Potential Residual Pesticide Consumption: A Stratified Analysis of Brazilian Families
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Estimation of Food Consumption and Pesticide Residual Levels
3.2. Estimation of Food Consumption at Different Income Levels and Locations
3.3. Estimation and Identification of Consumers Most Exposed to Residual Ingestion
4. Discussion
5. Final Considerations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Variable | Observation | Mean | Standard Deviation | Minimum | Maximum |
---|---|---|---|---|---|
Rice (kg per year) | 13,009.00 | 270.33 | 289.71 | 0.21 | 3120.00 |
Grape (kg per year) | 2353.00 | 44.29 | 31.71 | 1.46 | 728.00 |
Guava (kg per year) | 1201.00 | 54.87 | 48.25 | 0.68 | 606.01 |
Orange (kg per year) | 5646.00 | 111.85 | 102.98 | 1.51 | 1489.75 |
Pineapple (kg per year) | 2009.00 | 118.65 | 75.22 | 18.46 | 733.20 |
Mango (kg per year) | 2158.00 | 73.48 | 62.79 | 2.60 | 888.89 |
Lettuce (kg per year) | 6125.00 | 18.10 | 17.37 | 0.21 | 218.40 |
Tomato (kg per year) | 11,239.00 | 60.96 | 49.49 | 1.92 | 942.08 |
Chayote (kg per year) | 1770.00 | 55.06 | 41.01 | 0.21 | 520.00 |
Pepper (kg per year) | 3720.00 | 20.62 | 17.50 | 0.52 | 218.56 |
Garlic (kg per year) | 5073.00 | 16.70 | 16.28 | 0.10 | 169.52 |
Sweet potato (kg per year) | 2707.00 | 80.99 | 63.34 | 1.66 | 780.00 |
Beet (kg per year) | 1414.00 | 42.54 | 29.48 | 0.16 | 430.72 |
Carrot (kg per year) | 4981.00 | 45.77 | 33.10 | 1.51 | 832.16 |
PRC_Acaricide (mg per year) | 27,764.00 | 41.84 | 53.19 | 0.00 | 960.96 |
PRC_Formicide (mg per year) | 20,271.00 | 28.31 | 30.39 | 0.29 | 693.02 |
PRC_Herbicide (mg per year) | 21,759.00 | 17.99 | 20.74 | 0.05 | 652.23 |
PRC_Insecticide (mg per year) | 27,764.00 | 142.46 | 170.14 | 0.02 | 2772.93 |
PRC_Nematicide (mg per year) | 18,572.00 | 1.79 | 1.93 | 0.01 | 34.06 |
PRC_Growth Regulator (mg per year) | 11,706.00 | 23.53 | 55.60 | 0.01 | 762.50 |
PRC_Fungicide (mg per year) | 27,764.00 | 133.68 | 157.93 | 0.05 | 2375.82 |
Per capita income (annual) | 56,585.00 | 14,545.50 | 23,382.34 | 8.41 | 1,001,420.00 |
Urban (%) | 56,585.00 | 0.77 | 0.42 | 0.00 | 1.00 |
North (%) | 56,585.00 | 0.14 | 0.35 | 0.00 | 1.00 |
Northeast (%) | 56,585.00 | 0.33 | 0.47 | 0.00 | 1.00 |
South (%) | 56,585.00 | 0.14 | 0.35 | 0.00 | 1.00 |
Southeast (%) | 56,585.00 | 0.26 | 0.44 | 0.00 | 1.00 |
Midwest (%) | 56,585.00 | 0.12 | 0.33 | 0.00 | 1.00 |
Age (years) | 56,585.00 | 49.85 | 15.77 | 12.00 | 107.00 |
Without instruction (%) | 56,585.00 | 0.09 | 0.29 | 0.00 | 1.00 |
Incomplete Primary (%) | 56,585.00 | 0.40 | 0.49 | 0.00 | 1.00 |
Complete Primary (%) | 56,585.00 | 0.08 | 0.28 | 0.00 | 1.00 |
Incomplete Secondary (%) | 56,585.00 | 0.05 | 0.22 | 0.00 | 1.00 |
Complete Secondary (%) | 56,585.00 | 0.23 | 0.42 | 0.00 | 1.00 |
Incomplete Higher (%) | 56,585.00 | 0.03 | 0.17 | 0.00 | 1.00 |
Complete Higher (%) | 56,585.00 | 0.12 | 0.32 | 0.00 | 1.00 |
Woman (%) | 56,585.00 | 0.41 | 0.49 | 0.00 | 1.00 |
References
- Dasgupta, S.; Robinson, E.J.Z. Attributing changes in food insecurity to a changing climate. Sci. Rep. 2022, 12, 4709. [Google Scholar] [CrossRef]
- Marques, J.M.G.; Silva, M.V.D. Estimativa de ingestão crônica de resíduos de agrotóxicos por meio da dieta. Rev. Saúde Pública 2021, 55, 36. [Google Scholar] [CrossRef]
- Dos Santos, E.A.; Da Cunha, D.A.; Travassos, G.F. Nitrogen demand and agroenvironmental efficiency in Brazilian cereal production. Braz. J. Biol. 2023, 83, e268927. [Google Scholar]
- United Nations—UN, 2019. World Population Prospects 2019 [Online]. United Nations. Available online: https://population.un.org/wpp/assets/Files/WPP2019_Highlights.pdf (accessed on 5 February 2025).
- Crist, E.; Mora, C.; Engelman, R. The interaction of human population, food production, and biodiversity protection. Science 2017, 356, 260–264. [Google Scholar] [CrossRef]
- Hasegawa, T.; Fujimori, S.; Havlík, P.; Valin, H.; Bodirsky, B.L.; Doelman, J.C.; Fellmann, T.; Kyle, P.; Koopman, J.F.; Lotze-Campen, H.; et al. Risk of increased food insecurity under stringent global climate change mitigation policy. Nat. Clim. Change 2018, 8, 699–703. [Google Scholar] [CrossRef]
- Meira, A.P.G.; Da Silva, M.V. Resíduos de agrotóxicos potencialmente contidos na dieta habitual de escolares. Segurança Aliment. Nutr. 2019, 26, e019021. [Google Scholar] [CrossRef]
- Empresa Brasileira de Pesquisa Agropecuária—EMBRAPA 2021. Agrotóxicos no Brasil. Available online: https://www.embrapa.br/agencia-de-informacao-tecnologica/tematicas/agricultura-e-meio-ambiente/qualidade/dinamica/agrotoxicos-no-brasil (accessed on 5 February 2025).
- Mir, S.A.; Dar, B.N.; Mir, M.M.; Sofi, S.A.; Shah, M.A.; Sidiq, T.; Sunooj, K.V.; Hamdani, A.M.; Khaneghah, A.M. Current strategies for the reduction of pesticide residues in food products. J. Food Compos. Anal. 2022, 106, 104274. [Google Scholar] [CrossRef]
- Yang, S.; Xing, Y.; Liu, Q.; Wang, H.; Gu, A.; Wang, J.; Xue, X.; Chen, R. Residual levels and dietary intake risk assessment of 11 pesticides in apricots from different ecological planting regions in China. Sci. Rep. 2022, 12, 18818. [Google Scholar] [CrossRef]
- Ahmad, M.F.; Ahmad, F.A.; Alsayegh, A.A.; Zeyaullah, M.; AlShahrani, A.M.; Muzammil, K.; Saati, A.A.; Wahab, S.; Elbendary, E.Y.; Kambal, N.; et al. Pesticides impacts on human health and the environment with their mechanisms of action and possible countermeasures. Heliyon 2024, 10, e29128. [Google Scholar] [CrossRef]
- Prakasam, A.; Sethupathy, S.; Lalitha, S. Plasma and RBCs antioxidant status in occupational male pesticide sprayers. Clin. Chim. Acta 2001, 310, 107–112. [Google Scholar] [CrossRef]
- Hanaoka, T.; Takahashi, Y.; Kobayashi, M.; Sasaki, S.; Usuda, M.; Okubo, S.; Mayashi, M.; Tsugane, S. Residuals of beta-hexachlorocyclohexane, dichlorodiphenyltrichloroethane, and hexachlorobenzene in serum, and relations with consumption of dietary components in rural residents in Japan. Sci. Total Environ. 2002, 286, 119–127. [Google Scholar] [CrossRef]
- Yang, A.; Park, J.H.; Abd El-Aty, A.M.; Choi, J.H.; Oh, J.H.; Do, J.A.; Kwon, K.; Shim, K.H.; Choi, O.J.; Shim, J.H. Synergistic effect of washing and cooking on the removal of multi-classes of pesticides from various food samples. Food Control 2012, 28, 99–105. [Google Scholar] [CrossRef]
- Fraga, G.P.; Berlitz, F.; Bender, R.J. Pesticide residues in strawberries cultivated in the state of Rio Grande do Sul, Brazil. Ciência Rural 2022, 53, 20220153. [Google Scholar] [CrossRef]
- Donley, N.; Bullard, R.D.; Economos, J.; Figueroa, I.; Lee, J.; Liebman, A.K.; Martinez, D.N.; Shafiei, F. Pesticides and environmental injustice in the USA: Root causes, current regulatory reinforcement and a path forward. BMC Public Health 2022, 22, 708. [Google Scholar] [CrossRef]
- Darmon, N.; Drewnowski, A. Does social class predict diet quality? Am. J. Clin. Nutr. 2008, 87, 1107–1117. [Google Scholar] [CrossRef]
- Gonzaga, A.M. Perfil Epidemiológico das Intoxicações por Agrotóxicos Notificadas no Estado de Mato Grosso no Período de 2001 a 2004. Doctoral Dissertation, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil, 2006. Available online: https://repositorio.ufsc.br/handle/123456789/89322 (accessed on 1 February 2025).
- Faria, N.M.X.; Facchini, L.A.; Fassa, A.G.; Tomasi, E. Trabalho rural e intoxicações por agrotóxicos. Cad. Saúde Pública 2004, 20, 1298–1308. [Google Scholar] [CrossRef]
- Moura, A.W.A.; Meneses, E.S.; Pereir, R.; Dos Santos, A.C.M.; De Farias, K.F.; De Souza Figueiredo, E.V.M. Perfil epidemiológico dos casos de intoxicação exógena por agrotóxicos agrícolas no Estado de Alagoas entre os anos de 2007 a 2015. Braz. J. Dev. 2020, 6, 91920–91932. [Google Scholar] [CrossRef]
- De Oliveira, F.C.R.; Hoffmann, R. Consumo de alimentos orgânicos e de produtos light ou diet no Brasil: Fatores condicionantes e elasticidades-renda. Segurança Aliment. Nutr. 2015, 22, 541–557. [Google Scholar] [CrossRef]
- Jaime, P.C.; Monteiro, C.A. Fruit and vegetable intake by Brazilian adults, 2003. Cad. Saúde Pública 2005, 21, S19–S24. [Google Scholar] [CrossRef]
- Figueiredo, I.C.R.; Jaime, P.C.; Monteiro, C.A. Factors associated with fruit and vegetable intake among adults of the city of São Paulo, Southeastern Brazil. Rev. Saúde Pública 2008, 42, 777–785. [Google Scholar] [CrossRef]
- Moura, E.C.; Silva, S.A.D.; Malta, D.C.; Morais Neto, O.L. Fatores de risco e proteção para doenças crônicas: Vigilância por meio de inquérito telefônico, VIGITEL, Brasil, 2007. Cad. Saúde Pública 2011, 27, 486–496. [Google Scholar] [CrossRef]
- Ferreira, V.B.; Silva, T.T.C.D.; Garcia, S.R.M.C.; Srur, A.U.O.S. Estimativa da ingestão de agrotóxicos organofosforados pelo consumo de frutas e hortaliças. Cad. Saúde Coletiva 2018, 26, 216–221. [Google Scholar] [CrossRef]
- World Health Organization—WHO 2004. Resolution WHO 57.17: Global Strategy on Diet, Physical Activity and health. In Proceedings of the 57th World Health Assembly, Geneva, Switzerland, 17–22 May 2024; Available online: https://www.who.int/publications/i/item/9241592222 (accessed on 5 February 2025).
- Food and Agriculture Organization of the United Nations—FAO 2019. Submission and Evaluation of Pesticide Residues Data for the Estimation of Maximum Residue Levels in Food and Feed, 2nd ed.; (FAO Plant, Production and Protection Paper; 197); FAO: Rome, Italy, 2009; Available online: https://openknowledge.fao.org/handle/20.500.14283/i1216e (accessed on 6 February 2025).
- Programa de Análise de Resíduos de Agrotóxicos em Alimentos—PARA 2019. Relatório das Amostras Analisadas no Período de 2017–2018. Brasília 10 de Dezembro de 2019. Available online: https://www.gov.br/anvisa/pt-br/assuntos/agrotoxicos/programa-de-analise-de-residuos-em-alimentos/arquivos/3770json-file-1 (accessed on 6 February 2025).
- Instituto Brasileiro de Geografia e Estatística—IBGE. Pesquisa de Orçamentos Familiares—POF 2008/2009—2017/2018. Available online: https://www.ibge.gov.br/estatisticas/sociais/protecao-social/9050-pesquisa-de-orcamentos-familiares.html (accessed on 7 February 2025).
- Fungicide Resistance Action Committee—FRAC. FRAC Code List. Available online: https://www.frac.info/docs/default-source/publications/frac-code-list/frac-code-list-2024.pdf (accessed on 7 February 2025).
- Gandini, E.M.M.; Costa, E.S.P.; Dos Santos, J.B.; Soares, M.A.; Barroso, G.M.; Corrêa, J.M.; Carvalho, A.G.; Zanuncio, J.C. Compatibility of pesticides and/or fertilizers in tank mixtures. J. Clean. Prod. 2020, 268, 122152. [Google Scholar] [CrossRef]
- Agência Nacional de Vigilância Sanitária—ANVISA. Publicada Reclassificação Toxicológica de Agrotóxicos. Available online: https://www.gov.br/anvisa/pt-br/assuntos/noticias-anvisa/2019/publicada-reclassificacao-toxicologica-de-agrotoxicos (accessed on 7 February 2025).
- Suganthi, A.; Rajeswari, E.; Sivakumar, V.; Bhuvaneswari, K.; Sudhanan, E.M.; Sathiah, N.; Prabakaran, K. Analysis of tebuconazole residues in coconut water, kernel and leaves using LC–MS/MS. Food Chem. 2021, 359, 129920. [Google Scholar] [CrossRef]
- Matadha, N.Y.; Mohapatra, S.; Siddamallaiah, L. Distribution of fluopyram and tebuconazole in pomegranate tissues and their risk assessment. Food Chem. 2021, 358, 129909. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, C.; Qiu, M.; Zhang, L.; Fang, H.; Yu, Y. Tebuconazole promotes spread of a multidrug-resistant plasmid into soil bacteria to form new resistant bacterial strains. Sci. Total Environ. 2024, 928, 172444. [Google Scholar] [CrossRef]
- Norén, E.; Lindh, C.; Rylander, L.; Glynn, A.; Axelsson, J.; Littorin, M.; Faniband, M.; Larsson, E.; Nielsen, C. Concentrations and temporal trends in pesticide biomarkers in urine of Swedish adolescents, 2000–2017. J. Expo. Sci. Environ. Epidemiol. 2020, 30, 756–767. [Google Scholar] [CrossRef]
- Peng, F.J.; Hardy, E.M.; Mezzache, S.; Bourokba, N.; Palazzi, P.; Stojiljkovic, N.; Bastien, P.; Li, J.; Soeur, J.; Appenzeller, B.M.R. Exposure to multiclass pesticides among female adult population in two Chinese cities revealed by hair analysis. Environ. Int. 2020, 138, 105633. [Google Scholar] [CrossRef]
- Sun, T.; Miao, J.; Saleem, M.; Zhang, H.; Yang, Y.; Zhang, Q. Bacterial compatibility and immobilization with biochar improved tebuconazole degradation, soil microbiome composition and functioning. J. Hazard. Mater. 2020, 398, 122941. [Google Scholar] [CrossRef]
- Ku, T.; Hu, J.; Zhou, M.; Xie, Y.; Liu, Y.; Tan, X.; Guo, L.; Li, G.; Sang, N. Cardiac energy metabolism disorder mediated by energy substrate imbalance and mitochondrial damage upon tebuconazole exposure. J. Environ. Sci. 2024, 136, 270–278. [Google Scholar] [CrossRef]
- Santos-Miranda, A.; Joviano-Santos, J.V.; Cruz-Nascimento, T.; Neri, E.A.; Souza, D.S.; Marques, L.P.; Krieger, J.E.; Roman-Campos, D. The fungicide Tebuconazole induces electromechanical cardiotoxicity in murine heart and human cardiomyocytes derived from induced pluripotent stem cells. Toxicol. Lett. 2022, 359, 96–105. [Google Scholar] [CrossRef]
- Li, G.; Li, D.; Rao, H.; Liu, X. Potential neurotoxicity, immunotoxicity, and carcinogenicity induced by metribuzin and tebuconazole exposure in earthworms (Eisenia fetida) revealed by transcriptome analysis. Sci. Total Environ. 2022, 807, 150760. [Google Scholar] [CrossRef]
- Rani, L.; Thapa, K.; Kanojia, N.; Sharma, N.; Singh, S.; Grewal, A.S.; Srivastav, A.L.; Kaushal, J. An extensive review on the consequences of chemical pesticides on human health and environment. J. Clean. Prod. 2021, 283, 124657. [Google Scholar] [CrossRef]
- Tsen, C.M.; Yu, C.W.; Chen, S.Y.; Lin, C.L.; Chuang, C.Y. Application of surface-enhanced Raman scattering in rapid detection of dithiocarbamate pesticide residues in foods. Appl. Surf. Sci. 2021, 558, 149740. [Google Scholar] [CrossRef]
- Da Silva, R.C.; Neu, J.P.; Dos Santos, I.D.; Babinski, P.J.; Rossi, R.C.; Hoffmann, J.F.; Wagner, R.; Kunz, S.N.; Pizzutti, I.R. A multivariate approach to dithiocarbamate fungicides determination in yerba mate (Ilex paraguariensis): A faster, cheaper, robust, and environmentally friendly method. Food Chem. 2023, 404, 134268. [Google Scholar] [CrossRef]
- Veiga-del-Baño, J.M.; Martínez-López, S.; Pérez-Lucas, G.; Cuenca-Martínez, J.J.; Andreo-Martínez, P. Trends in dithiocarbamates food research: A bibliometric vision. Chemosphere 2023, 313, 137342. [Google Scholar] [CrossRef]
- Guo, Y.; Zheng, X.; Wang, X.; Zhang, Z.; Qin, S.; Wang, X.; Jing, X. Deep eutectic solvent-based adhesive tape extraction combined with enzyme inhibition assay for the determination and distinction of dithiocarbamate pesticides in food samples. Talanta 2023, 260, 124601. [Google Scholar] [CrossRef]
- Almeida, E.M.F.; De Souza, D. Current electroanalytical approaches in the carbamates and dithiocarbamates determination. Food Chem. 2023, 417, 135900. [Google Scholar] [CrossRef]
- Soylak, M.; Ahmed, H.E.H.; Ozalp, O. Determination of propineb in vegetable samples after a coprecipitation strategy for its separation-preconcentration prior to its indirect determination by FAAS. Food Chem. 2022, 388, 133002. [Google Scholar] [CrossRef]
- Dubois, M.; Van den Broeck, L.; Inzé, D. The pivotal role of ethylene in plant growth. Trends Plant Sci. 2018, 23, 311–323. [Google Scholar] [CrossRef]
- Al-Brakati, A. Protective effect of aged garlic extracts against hepatotoxicity induced by ethephon in Wistar albino rat. Environ. Sci. Pollut. Res. 2020, 27, 6139–6147. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, D.; Li, N.; Yang, C.; Chen, X.; Liu, X.; He, J.; Ding, Y.; Tong, C.; Peng, C.; et al. Exposure to ethephon compromises endometrial decidualization in mice during early pregnancy via GPR120. Ecotoxicol. Environ. Saf. 2021, 220, 112361. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Hussain, M.; Yin, J.; Yuan, M.; Mo, Y.; Quan, M.; Duan, L.; Tan, W. Analysis of droplet deposition and maize (Zea mays L.) growth control: Application of ethephon by small unmanned aerial vehicle and electric knapsack sprayer. Field Crops Res. 2023, 292, 108822. [Google Scholar] [CrossRef]
- Garcia-Herrero, S.; Simon, B.; Garcia-Planells, J. The reproductive journey in the genomic era: From preconception to childhood. Genes 2020, 11, 1521. [Google Scholar] [CrossRef]
- Li, Y.; Fang, R.; Liu, Z.; Jiang, L.; Zhang, J.; Li, H.; Liu, C.; Li, F. The association between toxic pesticide environmental exposure and Alzheimer’s disease: A scientometric and visualization analysis. Chemosphere 2021, 263, 128238. [Google Scholar] [CrossRef]
- Huang, T.; Zhao, Y.; He, J.; Cheng, H.; Martyniuk, C.J. Endocrine disruption by azole fungicides in fish: A review of the evidence. Sci. Total Environ. 2022, 822, 153412. [Google Scholar] [CrossRef]
- Authority, E.F.S.; Medina-Pastor, P.; Triacchini, G. The 2018 European Union report on pesticide residues in food. EFSA J. 2020, 18, e06057. [Google Scholar]
- Wang, X.; Hao, W. Reproductive and developmental toxicity of plant growth regulators in humans and animals. Pestic. Biochem. Physiol. 2023, 196, 105640. [Google Scholar] [CrossRef]
- Song, S.; Li, X.; Wei, F.; Zhang, J.; Zhang, H.; Huang, H.; Guo, Y.; Zhang, T. Elevated accumulation and distinct migration patterns of neonicotinoids compared to traditional insecticides in South China typical orchard. Emerg. Contam. 2024, 10, 100359. [Google Scholar] [CrossRef]
- Hayden, K.M.; Norton, M.C.; Darcey, D.; Østbye, T.; Zandi, P.P.; Breitner, J.C.S.; Welsh-Bohmer, K.A. Occupational exposure to pesticides increases the risk of incident AD: The Cache County study. Neurology 2010, 74, 1524–1530. [Google Scholar] [CrossRef]
- Parrón, T.; Requena, M.; Hernández, A.F.; Alarcón, R. Association between environmental exposure to pesticides and neurodegenerative diseases. Toxicol. Appl. Pharmacol. 2011, 256, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Brasil. Lei nº 14.785, de 27 de Dezembro de 2023. 2023. Available online: https://www.planalto.gov.br/ccivil_03/_ato2023-2026/2023/lei/l14785.htm (accessed on 22 June 2023).
- Vaz, D.V.; Hoffmann, R. Elasticidade-renda e concentração das despesas com alimentos no Brasil: Uma análise dos dados das POF de 2002-2003, 2008-2009 e 2017-2018. Rev. Econ. 2020, 41, 282–310. [Google Scholar] [CrossRef]
- Zanin, V.; Bacchi, M.R.P.; Almeida, A.T.C.D. A demanda domiciliar por arroz no Brasil: Abordagem por meio do sistema Quaids em 2008/2009. Rev. Econ. Sociol. Rural 2019, 57, 234–252. [Google Scholar] [CrossRef]
- Farinha, M.J.U.S.; Bernardo, L.V.M.; Da Mota, A.A. CONSIDERAÇÕES SOBRE INTOXICAÇÃO HUMANA POR AGROTÓXICOS NO CENTRO-OESTE BRASILEIRO, NO PERÍODO DE 2008 A 2013. Hygeia Rev. Bras. Geogr. Médica Saúde 2017, 13, 114–125. [Google Scholar]
- Santos, G.M.G.C.D.; Silva, A.M.R.; Carvalho, W.O.D.; Rech, C.R.; Loch, M.R. Barreiras percebidas para o consumo de frutas e de verduras ou legumes em adultos brasileiros. Ciência Saúde Coletiva 2019, 24, 2461–2470. [Google Scholar] [CrossRef]
- Arcury, T.A.; Chen, H.; Quandt, S.A.; Talton, J.W.; Anderson, K.A.; Scott, R.P.; Jensen, A.; Laurienti, P.J. Pesticide exposure among Latinx children: Comparison of children in rural, farmworker and urban, non-farmworker communities. Sci. Total Environ. 2021, 763, 144233. [Google Scholar] [CrossRef]
- Sjödin, A.; Jones, R.S.; Caudill, S.P.; Wong, L.Y.; Turner, W.E.; Calafat, A.M. Polybrominated diphenyl ethers, polychlorinated biphenyls, and persistent pesticides in serum from the national health and nutrition examination survey: 2003–2008. Environ. Sci. Technol. 2014, 48, 753–760. [Google Scholar] [CrossRef]
Commodities | HC | AI | FRAC | Group | Quantity | PRC |
---|---|---|---|---|---|---|
Pineapple | 118.65 (63.40) | Ethephon | - | - | 1.02 | 121.02 |
Pineapple | 18.10 (95.98) | Dithiocarbamates | M 03 | Dithiocarbamates and relatives (Electrophiles) | 1.78 | 32.21 |
Garlic | 16.70 (97.48) | Imazalil | 3 | DMI-fungicides (DeMethylation Inhibitors) | 1.1 | 18.37 |
Rice | 270.33 (107.16) | Carbendazim * | 1 | MBC-fungicides (Methyl Benzimidazole Carbamates) | 0.08 | 21.62 |
Sweet potato | 80.99 (78.21) | Carbendazim * | 1 | MBC-fungicides (Methyl Benzimidazole Carbamates) | 0.21 | 17 |
Beet | 42.54 (69.30) | Dithiocarbamates | M 03 | Dithiocarbamates and relatives (Electrophiles) | 0.49 | 20.84 |
Carrot | 45.77 (72.32) | Acephate | - | - | 0.1 | 4.57 |
Chayote | 55.06 (74.48) | Acephate | - | - | 0.26 | 14.31 |
Guava | 54.87 (87.93) | Famoxadone | 11 | QoI-fungicides (Quinone outside Inhibitors) | 0.23 | 12.62 |
Orange | 111.85 (92.06) | Pyrimethanil | 9 | AP-fungicides (Anilino-Pyrimidines) | 0.38 | 44.5 |
Mango | 73.48 (85.45) | Dithiocarbamates | M 03 | Dithiocarbamates and relatives (Electrophiles) | 0.21 | 15.43 |
Pepper | 20.62 (84.86) | Thiacloprid | - | - | 0.52 | 10.72 |
Tomato | 60.96 (81.18) | Dichlorvos | - | - | 0.36 | 21.94 |
Grape | 44.29 (71.59) | Cypermethrin | - | - | 0.51 | 22.58 |
Acaricide | Formicide | Herbicide | Insecticide | Nematicide | Growth Regulator | Fungicide | |
---|---|---|---|---|---|---|---|
Income class | |||||||
I | 38.05 | 26.49 | 16.96 | 130.99 | 1.70 | 21.41 | 125.21 |
II | 54.14 | 32.82 | 20.34 | 179.42 | 2.06 | 28.84 | 162.35 |
III | 59.34 | 35.26 | 22.94 | 196.67 | 2.10 | 30.68 | 170.96 |
IV | 62.39 | 35.38 | 22.62 | 198.57 | 2.15 | 28.59 | 175.15 |
V | 66.65 | 40.30 | 25.16 | 221.61 | 2.36 | 34.96 | 187.45 |
p-values | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
F-values | 163.46 | 63.77 | 51.29 | 143.04 | 40.63 | 13.46 | 90.73 |
Locations | |||||||
Rural | 41.32 | 31.91 | 19.22 | 150.68 | 1.88 | 17.87 | 147.71 |
Urban | 41.99 | 27.44 | 17.68 | 140.11 | 1.78 | 24.80 | 129.67 |
p-values | 0.3870 | 0.0000 | 0.0000 | 0.0000 | 0.0052 | 0.0000 | 0.0000 |
F-values | 0.75 | 69.03 | 19.21 | 18.56 | 7.82 | 27.29 | 62.8 |
Macro-region | |||||||
North | 24.19 | 21.39 | 13.22 | 85.59 | 1.41 | 22.77 | 91.07 |
Northeast | 40.03 | 27.13 | 18.15 | 131.19 | 1.72 | 29.37 | 124.43 |
Southeast | 47.16 | 28.62 | 18.96 | 157.22 | 1.90 | 18.69 | 145.71 |
Midwest | 51.50 | 32.55 | 19.98 | 182.69 | 2.10 | 22.70 | 170.46 |
South | 46.84 | 31.27 | 17.79 | 168.45 | 1.76 | 19.37 | 148.79 |
p-values | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
F-values | 162.86 | 49.05 | 39.93 | 203.85 | 38.29 | 20.29 | 142.07 |
Acaricide | Formicide | Herbicide | Insecticide | Nematicide | Growth Regulator | Fungicide | |
---|---|---|---|---|---|---|---|
Sex | |||||||
Man | 43.15 | 29.29 | 18.49 | 147.39 | 1.85 | 23.47 | 138.90 |
Woman | 39.97 | 26.95 | 17.29 | 135.43 | 1.71 | 23.61 | 126.23 |
p-values | 0.0000 | 0.0001 | 0.0006 | 0.0000 | 0.0001 | 0.7520 | 0.0000 |
F-values | 23.03 | 16.06 | 11.67 | 30.19 | 14.58 | 0.1 | 38.28 |
Education | |||||||
Without instruction | 32.04 | 22.96 | 15.51 | 109.87 | 1.49 | 18.65 | 112.14 |
Incomplete Primary | 39.14 | 27.53 | 17.42 | 136.45 | 1.75 | 19.44 | 130.83 |
Complete Primary | 41.79 | 28.32 | 17.61 | 142.37 | 1.79 | 25.27 | 133.99 |
Incomplete Secondary | 36.67 | 24.68 | 16.40 | 123.29 | 1.62 | 20.14 | 116.60 |
Complete Secondary | 42.75 | 28.04 | 17.81 | 144.08 | 1.79 | 25.75 | 132.60 |
Incomplete Higher | 43.50 | 27.10 | 17.13 | 144.71 | 1.74 | 26.88 | 131.92 |
Complete Higher | 55.92 | 34.42 | 21.78 | 184.27 | 2.09 | 30.28 | 163.72 |
p-values | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
F-values | 64.1 | 32.11 | 24.6 | 56.94 | 18.57 | 11.24 | 32.78 |
Age | |||||||
Up to 20 years | 21.45 | 20.72 | 13.81 | 77.60 | 1.16 | 21.89 | 84.16 |
20 to 40 | 35.36 | 25.14 | 16.43 | 120.51 | 1.60 | 19.85 | 114.14 |
40 to 60 | 43.21 | 29.18 | 18.41 | 148.22 | 1.83 | 25.31 | 138.05 |
60 to 80 | 45.95 | 29.92 | 18.80 | 155.36 | 1.92 | 24.24 | 146.36 |
Above 80 years | 46.55 | 28.92 | 18.38 | 151.53 | 1.89 | 21.81 | 141.40 |
p-values | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0000 |
F-values | 80.99 | 39.37 | 22.23 | 89.83 | 35.25 | 9.11 | 84.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leite, Y.L.; Duque, T.S.; Santos, J.B.d.; Santos, E.A.d. Potential Residual Pesticide Consumption: A Stratified Analysis of Brazilian Families. J. Xenobiot. 2025, 15, 37. https://doi.org/10.3390/jox15020037
Leite YL, Duque TS, Santos JBd, Santos EAd. Potential Residual Pesticide Consumption: A Stratified Analysis of Brazilian Families. Journal of Xenobiotics. 2025; 15(2):37. https://doi.org/10.3390/jox15020037
Chicago/Turabian StyleLeite, Yan Lucas, Tayna Sousa Duque, José Barbosa dos Santos, and Elizângela Aparecida dos Santos. 2025. "Potential Residual Pesticide Consumption: A Stratified Analysis of Brazilian Families" Journal of Xenobiotics 15, no. 2: 37. https://doi.org/10.3390/jox15020037
APA StyleLeite, Y. L., Duque, T. S., Santos, J. B. d., & Santos, E. A. d. (2025). Potential Residual Pesticide Consumption: A Stratified Analysis of Brazilian Families. Journal of Xenobiotics, 15(2), 37. https://doi.org/10.3390/jox15020037