally Occurring Radioactive Material Waste Stacks and an Industrial Heavily Polluted Area with High Mortality Rates in Spain. Journal of Xenobiotics, 15(1), 29. https://doi.org/10.3390/jox15010029