Simulation of the Long-Term Toxicity Towards Bobwhite Quail (Colinus virginianus) by the Monte Carlo Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Optimal Descriptors
2.3. Optimization of Correlation Weights
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Corrêa-Junior, D.; Parente, C.E.T.; Frases, S. Hazards associated with the combined application of fungicides and poultry litter in agricultural areas. J. Xenobiot. 2024, 14, 110–134. [Google Scholar] [CrossRef] [PubMed]
- Moreau, J.; Rabdeau, J.; Badenhausser, I.; Giraudeau, M.; Sepp, T.; Crépin, M.; Gaffard, A.; Bretagnolle, V.; Monceau, K. Pesticide impacts on avian species with special reference to farmland birds: A review. Environ. Monit. Assess. 2022, 194, 790. [Google Scholar] [CrossRef] [PubMed]
- Katagi, T.; Fujisawa, T. Acute toxicity and metabolism of pesticides in birds. J. Pestic. Sci. 2021, 46, 305–321. [Google Scholar] [CrossRef]
- Aagaard, A.; Berny, P.; Chaton, P.F.; Antia, A.L.; McVey, E.; Arena, M.; Fait, G.; Ippolito, A.; Linguadoca, A.; Sharp, R.; et al. Guidance on the risk assessment for birds and mammals. EFSA J. 2023, 21, 300. [Google Scholar] [CrossRef]
- Commission Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC. Available online: http://data.europa.eu/eli/reg/2006/1907/2024-10-10 (accessed on 20 December 2024).
- Mariyappan, M.; Rajendran, M.; Velu, S.; Johnson, A.D.; Dinesh, G.K.; Solaimuthu, K.; Kaliyappan, M.; Sankar, M. Ecological Role and Ecosystem Services of Birds: A Review. Int. J. Environ. Clim. Chang. 2023, 13, 76–87. [Google Scholar] [CrossRef]
- Furness, R.W.; Greenwood, J.J.D. (Eds.) Birds as Monitors of Environmental Change; Springer: Dordrecht, The Netherlands, 1993. [Google Scholar] [CrossRef]
- Mohanty, B. Pesticides exposure and compromised fitness in wild birds: Focusing on the reproductive endocrine disruption. Pestic. Biochem. Physiol. 2024, 199, 105800. [Google Scholar] [CrossRef] [PubMed]
- Fry, D.M. Reproductive effects in birds exposed to pesticides and industrial chemicals. Environ. Health Perspect. 1995, 103 (Suppl. 7), 165–171. [Google Scholar] [CrossRef] [PubMed]
- Grace, J.; Duran, E.; Ann Ottinger, M.; Maness, T. Sublethal effects of early-life exposure to common and emerging contaminants in birds. Curr. Res. Toxicol. 2024, 7, 100190. [Google Scholar] [CrossRef]
- Ottinger, M.; Abdelnabi, M.; Henry, P.; Mcgary, S.; Thompson, N.; Wu, J. Neuroendocrine and Behavioral Implications of Endocrine Disrupting Chemicals in Quail. Horm. Behav. 2001, 40, 234–247. [Google Scholar] [CrossRef] [PubMed]
- OECD. Test No. 205: Avian Dietary Toxicity Test, OECD Guidelines for the Testing of Chemicals; Section 2; OECD Publishing: Paris, France, 1984. [Google Scholar] [CrossRef]
- OECD. Test No. 206: Avian Reproduction Test, OECD Guidelines for the Testing of Chemicals; Section 2; OECD Publishing: Paris, France, 1984. [Google Scholar] [CrossRef]
- OECD. Test No. 223: Avian Acute Oral Toxicity Test, OECD Guidelines for the Testing of Chemicals; Section 2; OECD Publishing: Paris, France, 1984. [Google Scholar] [CrossRef]
- Mineau, P. A review and analysis of study endpoints relevant to the assessment of “long term” pesticide toxicity in avian and mammalian wildlife. Ecotoxicology 2005, 14, 775–799. [Google Scholar] [CrossRef]
- Miccoli, A.; Marx-Stoelting, P.; Braeuning, A. The use of NAMs andomics data in risk assessment. EFSA J. 2022, 20, e200908. [Google Scholar] [CrossRef]
- Banjare, P.; Singh, J.; Roy, P.P. Predictive classification-based QSTR models for toxicity study of diverse pesticides on multiple avian species. Environ. Sci. Pollut. Res. 2021, 28, 17992–18003. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Cheng, F.; Sun, L.; Zhuang, S.; Li, W.; Liu, G.; Lee, P.W.; Tang, Y. In silico prediction of chemical toxicity on avian species using chemical category approaches. Chemosphere 2015, 122, 280–287. [Google Scholar] [CrossRef]
- Hengstler, J.G.; Foth, H.; Kahl, R.; Kramer, P.J.; Lilienblum, W.; Schulz, T.; Schweinfurth, H. The REACH concept and its impact on toxicological sciences. Toxicology 2006, 220, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Mazzatorta, P.; Cronin, M.T.D.; Benfenati, E. A QSAR study of avian oral toxicity using support vector machines and genetic algorithms. QSAR Comb. Sci. 2006, 25, 616–628. [Google Scholar] [CrossRef]
- Kar, S.; Leszczynski, J. Is intraspecies QSTR model answer to toxicity data gap filling: Ecotoxicity modeling of chemicals to avian species. Sci. Total Environ. 2020, 738, 139858. [Google Scholar] [CrossRef]
- Basant, N.; Gupta, S.; Singh, K.P. Predicting Toxicities of Diverse Chemical Pesticides in Multiple Avian Species Using Tree-Based QSAR Approaches for Regulatory Purposes. J. Chem. Inf. Model. 2015, 55, 1337–1348. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Kumar, A.; Singh, D. CORAL: Development of a hybrid descriptor based QSTR model to predict the toxicity of dioxins and dioxin-like compounds with correlation intensity index and consensus modelling. Environ. Toxicol. Pharmacol. 2022, 93, 103893. [Google Scholar] [CrossRef]
- Azimi, A.; Ahmadi, S.; Kumar, A.; Qomi, M.; Almasirad, A. SMILES-Based QSAR and Molecular Docking Study of Oseltamivir Derivatives as Influenza Inhibitors. Polycycl. Aromat. Compd. 2023, 43, 3257–3277. [Google Scholar] [CrossRef]
- Weininger, D. SMILES, a Chemical Language and Information System: 1: Introduction to Methodology and Encoding Rules. J. Chem. Inf. Comput. Sci. 1988, 28, 31–36. [Google Scholar] [CrossRef]
- Toropov, A.A.; Toropova, A.P.; Roncaglioni, A.; Benfenati, E. In silico prediction of the mutagenicity of nitroaromatic compounds using correlation weights of fragments of local symmetry. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2023, 891, 503684. [Google Scholar] [CrossRef]
- Toropov, A.A.; Benfenati, E. QSAR models of quail dietary toxicity based on the graph of atomic orbitals. Bioorg. Med. Chem. Lett. 2006, 16, 1941–1943. [Google Scholar] [CrossRef] [PubMed]
- Randić, M.; Pompe, M.; Mills, D.; Basak, S.C. Variable connectivity index as a tool for modeling structure-property relationships. Molecules 2004, 9, 1177–1193. [Google Scholar] [CrossRef]
- Toropov, A.A.; Toropova, A.P.; Benfenati, E. QSAR-modeling of toxicity of organometallic compounds by means of the balance of correlations for InChI-based optimal descriptors. Mol. Divers. 2010, 14, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Drefahl, A. CurlySMILES: A chemical language to customize and annotate encodings of molecular and nanodevice structures. J. Cheminfor. 2011, 3, 1. [Google Scholar] [CrossRef]
- Toropova, A.P.; Toropov, A.A.; Benfenati, E.; Gini, G. Co-evolutions of correlations for QSAR of toxicity of organometallic and inorganic substances: An unexpected good prediction based on a model that seems untrustworthy. Chemom. Intell. Lab. Syst. 2011, 105, 215–219. [Google Scholar] [CrossRef]
- Yuan, B.; Wang, Y.; Zong, C.; Sang, L.; Chen, S.; Liu, C.; Pan, Y.; Zhang, H. Modeling study for predicting altered cellular activity induced by nanomaterials based on Dlk1-Dio3 gene expression and structural relationships. Chemosphere 2023, 335, 139090. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, S.; Lotfi, S.; Hamzehali, H.; Kumar, P. A simple and reliable QSPR model for prediction of chromatography retention indices of volatile organic compounds in peppers. RSC Adv. 2024, 14, 3186–3201. [Google Scholar] [CrossRef] [PubMed]
- Goyal, S.; Rani, P.; Chahar, M.; Hussain, K.; Kumar, P.; Sindhu, J. Quantitative structure activity relationship studies of androgen receptor binding affinity of endocrine disruptor chemicals with index of ideality of correlation, their molecular docking, molecular dynamics and ADME studies. J. Biomol. Struct. Dyn. 2023, 41, 13616–13631. [Google Scholar] [CrossRef] [PubMed]
- Bamdi, F.; Shiri, F.; Ahmadi, S.; Salahinejad, M.; Bazzi-Allahri, F. Optimization of Monte Carlo Method-Based QSPR modeling for lipophilicity in radiopharmaceuticals. Chem. Phys. Lett. 2024, 843, 141239. [Google Scholar] [CrossRef]
- Ahmadi, S.; Lotfi, S.; Azimi, A.; Kumar, P. Multicellular target QSAR models for predicting of novel inhibitors against pancreatic cancer by Monte Carlo approach. Results Chem. 2024, 10, 101734. [Google Scholar] [CrossRef]
- Zivkovic, M.; Zlatanovic, M.; Zlatanovic, N.; Golubović, M.; Veselinović, A.M. A QSAR model for predicting the corneal permeability of drugs—The application of the Monte Carlo optimization method. New J. Chem. 2022, 47, 224–230. [Google Scholar] [CrossRef]
- Tajiani, F.; Ahmadi, S.; Lotfi, S.; Kumar, P.; Almasirad, A. In-silico activity prediction and docking studies of some flavonol derivatives as anti-prostate cancer agents based on Monte Carlo optimization. BMC Chem. 2023, 17, 87. [Google Scholar] [CrossRef]
- Veselinović, J.B.; Đorđević, V.; Bogdanović, M.; Morić, I.; Veselinović, A.M. QSAR modeling of dihydrofolate reductase inhibitors as a therapeutic target for multiresistant bacteria. Struct. Chem. 2018, 29, 541–551. [Google Scholar] [CrossRef]
- Toropov, A.A.; Barnes, D.A.; Toropova, A.P.; Roncaglioni, A.; Irvine, A.R.; Masereeuw, R.; Benfenati, E. CORAL models for drug-induced nephrotoxicity. Toxics 2023, 11, 293. [Google Scholar] [CrossRef] [PubMed]
- Toropova, A.P.; Toropov, A.A.; Benfenati, E.; Leszczynska, D.; Leszczynski, J. QSAR model as a random event: A case of rat toxicity. Bioorganic Med. Chem. 2015, 23, 1223–1230. [Google Scholar] [CrossRef]
Types of Fragments of Local Symmetry | Codes for Calculation of Optimal Descriptor |
---|---|
FLS XYX | |
c(c; (c(; c(c; (c( | [xyx4] |
FLS XYYX | |
Absent | [xyyx0] |
FLS XYZYX | |
c(c(c; (c(c( | [xyzyx2] |
SMILES Attribute | Correlation Weight of SMILES Attribute, CW(x) | NA * | NP | NC |
---|---|---|---|---|
(Sk) | ||||
O........... | −0.4891 | 33 | 31 | 33 |
=........... | −0.1378 | 30 | 25 | 34 |
P........... | 2.5439 | 4 | 2 | 1 |
(........... | −0.2469 | 34 | 33 | 35 |
O........... | −0.4891 | 33 | 31 | 33 |
c........... | −0.2147 | 28 | 30 | 30 |
1........... | 0.5435 | 30 | 32 | 32 |
c........... | −0.2147 | 28 | 30 | 30 |
c........... | −0.2147 | 28 | 30 | 30 |
c........... | −0.2147 | 28 | 30 | 30 |
(........... | −0.2469 | 34 | 33 | 35 |
c........... | −0.2147 | 28 | 30 | 30 |
(........... | −0.2469 | 34 | 33 | 35 |
c........... | −0.2147 | 28 | 30 | 30 |
1........... | 0.5435 | 30 | 32 | 32 |
(........... | −0.2469 | 34 | 33 | 35 |
C........... | 0.0241 | 34 | 33 | 35 |
(........... | −0.2469 | 34 | 33 | 35 |
S........... | 0.7864 | 12 | 11 | 11 |
C........... | 0.0241 | 34 | 33 | 35 |
(........... | −0.2469 | 34 | 33 | 35 |
(........... | −0.2469 | 34 | 33 | 35 |
O........... | −0.4891 | 33 | 31 | 33 |
C........... | 0.0241 | 34 | 33 | 35 |
C........... | 0.0241 | 34 | 33 | 35 |
(........... | −0.2469 | 34 | 33 | 35 |
N........... | 0.7755 | 25 | 23 | 29 |
C........... | 0.0241 | 34 | 33 | 35 |
(........... | −0.2469 | 34 | 33 | 35 |
C........... | 0.0241 | 34 | 33 | 35 |
(........... | −0.2469 | 34 | 33 | 35 |
C........... | 0.0241 | 34 | 33 | 35 |
SSk | ||||
O...=....... | 0.0016 | 29 | 24 | 30 |
P...=....... | 8.2913 | 1 | 1 | 0 |
P...(....... | 2.0343 | 4 | 2 | 1 |
O...(....... | 0.2868 | 30 | 23 | 26 |
c...O....... | 0.7112 | 7 | 8 | 8 |
c...1....... | 0.2000 | 25 | 26 | 30 |
c...1....... | 0.2000 | 25 | 26 | 30 |
c...c....... | 0.0593 | 28 | 29 | 29 |
c...c....... | 0.0593 | 28 | 29 | 29 |
c...(....... | 0.0243 | 27 | 28 | 27 |
c...(....... | 0.0243 | 27 | 28 | 27 |
c...(....... | 0.0243 | 27 | 28 | 27 |
c...(....... | 0.0243 | 27 | 28 | 27 |
c...1....... | 0.2000 | 25 | 26 | 30 |
1...(....... | 1.6836 | 19 | 19 | 11 |
C...(....... | 0.0663 | 33 | 32 | 35 |
C...(....... | 0.0663 | 33 | 32 | 35 |
S...(....... | 1.1459 | 12 | 9 | 8 |
S...C....... | 0.8502 | 5 | 5 | 8 |
C...(....... | 0.0663 | 33 | 32 | 35 |
(...(....... | −0.5271 | 22 | 19 | 21 |
O...(....... | 0.2868 | 30 | 23 | 26 |
O...C....... | 0.1543 | 21 | 22 | 16 |
C...C....... | 0.7926 | 19 | 16 | 18 |
C...(....... | 0.0663 | 33 | 32 | 35 |
N...(....... | −0.7782 | 19 | 21 | 22 |
N...C....... | 0.0455 | 9 | 13 | 8 |
C...(....... | 0.0663 | 33 | 32 | 35 |
C...(....... | 0.0663 | 33 | 32 | 35 |
C...(....... | 0.0663 | 33 | 32 | 35 |
C...(....... | 0.0663 | 33 | 32 | 35 |
FLS | ||||
[xyx7]...... | −0.8997 | 6 | 1 | 6 |
[xyyx0]..... | 0.5900 | 29 | 29 | 24 |
[xyzyx1].... | 0.0854 | 9 | 8 | 8 |
Split | Set * | n | R2 | CCC | IIC | CII | Q2 | RMSE | MAE | F |
---|---|---|---|---|---|---|---|---|---|---|
1 | A | 35 | 0.4800 | 0.6486 | 0.6543 | 0.7427 | 0.4215 | 0.593 | 0.485 | 30 |
P | 33 | 0.7244 | 0.3748 | 0.8511 | 0.8410 | 0.6951 | 0.918 | 0.854 | 81 | |
C | 35 | 0.5441 | 0.6699 | 0.7376 | 0.7673 | 0.4501 | 0.336 | 0.264 | 39 | |
V | 35 | 0.3707 | - | - | - | - | 0.35 | 0.28 | - | |
2 | A | 34 | 0.4498 | 0.6205 | 0.5962 | 0.7426 | 0.3925 | 0.656 | 0.538 | 26 |
P | 35 | 0.5295 | 0.4275 | 0.2649 | 0.6978 | 0.3505 | 0.880 | 0.783 | 37 | |
C | 35 | 0.5416 | 0.6950 | 0.7357 | 0.7518 | 0.5007 | 0.346 | 0.286 | 39 | |
V | 34 | 0.4496 | - | - | - | - | 0.41 | 0.34 | - | |
3 | A | 35 | 0.2803 | 0.4379 | 0.5000 | 0.6605 | 0.1722 | 0.640 | 0.528 | 13 |
P | 34 | 0.6210 | 0.3563 | 0.7880 | 0.7937 | 0.5602 | 0.965 | 0.865 | 52 | |
C | 35 | 0.4920 | 0.6669 | 0.7014 | 0.7643 | 0.4311 | 0.399 | 0.298 | 32 | |
V | 34 | 0.3430 | - | - | - | - | 0.46 | 0.36 | - | |
4 | A | 35 | 0.7223 | 0.8387 | 0.7157 | 0.8321 | 0.6912 | 0.451 | 0.380 | 86 |
P | 35 | 0.4970 | 0.4180 | 0.6474 | 0.6985 | 0.4453 | 0.681 | 0.602 | 33 | |
C | 34 | 0.3486 | 0.5869 | 0.5904 | 0.7781 | 0.2470 | 0.410 | 0.329 | 17 | |
V | 34 | 0.5358 | - | - | - | - | 0.31 | 0.25 | - | |
5 | A | 34 | 0.5385 | 0.7000 | 0.5793 | 0.7017 | 0.4796 | 0.502 | 0.422 | 37 |
P | 35 | 0.4895 | 0.5221 | 0.5927 | 0.7873 | 0.4420 | 0.779 | 0.722 | 32 | |
C | 35 | 0.4229 | 0.6356 | 0.6503 | 0.8286 | 0.3550 | 0.267 | 0.236 | 24 | |
V | 34 | 0.4290 | - | - | - | - | 0.40 | 0.32 | - |
Split | Set * | n | R2 | CCC | IIC | CII | Q2 | RMSE | MAE | F |
---|---|---|---|---|---|---|---|---|---|---|
1 | A | 35 | 0.6235 | 0.7681 | 0.7457 | 0.7708 | 0.5877 | 0.504 | 0.400 | 55 |
P | 33 | 0.7800 | 0.4614 | 0.8832 | 0.8480 | 0.7527 | 0.904 | 0.831 | 110 | |
C | 35 | 0.6117 | 0.7652 | 0.7820 | 0.7658 | 0.5512 | 0.343 | 0.273 | 52 | |
V | 35 | 0.5140 | - | - | - | - | 0.32 | 0.25 | - | |
2 | A | 34 | 0.6470 | 0.7857 | 0.8044 | 0.7749 | 0.6071 | 0.525 | 0.418 | 59 |
P | 35 | 0.7167 | 0.5323 | 0.3230 | 0.8004 | 0.6504 | 0.938 | 0.816 | 83 | |
C | 35 | 0.6618 | 0.7233 | 0.8135 | 0.8614 | 0.6221 | 0.412 | 0.311 | 65 | |
V | 34 | 0.5670 | - | - | - | - | 0.51 | 0.41 | - | |
3 | A | 35 | 0.1421 | 0.2488 | 0.2827 | 0.7475 | 0 | 0.699 | 0.615 | 5 |
P | 34 | 0.6175 | 0.2995 | 0.7858 | 0.8005 | 0.5522 | 0.892 | 0.763 | 52 | |
C | 35 | 0.7052 | 0.7963 | 0.8397 | 0.8397 | 0.6615 | 0.233 | 0.187 | 79 | |
V | 34 | 0.6650 | - | - | - | - | 0.28 | 0.23 | - | |
4 | A | 35 | 0.7492 | 0.8567 | 0.7289 | 0.8296 | 0.7199 | 0.428 | 0.340 | 99 |
P | 35 | 0.7100 | 0.5958 | 0.4745 | 0.7875 | 0.6818 | 0.634 | 0.534 | 81 | |
C | 34 | 0.4107 | 0.6308 | 0.6408 | 0.8479 | 0.3130 | 0.401 | 0.315 | 22 | |
V | 34 | 0.5208 | - | - | - | - | 0.40 | 0.31 | - | |
5 | A | 34 | 0.4945 | 0.6618 | 0.6251 | 0.7211 | 0.4113 | 0.525 | 0.455 | 31 |
P | 35 | 0.4840 | 0.4733 | 0.4878 | 0.7897 | 0.4337 | 0.843 | 0.752 | 31 | |
C | 35 | 0.7500 | 0.8436 | 0.8658 | 0.8622 | 0.7197 | 0.169 | 0.142 | 99 | |
V | 34 | 0.5819 | - | - | - | - | 0.36 | 0.27 | - |
S or SS or FLS | 1 | 2 | 3 | 4 | 5 | NA | NP | NC |
---|---|---|---|---|---|---|---|---|
Promoters of increase | ||||||||
[xyyx0]..... | 1.1230 | 0.9561 | 1.0716 | 1.3799 | 0.4717 | 29 | 29 | 24 |
c...2....... | 1.9643 | 1.2383 | 0.1298 | 1.6865 | 1.1871 | 23 | 18 | 18 |
C...C....... | 0.3808 | 1.2369 | 1.0098 | 1.2700 | 1.1194 | 19 | 16 | 18 |
S...(....... | 0.4506 | 0.8043 | 0.1494 | 0.8849 | 1.1681 | 12 | 9 | 8 |
N...C....... | 1.3056 | 1.8532 | 1.8860 | 1.3248 | 1.2236 | 9 | 13 | 8 |
c...O....... | 0.5893 | 1.2124 | 0.8237 | 0.0148 | 0.7202 | 7 | 8 | 8 |
n...1....... | 0.2268 | 2.0672 | 0.4961 | 1.7561 | 0.7070 | 6 | 4 | 3 |
3...(....... | 0.4225 | 0.8864 | 1.3480 | 1.5308 | 0.7303 | 5 | 8 | 4 |
S...C....... | 0.7606 | 0.9514 | 1.9550 | 1.4794 | 0.5854 | 5 | 5 | 8 |
P...(....... | 2.6666 | 2.7187 | 2.8474 | 3.3673 | 3.9175 | 4 | 2 | 1 |
P........... | 3.8694 | 2.9393 | 2.3262 | 2.1454 | 2.8775 | 4 | 2 | 1 |
[xyzyx2].... | 2.2127 | 1.0702 | 0.9146 | 2.0337 | 2.3060 | 4 | 1 | 3 |
[xyx4]...... | 0.5218 | 1.8897 | 1.9796 | 1.3629 | 1.2598 | 3 | 4 | 3 |
n...3....... | 0.8220 | 0.7589 | 0.9489 | 1.0793 | 0.7237 | 3 | 1 | 1 |
S...P....... | 3.3034 | 4.8946 | 4.4617 | 2.5290 | 4.1761 | 2 | 1 | 1 |
Promoters of decrease | ||||||||
C...(....... | −0.4395 | −0.6585 | −0.3236 | −0.2932 | −0.8184 | 33 | 32 | 35 |
1........... | −0.6192 | −0.4606 | −0.0605 | −0.1050 | −0.4894 | 30 | 32 | 32 |
=........... | −0.1914 | −0.9555 | −0.6864 | −0.8934 | −0.1373 | 30 | 25 | 34 |
O...=....... | −0.5426 | −0.6028 | −0.0555 | −0.2830 | −1.3653 | 29 | 24 | 30 |
c........... | −0.4842 | −0.8222 | −0.3887 | −0.4997 | −0.8995 | 28 | 30 | 30 |
2...(....... | −1.1851 | −1.5421 | −1.2887 | −1.3368 | −1.1119 | 15 | 20 | 13 |
n...c....... | −0.5251 | −1.2618 | −0.7232 | −0.4177 | −0.0434 | 12 | 14 | 8 |
[xyzyx1].... | −1.9008 | −0.4257 | −0.3202 | −0.6042 | −0.0287 | 9 | 8 | 8 |
n...(....... | −0.7403 | −0.6638 | −0.4427 | −0.8044 | −0.6368 | 7 | 10 | 4 |
N...1....... | −0.0541 | −0.8301 | −1.0608 | −0.0389 | −0.7986 | 6 | 1 | 5 |
[xyx5]...... | −2.7243 | −3.1202 | −1.5869 | −1.2596 | −1.0190 | 6 | 6 | 4 |
[xyx7]...... | −1.4561 | −0.7690 | −0.1741 | −2.0073 | −0.7584 | 6 | 1 | 6 |
C...3....... | −0.9602 | −0.5414 | −0.4110 | −0.4759 | −1.6288 | 5 | 5 | 6 |
c...N....... | −3.3089 | −2.0621 | −1.2194 | −2.4258 | −3.3495 | 4 | 9 | 5 |
[xyx2]...... | −1.9693 | −1.3590 | −1.3893 | −1.3086 | −0.4644 | 4 | 2 | 3 |
Number of Compounds in Training Set | Number of Compounds in Validation Set | R2 for Training Set | R2 for Validation Set | Reference |
---|---|---|---|---|
41 | 15 | 0.67 | - | [21] |
25 | 8 | 0.88 | - | [21] |
115 | 32 | 0.95 | 0.92 | [22] |
91 | 19 | 0.78 | 0.65 | [27] |
104 | 34 | 0.49 (0.70 calibration) | 0.67 | In this work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iovine, N.; Toropova, A.P.; Toropov, A.A.; Roncaglioni, A.; Benfenati, E. Simulation of the Long-Term Toxicity Towards Bobwhite Quail (Colinus virginianus) by the Monte Carlo Method. J. Xenobiot. 2025, 15, 3. https://doi.org/10.3390/jox15010003
Iovine N, Toropova AP, Toropov AA, Roncaglioni A, Benfenati E. Simulation of the Long-Term Toxicity Towards Bobwhite Quail (Colinus virginianus) by the Monte Carlo Method. Journal of Xenobiotics. 2025; 15(1):3. https://doi.org/10.3390/jox15010003
Chicago/Turabian StyleIovine, Nadia, Alla P. Toropova, Andrey A. Toropov, Alessandra Roncaglioni, and Emilio Benfenati. 2025. "Simulation of the Long-Term Toxicity Towards Bobwhite Quail (Colinus virginianus) by the Monte Carlo Method" Journal of Xenobiotics 15, no. 1: 3. https://doi.org/10.3390/jox15010003
APA StyleIovine, N., Toropova, A. P., Toropov, A. A., Roncaglioni, A., & Benfenati, E. (2025). Simulation of the Long-Term Toxicity Towards Bobwhite Quail (Colinus virginianus) by the Monte Carlo Method. Journal of Xenobiotics, 15(1), 3. https://doi.org/10.3390/jox15010003