Serum and Cerebrospinal Fluid Malondialdehyde Levels in Patients with Mild Cognitive Impairment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Sample Collection
2.3. Cerebrospinal Fluid FDA-Approved Biomarkers Analyses
2.4. Malondialdehyde Analysis
2.5. Statistical Analyses
2.6. Ethical Considerations
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Aβ | Amyloid β |
AD | Alzheimer’s disease |
BMI | Body mass index |
CSF | Cerebrospinal fluid |
CNS | Central nervous system |
FDA | Food and Drug Administration |
GAADRD | Greek Association of Alzheimer’s Disease and Related Disorders |
MCI | Mild Cognitive Impairment |
MDA | Malondialdehyde |
p-tau | Phosphorylated tau protein |
t-tau | Total tau protein |
SD | Standard deviation |
References
- GBD 2019 Dementia Forecasting Collaborators. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: An analysis for the Global Burden of Disease Study 2019. Lancet Public Health 2022, 7, 105–125. [Google Scholar] [CrossRef] [PubMed]
- 2024 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2024, 20, 3708–3821. [CrossRef]
- Eshkoor, S.A.; Mun, C.Y.; Ng, C.K.; Hamid, T.A. Mild cognitive impairment and its management in older people. Clin. Interv. Aging 2015, 10, 687. [Google Scholar] [CrossRef] [PubMed]
- Petersen, R.C.; Lopez, O.; Armstrong, M.J.; Getchius, T.S.D.; Ganguli, M.; Gloss, D.; Gronseth, G.S.; Marson, D.; Pringsheim, T.; Day, G.S.; et al. Practice guideline up-date summary: Mild cognitive impairment: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology 2018, 90, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Menegon, F.; De Marchi, F.; Aprile, D.; Zanelli, I.; Decaroli, G.; Comi, C.; Tondo, G. From Mild Cognitive Impairment to Dementia: The Impact of Comorbid Conditions on Disease Conversion. Biomedicines 2024, 12, 1675. [Google Scholar] [CrossRef]
- Butterfield, D.A. Oxidative Stress in Brain in Amnestic Mild Cognitive Impairment. Antioxidants 2023, 12, 462. [Google Scholar] [CrossRef]
- Baldeiras, I.; Santana, I.; Leitão, M.J.; Gens, H.; Pascoal, R.; Tábuas-Pereira, M.; Beato-Coelho, J.; Duro, D.; Almeida, M.R.; Oliveira, C.R. Addition of the Aβ42/40 ratio to the cerebrospinal fluid biomarker profile increases the predictive value for underlying Alzheimer’s disease dementia in mild cognitive impairment. Alzheimers Res. Ther. 2018, 10, 33. [Google Scholar] [CrossRef]
- HHansson, O.; Zetterberg, H.; Buchhave, P.; Andreasson, U.; Londos, E.; Minthon, L.; Blennow, K. Prediction of Alzheimer’s disease using the CSF Aβ42/Aβ40 ratio in patients with mild cognitive impairment. Dement. Geriatr. Cogn. Disord. 2007, 23, 316–320. [Google Scholar] [CrossRef]
- Van Giau, V.; Bagyinszky, E.; An, S.S.A. Potential Fluid Biomarkers for the Diagnosis of Mild Cognitive Impairment. Int. J. Mol. Sci. 2019, 20, 4149. [Google Scholar] [CrossRef]
- Gaur, A.; Rivet, L.; Mah, E.; Bawa, K.K.; Gallagher, D.; Herrmann, N.; Lanctôt, K.L. Novel fluid biomarkers for mild cognitive impairment: A systematic review and meta-analysis. Ageing Res. Rev. 2023, 91, 102046. [Google Scholar] [CrossRef]
- Albert, M.S.; DeKosky, S.T.; Dickson, D.; Dubois, B.; Feldman, H.H.; Fox, N.C.; Gamst, A.; Holtzman, D.M.; Jagust, W.J.; Petersen, R.C.; et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2011, 7, 270–279. [Google Scholar] [CrossRef] [PubMed]
- Ekman, U.; Ferreira, D.; Westman, E. The A/T/N biomarker scheme and patterns of brain atrophy assessed in mild cognitive impairment. Sci. Rep. 2018, 8, 8431. [Google Scholar] [CrossRef] [PubMed]
- Alzheimer’s Association Alzheimer’s Disease. More than Normal Aging: Understanding Mild Cognitive Impairment. 2022. Available online: https://www.alz.org/alzheimers-dementia/what-is-dementia/related_conditions/mild-cognitive-impairment (accessed on 3 December 2024).
- Liu, Y.; Yu, X.; Han, P.; Chen, X.; Wang, F.; Lian, X.; Li, J.; Li, R.; Wang, B.; Xu, C.; et al. Gender-specific prevalence and risk factors of mild cognitive impairment among older adults in Chongming, Shanghai, China. Front. Aging Neurosci. 2022, 14, 900523. [Google Scholar] [CrossRef]
- Lin, K.A.; Choudhury, K.R.; Rathakrishnan, B.G.; Marks, D.M.; Petrella, J.R.; Doraiswamy, P.M.; Initiative, A.D.N. Marked gen-der differences in progression of mild cognitive impairment over 8 years. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2015, 1, 103. [Google Scholar] [CrossRef] [PubMed]
- Lwere, K.; Sendagire, H.; Muwonge, H.; Jl, G.-O.; Nazziwa, A.; Buwembo, D.; Nakasujja, N.; Mark, K. Interplay of age, gender, education, and heart rate in dementia among older adults in Wakiso, Uganda: A cross-sectional study. F1000Research 2024, 13, 448. [Google Scholar] [CrossRef]
- Zhong, T.; Li, S.; Liu, P.; Wang, Y.; Chen, L. The impact of education and occupation on cognitive impairment: A cross-sectional study in China. Front. Aging Neurosci. 2024, 16, 1435626. [Google Scholar] [CrossRef]
- Kim, R.; Chung, W. Effect of Aging on Educational Differences in the Risk of Cognitive Impairment: A Gen-der-Specific Analysis Using Korean Longitudinal Study of Aging (2006–2016). Healthcare 2022, 10, 1062. [Google Scholar] [CrossRef]
- Skaria, A.P. The Economic and Societal Burden of Alzheimer Disease: Managed Care Considerations. Am. J. Manag. Care 2022, 28, S188–S196. [Google Scholar] [CrossRef]
- Nandi, A.; Counts, N.; Bröker, J.; Malik, S.; Chen, S.; Han, R.; Klusty, J.; Seligman, B.; Tortorice, D.; Vigo, D.; et al. Cost of care for Alzheimer’s disease and related dementias in the United States: 2016 to 2060. npj Aging 2024, 10, 13. [Google Scholar] [CrossRef]
- Arslan, B.; Zetterberg, H.; Ashton, N.J. Blood-based biomarkers in Alzheimer’s disease—Moving towards a new era of diagnostics. Clin. Chem. Lab. Med. 2024, 62, 1063–1069. [Google Scholar] [CrossRef]
- Padala, S.P.; Newhouse, P.A. Blood-based Biomarkers in Alzheimer’s Disease: A Mini-review. Metab. Brain Dis. 2023, 38, 185. [Google Scholar] [CrossRef]
- Simrén, J.; Leuzy, A.; Karikari, T.K.; Hye, A.; Benedet, A.L.; Lantero-Rodriguez, J.; Mattsson-Carlgren, N.; Schöll, M.; Mecocci, P.; Vellas, B.; et al. The diagnostic and prognostic capabilities of plasma biomarkers in Alzheimer’s disease. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2021, 17, 1145–1156. [Google Scholar] [CrossRef]
- Ferré-González, L.; Peña-Bautista, C.; Baquero, M.; Cháfer-Pericás, C. Assessment of Lipid Peroxidation in Alzheimer’s Disease Differential Diagnosis and Prognosis. Antioxidants 2022, 11, 551. [Google Scholar] [CrossRef] [PubMed]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxidative Med. Cell. Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef]
- Nie, Y.; Chu, C.; Qin, Q.; Shen, H.; Wen, L.; Tang, Y.; Qu, M. Lipid metabolism and oxidative stress in patients with Alzheimer’s disease and amnestic mild cognitive impairment. Brain Pathol. 2024, 34, e13202. [Google Scholar] [CrossRef] [PubMed]
- Petersen, R.C. Mild Cognitive Impairment. Continuum 2016, 22, 404–418. [Google Scholar] [CrossRef]
- Moore, J.T.; Bobula, J.A.; Short, T.B.; Mischel, M. A Functional Dementia Scale. J. Fam. Pract. 1983, 16, 499–503. [Google Scholar]
- Sharp, R. The Hamilton Rating Scale for Depression. Occup. Med. 2015, 65, 340. [Google Scholar] [CrossRef]
- Cullell, N.; Caruana, G.; Elias-Mas, A.; Delgado-Sanchez, A.; Artero, C.; Buongiorno, M.T.; Almería, M.; Ray, N.J.; Correa, S.A.L.; Krupinski, J. Glymphatic system clearance and Alzheimer’s disease risk: A CSF proteome-wide study. Alzheimers Res. Ther. 2025, 17, 31. [Google Scholar] [CrossRef]
- Liu, Y.; Tan, Y.; Zhang, Z.; Yi, M.; Zhu, L.; Peng, W. The interaction between ageing and Alzheimer’s disease: Insights from the hallmarks of ageing. Transl. Neurodegener. 2024, 13, 7. [Google Scholar] [CrossRef]
- Burgetova, A.; Dusek, P.; Uher, T.; Vaneckova, M.; Vejrazka, M.; Burgetova, R.; Horakova, D.; Srpova, B.; Krasensky, J.; Lambert, L. Oxidative Stress Markers in Cerebrospinal Fluid of Newly Diagnosed Multiple Sclerosis Patients and Their Link to Iron Deposition and Atrophy. Diagnostics 2022, 12, 1365. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, S.; Ozan, S.; Benzer, F.; Kurt, N.A.C.; Kurt, A.; Akarsu, S. Effects of meningitis and encephalitis on oxidative state of blood and cerebrospinal fluid. J. Pediatr. Infect. Dis. 2008, 3, 189–194. [Google Scholar]
- López, N.; Tormo, C.; De Blas, I.; Llinares, I.; Alom, J. Oxidative stress in Alzheimer’s disease and mild cognitive impairment with high sensitivity and specificity. J. Alzheimer’s Dis. 2013, 33, 823–829. [Google Scholar] [CrossRef]
- Dakterzada, F.; Jové, M.; Cantero, J.L.; Pamplona, R.; Piñoll-Ripoll, G. Plasma and cerebrospinal fluid nonenzymatic protein damage is sustained in Alzheimer’s disease. Redox Biol. 2023, 64, 102772. [Google Scholar] [CrossRef]
- Huynh, R.A.; Mohan, C. Alzheimer’s Disease: Biomarkers in the Genome, Blood, and Cerebrospinal Fluid. Front. Neurol. 2017, 8, 102. [Google Scholar] [CrossRef]
- McKenzie, C.; Bucks, R.S.; Weinborn, M.; Bourgeat, P.; Salvado, O.; Gavett, B.E. Cognitive reserve predicts future executive function decline in older adults with Alzheimer’s disease pathology but not age-associated pathology. Neurobiol. Aging 2020, 88, 119–127. [Google Scholar] [CrossRef]
- Aquilani, R.; Ramusino, M.C.; Maestri, R.; Iadarola, P.; Boselli, M.; Perini, G.; Boschi, F.; Dossena, M.; Bellini, A.; Buonocore, D.; et al. Several dementia subtypes and mild cognitive impairment share brain reduction of neurotransmitter precursor amino acids, impaired energy metabolism, and lipid hyperoxidation. Front. Aging Neurosci. 2023, 15, 1237469. [Google Scholar] [CrossRef]
- Torres, L.L.; Quaglio, N.B.; de Souza, G.T.; Garcia, R.T.; Dati, L.M.M.; Moreira, W.L.; Loureiro, A.P.d.M.; de Souza-Talarico, J.N.; Smid, J.; Porto, C.S.; et al. Peripheral oxidative stress biomarkers in mild cognitive impairment and Alzheimer’s disease. J. Alzheimer’s Dis. 2011, 26, 59–68. [Google Scholar] [CrossRef]
- Liu, J.; Sun, S.; Chen, Y. Superoxide Dismutase Modified the Association of Serum Malondialdehyde Levels with Cognitive Decline Among Older Adults: Findings from the Chinese Longitudinal Healthy Longevity Survey. J. Alzheimer’s Dis. 2024, 99, 657–665. [Google Scholar] [CrossRef]
- Syafrita, Y.; Amir, D.; Susanti, R.; El Rasyid, H. Beta Amyloid and Malondialdehyde Serum Levels’ Analysis in Atrial Fibrillation Patients with Cognitive Impairment. Neurol. India 2022, 70, 689–693. [Google Scholar] [CrossRef]
- Mahmoud, W.; Abd-Elgawad, E.; Mesallam, D.; El-Serafy, T. Serum Malondialdehyde as A predictor of Post-Stroke Cognitive Impairment in Ischemic Stroke Patients. Zagazig Univ. Med. J. 2022, 28, 326–332. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Y.; Tu, X.; Shen, H.; Qiu, H.; Chen, H.; He, J. High Serum Levels of Malondialdehyde and 8-OHdG are both Associated with Early Cognitive Impairment in Patients with Acute Ischemic Stroke. Sci. Rep. 2017, 7, 9493. [Google Scholar] [CrossRef]
- Wang, L.; Tian, T.; Initiative, A.D.N. Gender Differences in Elderly with Subjective Cognitive Decline. Front. Aging Neurosci. 2018, 10, 166. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Shofer, J.B.; Petrie, E.C.; Yu, C.-E.; Wilkinson, C.W.; Figlewicz, D.P.; Shutes-David, A.; Zhang, J.; Montine, T.J.; Raskind, M.A.; et al. Cerebrospinal fluid biomarkers for Alzheimer’s and vascular disease vary by age, gender, and APOE genotype in cognitively normal adults. Alzheimer’s Res. Ther. 2017, 9, 48. [Google Scholar] [CrossRef]
- Krebs, S.J.; Slike, B.M.; Sithinamsuwan, P.; Allen, I.E.; Chalermchai, T.; Tipsuk, S.; Phanuphak, N.; Jagodzinski, L.; Kim, J.H.; Ananworanich, J.; et al. Sex differences in soluble markers vary before and after the initiation of antiretroviral therapy in chronically HIV-infected individuals. AIDS 2016, 30, 1533–1542. [Google Scholar] [CrossRef]
- Nantachai, G.; Vasupanrajit, A.; Tunvirachaisakul, C.; Solmi, M.; Maes, M. Oxidative stress and antioxidant defenses in mild cognitive impairment: A systematic review and meta-analysis. Ageing Res. Rev. 2022, 79, 101639. [Google Scholar] [CrossRef]
- Öhrfelt, A.; Brinkmalm, A.; Dumurgier, J.; Brinkmalm, G.; Hansson, O.; Zetterberg, H.; Bouaziz-Amar, E.; Hugon, J.; Paquet, C.; Blennow, K. The pre-synaptic vesicle protein synaptotagmin is a novel biomarker for Alzheimer’s disease. Alzheimer’s Res. Ther. 2016, 8, 41. [Google Scholar] [CrossRef]
- Mancini, A.; Stoops, E.; Demeyer, L.; Bellomo, G.; Paoletti, F.P.; Gaetani, L.; Di Filippo, M.; Parnetti, L. LRRK2 Quantification in Cerebrospinal Fluid of Patients with Parkinson’s Disease and Atypical Parkinsonian Syndromes. Mov. Disord. Off. J. Mov. Disord. Soc. 2023, 38, 682–688. [Google Scholar] [CrossRef]
- Ewers, M.; Sperling, R.A.; Klunk, W.E.; Weiner, M.W.; Hampel, H. Neuroimaging markers for the prediction and early diagnosis of Alzheimer’s disease dementia. Trends Neurosci. 2011, 34, 430–442. [Google Scholar] [CrossRef]
- Greilberger, J.; Koidl, C.; Greilberger, M.; Lamprecht, M.; Schroecksnadel, K.; Leblhuber, F.; Fuchs, D.; Oettl, K. Malondialdehyde, carbonyl proteins and albumin-disulphide as useful oxidative markers in mild cognitive impairment and Alzheimer’s disease. Free. Radic. Res. 2008, 42, 633–638. [Google Scholar] [CrossRef]
Characteristics of the Study Groups | ||||
---|---|---|---|---|
Group A (n = 30) MCI (A+) | Group B (n = 30) MCI (A−) | Group C (n = 30) Controls | ||
Sex | Male (n) | 14.0 | 16.0 | 12.0 |
Female (n) | 16.0 | 14.0 | 18.0 | |
Age | ≥74 years old (n) | 16.0 | 15.0 | 12.0 |
<74 years old (n) | 14.0 | 15.0 | 18.0 | |
BMI | kg/m2 | 26.5 | 27.4 | 28.2 |
Education level | Primary (n) | 6.0 | 8.0 | 4.0 |
Secondary (n) | 12.0 | 11.0 | 8.0 | |
Tertiary (n) | 12.0 | 11.0 | 18.0 | |
Family history | Yes (n) | 14.0 | 21.0 | 13.0 |
No (n) | 16.0 | 9.0 | 17.0 |
Mean Values ± SD | p-Values a | |||||
---|---|---|---|---|---|---|
Cerebrospinal Fluid Biomarkers | Group A MCI (A+) (n = 30) | Group B MCI (A−) (n = 30) | Group C Controls (n = 30) | Group A vs. Group B | Group A vs. Group C | Group B vs. Group C |
Aβ42 (pg/mL) | 590 ± 200 | 1004 ± 461 | 1237 ± 332 | <0.001 | <0.001 | 0.015 |
Aβ40 (pg/mL) | 13,087 ± 4293 | 10,791 ± 4066 | 12,017 ± 2480 | 0.012 | 0.124 | 0.085 |
Aβ42/Aβ40 ratio | 0.05 ± 0.007 | 0.09 ± 0.02 | 0.10 ± 0.015 | <0.001 | <0.001 | 0.008 |
p-tau (pg/mL) | 106 ± 51 | 37 ± 16 | 34 ± 8.78 | <0.001 | <0.001 | 0.157 |
t-tau (pg/mL) | 633 ± 234 | 314 ± 95 | 252 ± 66 | <0.001 | <0.001 | 0.007 |
MDA | ||||||
Serum (ng/mL) | 209 ± 120 | 168 ± 191 | 166 ± 159 | 0.159 | 0.124 | 0.488 |
CSF (ng/mL) | 130 ± 106 | 142 ± 118 | 83 ± 70 | 0.345 | 0.024 | 0.011 |
Males (Mean Values ± SD) | p-Values a | |||||
MDA | Group A MCI (A+) (n = 14) | Group B MCI (A−) (n = 16) | Group C Controls (n = 12) | Group A vs. Group B | Group A vs. Group C | Group B vs. Group C |
Serum (ng/mL) | 242 ± 120 | 196 ± 205 | 146 ± 165 | 0.232 | 0.032 | 0.247 |
CSF (ng/mL) | 175 ± 125 | 142.5 ± 116 | 78 ± 77 | 0.236 | 0.012 | 0.048 |
Females (Mean Values ± SD) | p-Values a | |||||
Group A MCI (A+) (n = 16) | Group B MCI (A−) (n = 14) | Group C Controls (n = 18) | ||||
Serum (ng/mL) | 180 ± 116 | 135 ± 175 | 181 ± 159 | 0.206 | 0.493 | 0.228 |
CSF (ng/mL) | 89 ± 64 | 142 ± 126 | 86 ± 67 | 0.082 | 0.454 | 0.065 |
Aged ≥ 74 (Mean Values ± SD) | p-Values a | |||||
MDA | Group A MCI (A+) (n = 16) | Group B MCI (A−) (n = 15) | Group C Controls (n = 12) | Group A vs. Group B | Group A vs. Group C | Group B vs. Group C |
Serum (ng/mL) | 243 ± 100 | 152 ± 189 | 157 ± 140 | 0.027 | 0.078 | 0.481 |
CSF (ng/mL) | 128 ± 115 | 140 ± 141 | 83 ± 63 | 0.397 | 0.232 | 0.227 |
Aged < 74 (Mean Values ± SD) | p-Values a | |||||
Group A MCI (A+) (n = 14) | Group B MCI (A−) (n = 15) | Group C Controls (n = 18) | ||||
Serum (ng/mL) | 141 ± 131 | 183 ± 183 | 168 ± 165 | 0.279 | 0.325 | 0.395 |
CSF (ng/mL) | 135 ± 91 | 145 ± 96 | 83 ± 72 | 0.403 | 0.047 | 0.011 |
Primary Education Level | ||||||
Mean Values ± SD | p-Values a | |||||
MDA | Group A MCI (A+) (n = 6) | Group B MCI (A−) (n = 8) | Group C Controls (n = 4) | Group A vs. Group B | Group A vs. Group C | Group B vs. Group C |
Serum (ng/mL) | 165 ± 123 | 192 ± 207 | 86 ± 103 | 0.393 | 0.158 | 0.181 |
CSF (ng/mL) | 88 ± 42 | 132 ± 128 | 111 ± 91 | 0.219 | 0.298 | 0.389 |
Secondary Education Level | ||||||
Mean Values ± SD | p-Values a | |||||
Group A MCI (A+) (n = 12) | Group B MCI (A−) (n = 11) | Group C Controls (n = 8) | ||||
Serum (ng/mL) | 242 ± 132 | 172 ± 259 | 155 ± 132 | 0.209 | 0.093 | 0.438 |
CSF (ng/mL) | 173 ± 84 | 152 ± 124 | 86 ± 62 | 0.342 | 0.045 | 0.132 |
Tertiary Education Level | ||||||
Mean Values ± SD | p-Values a | |||||
Group A MCI (A+) (n = 12) | Group B MCI (A−) (n = 11) | Group C Controls (n = 18) | ||||
Serum (ng/mL) | 198 ± 105 | 145 ± 87 | 188 ± 178 | 0.106 | 0.436 | 0.230 |
CSF (ng/mL) | 112 ± 135 | 139 ± 93 | 75 ± 71 | 0.295 | 0.166 | 0.048 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ioannidou, S.; Ginoudis, A.; Makedou, K.; Tsolaki, M.; Lymperaki, E. Serum and Cerebrospinal Fluid Malondialdehyde Levels in Patients with Mild Cognitive Impairment. J. Xenobiot. 2025, 15, 50. https://doi.org/10.3390/jox15020050
Ioannidou S, Ginoudis A, Makedou K, Tsolaki M, Lymperaki E. Serum and Cerebrospinal Fluid Malondialdehyde Levels in Patients with Mild Cognitive Impairment. Journal of Xenobiotics. 2025; 15(2):50. https://doi.org/10.3390/jox15020050
Chicago/Turabian StyleIoannidou, Stavroula, Argyrios Ginoudis, Kali Makedou, Magda Tsolaki, and Evgenia Lymperaki. 2025. "Serum and Cerebrospinal Fluid Malondialdehyde Levels in Patients with Mild Cognitive Impairment" Journal of Xenobiotics 15, no. 2: 50. https://doi.org/10.3390/jox15020050
APA StyleIoannidou, S., Ginoudis, A., Makedou, K., Tsolaki, M., & Lymperaki, E. (2025). Serum and Cerebrospinal Fluid Malondialdehyde Levels in Patients with Mild Cognitive Impairment. Journal of Xenobiotics, 15(2), 50. https://doi.org/10.3390/jox15020050