Safety Footwear Impact on Workers’ Gait and Foot Problems: A Comparative Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Safety Footwear and Sneakers
2.3. Inertial Sensor Measuring
- Walking speed [m/min]: the distance covered by the patient in one minute of walking;
- Cadence [steps/min]: the number of steps per minute;
- Stride length [m]: the distance between two consecutive heel strikes of the same foot;
- Step duration [s]: the time between ipsilateral and contralateral heel strikes;
- Stance duration [%]: the foot support phase, from heel strike to toe-off of the same foot, typically about 62% of the gait cycle;
- Swing duration [%]: the foot swing phase, from toe-off to heel strike of the same foot, typically about 38%;
- Double support duration [%]: the duration of the stance phase on both feet as a per-centage of the gait cycle (approximately 20% of the stance phase).
2.4. Experimental Design
2.5. Clinical Examination
2.6. Statistical Analysis
3. Results
3.1. Population
3.2. Inertial Sensor Parameter Outcomes
3.3. Foot Problems
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ochsmann, E.; Noll, U.; Ellegast, R.; Hermanns, I.; Kraus, T. Influence of different safety shoes on gait and plantar pressure: A standardized examination of workers in the automotive industry. J. Occup. Health 2016, 58, 404–412. [Google Scholar] [CrossRef] [PubMed]
- UNI EN ISO 20345:2022—UNI Ente Italiano di Normazione. Available online: https://store.uni.com/uni-en-iso-20345-2022 (accessed on 24 July 2024).
- Standard Specification for Performance Requirements for Protective (Safety) Toe Cap Footwear. Available online: https://www.astm.org/f2413-18.html (accessed on 24 July 2024).
- AS 2210.3:2019. In: Standards Australia. Available online: https://www.standards.org.au/standards-catalogue/standard-details?designation=as-2210-3-2019 (accessed on 24 July 2024).
- Orr, R.; Maupin, D.; Palmer, R.; Canetti, E.F.D.; Simas, V.; Schram, B. The Impact of Footwear on Occupational Task Performance and Musculoskeletal Injury Risk: A Scoping Review to Inform Tactical Footwear. Int. J. Environ. Res. Public Health 2022, 19, 10703. [Google Scholar] [CrossRef] [PubMed]
- Marr, S.J.; Quine, S. Shoe concerns and foot problems of wearers of safety footwear. Occup. Med. 1993, 43, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Copper, A.W.; Scharfbillig, R.; Nguyen, T.P.; Collins, C. Identifying lower limb problems and the types of safety footwear worn in the Australian wine industry: A cross-sectional survey. J. Foot Ankle Res. 2021, 14, 58. [Google Scholar] [CrossRef] [PubMed]
- Janson, D.; Newman, S.T.; Dhokia, V. Safety footwear: A survey of end-users. Appl. Ergon. 2021, 92, 103333. [Google Scholar] [CrossRef] [PubMed]
- Brans, R.; John, S.M.; Wilke, A.; Hübner, A. Programme for prevention of foot dermatoses in patients with work-related skin diseases: Baseline data and first results of a prospective cohort study (OCCUPES). Contact Dermat. 2023, 89, 259–269. [Google Scholar] [CrossRef]
- Goonetilleke, R.; Luximon, A. Designing for comfort: A footwear application. In Proceedings of the Computer-Aided Ergonomics and Safety Conference, Maui, HI, USA, 28 July–2 August 2001. [Google Scholar]
- Dobson, J.A.; Riddiford-Harland, D.L.; Bell, A.F.; Steele, J.R. Work boot design affects the way workers walk: A systematic review of the literature. Appl. Ergon. 2017, 61, 53–68. [Google Scholar] [CrossRef] [PubMed]
- Dobson, J.A.; Riddiford-Harland, D.L.; Steele, J.R. Effects of wearing gumboots and leather lace-up boots on lower limb muscle activity when walking on simulated underground coal mine surfaces. Appl. Ergon. 2015, 49, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Chiou, S.S.; Turner, N.; Zwiener, J.; Weaver, D.L.; Haskell, W.E. Effect of boot weight and sole flexibility on gait and physiological responses of firefighters in stepping over obstacles. Hum. Factors 2012, 54, 373–386. [Google Scholar] [CrossRef]
- Krings, B.; Miller, B.; Chander, H.; Waldman, H.; Knight, A.; McAllister, M.; Fountain, B.; Smith, J. Impact of occupational footwear during simulated workloads on energy expenditure. Footwear Sci. 2018, 10, 157–165. [Google Scholar] [CrossRef]
- Turner, N.L.; Chiou, S.; Zwiener, J.; Weaver, D.; Spahr, J. Physiological effects of boot weight and design on men and women firefighters. J. Occup. Environ. Hyg. 2010, 7, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Boysen, M.D.; Munk-Hansen, M.; Steffensen, M.; Holsgaard-Larsen, A.; Madeleine, P. The biomechanical differences of wearing safety shoes compared with everyday shoes on dynamic balance when tripping over an obstacle. Appl. Ergon. 2023, 111, 104040. [Google Scholar] [CrossRef] [PubMed]
- Chander, H.; Turner, A.J.; Swain, J.C.; Sutton, P.E.; McWhirter, K.L.; Morris, C.E.; Knight, A.C.; Carruth, D.W. Impact of occupational footwear and workload on postural stability in work safety. Work Read. Mass 2019, 64, 817–824. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, D.; Ahram, T.; De Ru, E.; Choukou, M.A.; Abdi, E.; Gardan, N.; Boyer, F.C.; Regnault, P.; Taiar, R. Comparison of FAP scores with the use of safety footwear and regular walking shoes. Theor. Issues Ergon. Sci. 2017, 18, 631–642. [Google Scholar] [CrossRef]
- Bajelan, S.; Sparrow, W.A.T.; Begg, R. The ankle dorsiflexion kinetics demand to increase swing phase foot-ground clearance: Implications for assistive device design and energy demands. J. Neuroeng. Rehabil. 2024, 21, 105. [Google Scholar] [CrossRef] [PubMed]
- Honda, K.; Sekiguchi, Y.; Owaki, D.; Okamoto, R.; Inuzuka, S.; Morimoto, N.; Izumi, S.-I. Effects of ankle-foot orthosis with dorsiflexion resistance on the quasi-joint stiffness of the ankle joint and spatial asymmetry during gait in patients with hemiparesis. Clin. Biomech. Bristol Avon 2024, 115, 106263. [Google Scholar] [CrossRef] [PubMed]
- Choukou, A.; Ghouli, S.; Boyer, F. Effects of Unstable Footwear on Stance Pattern. J. Biosci. Med. 2014, 2, 20–24. [Google Scholar] [CrossRef]
- Chander, H.; Garner, J.; Wade, C.; Knight, A. Postural Control in Workplace Safety: Role of Occupational Footwear and Workload. Safety 2017, 3, 18. [Google Scholar] [CrossRef]
- Bus, S.A.; Waaijman, R. The value of reporting pressure-time integral data in addition to peak pressure data in studies on the diabetic foot: A systematic review. Clin. Biomech. 2013, 28, 117–121. [Google Scholar] [CrossRef]
- Buldt, A.K.; Menz, H.B. Incorrectly fitted footwear, foot pain and foot disorders: A systematic search and narrative review of the literature. J. Foot Ankle Res. 2018, 11, 43. [Google Scholar] [CrossRef]
- Alferdaws, F.; Ramadan, M. Effects of Lifting Method, Safety Shoe Type, and Lifting Frequency on Maximum Acceptable Weight of Lift, Physiological Responses, and Safety Shoes Discomfort Rating. Int. J. Environ. Res. Public Health 2020, 17, 3012. [Google Scholar] [CrossRef]
- Herbaut, A.; Simoneau-Buessinger, E.; Barbier, F.; Cannard, F.; Guéguen, N. A reliable measure of footwear upper comfort enabled by an innovative sock equipped with textile pressure sensors. Ergonomics 2016, 59, 1327–1334. [Google Scholar] [CrossRef] [PubMed]
- Dobson, J.A.; Riddiford-Harland, D.L.; Bell, A.F.; Wegener, C.; Steele, J.R. Effect of work boot shaft stiffness and sole flexibility on lower limb muscle activity and ankle alignment at initial foot-ground contact when walking on simulated coal mining surfaces: Implications for reducing slip risk. Appl. Ergon. 2019, 81, 102903. [Google Scholar] [CrossRef] [PubMed]
- Simeonov, P.; Hsiao, H.; Powers, J.; Ammons, D.; Amendola, A.; Kau, T.-Y.; Cantis, D. Footwear effects on walking balance at elevation. Ergonomics 2008, 51, 1885–1905. [Google Scholar] [CrossRef] [PubMed]
- Goto, K.; Abe, K. Gait characteristics in women’s safety shoes. Appl. Ergon. 2017, 65, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Wunderlich, R.E.; Cavanagh, P.R. Gender differences in adult foot shape: Implications for shoe design. Med. Sci. Sports Exerc. 2001, 33, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Frey, C. Foot health and shoewear for women. Clin. Orthop. 2000, 372, 32–44. [Google Scholar] [CrossRef] [PubMed]
- Cimolin, V.; Galli, M.; Celletti, C.; Pau, M.; Castori, M.; Morico, G.; Albertini, G.; Camerota, F. Foot type analysis based on electronic pedobarography data in individuals with joint hypermobility syndrome/Ehlers-Danlos syndrome hypermobility type during upright standing. J. Am. Podiatr. Med. Assoc. 2014, 104, 588–593. [Google Scholar] [CrossRef] [PubMed]
- Pau, M.; Galli, M.; Celletti, C.; Morico, G.; Leban, B.; Albertini, G.; Camerota, F. Plantar pressure patterns in women affected by Ehlers-Danlos syndrome while standing and walking. Res. Dev. Disabil. 2013, 34, 3720–3726. [Google Scholar] [CrossRef]
- Ferrari, J.; Watkinson, D. Foot pressure measurement differences between boys and girls with reference to hallux valgus deformity and hypermobility. Foot Ankle Int. 2005, 26, 739–747. [Google Scholar] [CrossRef]
- Barber Foss, K.D.; Ford, K.R.; Myer, G.D.; Hewett, T.E. Generalized Joint Laxity Associated with Increased Medial Foot Loading in Female Athletes. J. Athl. Train. 2009, 44, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Aydın, E.; Metin Tellioğlu, A.; Kurt Ömürlü, I.; Turan, Y. Impact of Generalized Joint Laxity on Plantar Loading Patterns in Young Females. Foot Ankle Int. 2017, 38, 909–915. [Google Scholar] [CrossRef] [PubMed]
SF Group | Clinical Control Group | p-Value | |
---|---|---|---|
Patients | 30 | 30 | |
Age | 50.4 ± 9.5 (CI 95% = 46.7–54.1) | 46.9 ± 10.7 (CI 95% = 42.7–51.1) | 0.179 |
Gender | 14M/16F | 15M/15F | |
BMI | 20.8 ± 3.6 (CI 95% = 19.4–22.2) | 22.4 ± 3.7 (CI 95% = 20.9–23.8) | 0.091 |
Walking Speed (m/min) | Cadence (steps/min) | Stride Length (m) | Step Duration (s) | Stance Duration (%) | Swing Duration (%) | Double Support Duration (%) | |
---|---|---|---|---|---|---|---|
SF | 79.2 ± 20.8 (CI 95% = 71.2–87.3) | 79.1 ± 15.5 (CI 95% = 73.1–85.1) | 0.7 ± 0.4 (CI 95% = 0.6–0.9) | 0.9 ± 0.4 (CI 95% = 0.8–1.1) | 61.6 ± 2.3 (CI 95% = 60.8–62.5) | 37.6 ± 3.4 (CI 95% = 36.3–39.0) | 12.4 ± 2.3 (CI 95% = 10.2–12.4) |
Sneakers | 66.2 ± 15.9 (CI 95% = 60.1–72.4) | 68.7 ± 17.8 (CI 95% = 61.8–75.7) | 0.9 ± 0.1 (CI 95% = 0.9–1.0) | 0.8 ± 0.2 (CI 95% = 0.7–0.9) | 60.4 ± 2.6 (CI 95% = 59.4–61.4) | 35.9 ± 2.5 (CI 95% = 34.9–36.9) | 11.3 ± 2.9 (CI 95% = 11.5–13.3) |
p-value | <0.001 | <0.001 | 0.008 | 0.059 | <0.001 | 0.020 | 0.034 |
SF male | 68.3 ± 12.1 (CI 95% = 60.6–76.0) | 70.6 ± 8.5 (CI 95% = 65.2–76.1) | 0.8 ± 0.2 (CI 95% = 0.7–1.0) | 1.1 ± 0.5 (CI 95% = 0.8–1.5) | 61.9 ± 1.8 (CI 95% = 60.7–63.1) | 39.1 ± 3.4 (CI 95% = 36.9–41.3) | 11.5 ± 2.0 (CI 95% = 8.6–11.7) |
Sneakers male | 56.9 ± 16.6 (CI 95% = 46.4–67.5) | 56.9 ± 19.1 (CI 95% = 45.5–68.5) | 0.9 ± 0.1 (CI 95% = 0.9–1.0) | 0.9 ± 0.2 (CI 95% = 0.8–1.0) | 59.9 ± 2.8 (CI 95% = 58.1–61.7) | 36.6 ± 2.5 (CI 95% = 35.0–38.3) | 10.2 ± 2.4 (CI 95% = 10.2–12.7) |
p-value | 0.011 | 0.012 | 0.331 | 0.239 | <0.001 | 0.122 | 0.199 |
SF female | 87.5 ± 22.4 (CI 95% = 75.5–99.4) | 85.4 ± 16.8 (CI 95% = 76.2–94.4) | 0.6 ± 0.4 (CI 95% = 0.4–0.8) | 0.8 ± 0.1 (CI 95% = 0.7–0.8) | 61.4 ± 2.6 (CI 95% = 60.1–62.8) | 36.6 ± 3.0 (CI 95% = 35.0–38.2) | 13.1 ± 2.3 (CI 95% = 10.6–13.7) |
Sneakers female | 73.2 ± 11.6 (CI 95% = 67.0–79.4) | 77.6 ± 11.8 (CI 95% = 71.3–83.9) | 0.9 ± 0.1 (CI 95% = 0.8–1.0) | 0.7 ± 0.1 (CI 95% = 0.6–0.8) | 60.7 ± 2.4 (CI 95% = 59.4–62.0) | 35.4 ± 2.5 (CI 95% = 34.1–36.7) | 12.1 ± 2.9 (CI 95% = 11.8–14.3) |
p-value | 0.002 | 0.015 | 0.013 | 0.002 | 0.014 | 0.050 | 0.074 |
p-value SF M/F | 0.015 | 0.019 | 0.232 | 0.068 | 0.439 | 0.076 | 0.195 |
Hyperkeratosis | Corns | Onycholysis/Onychomadesis | Onychomycosis | Subungual Hematomas | Plantar fasciitis | |
---|---|---|---|---|---|---|
SF total (30) | 28 (93.3%) | 17 (56.6%) | 9 (30%) | 6 (20%) | 22 (73.3%) | 5 (16.7%) |
CG (30) | 9 (30%) | 3 (10%) | 1 (3.3%) | 0 | 2 (6.7%) | 1 (3.3%) |
p-value | <0.0001 | <0.0001 | 0.005 | 0.010 | <0.0001 | 0.086 |
SF male (14) | 12 (85.7%) | 6 (42.8%) | 3 (21.4%) | 2 (14.3%) | 10 (71.4%) | 3 (21.4%) |
SF female (16) | 16 (100%) | 11 (68.7%) | 6 (37.5%) | 4 (25%) | 12 (75%) | 2 (12.5%) |
p -value | 0.124 | 0.160 | 0.345 | 0.472 | 0.885 | 0.521 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arceri, A.; Mazzotti, A.; Liosi, S.G.; Zielli, S.O.; Artioli, E.; Langone, L.; Traina, F.; Brognara, L.; Faldini, C. Safety Footwear Impact on Workers’ Gait and Foot Problems: A Comparative Study. Clin. Pract. 2024, 14, 1496-1506. https://doi.org/10.3390/clinpract14040120
Arceri A, Mazzotti A, Liosi SG, Zielli SO, Artioli E, Langone L, Traina F, Brognara L, Faldini C. Safety Footwear Impact on Workers’ Gait and Foot Problems: A Comparative Study. Clinics and Practice. 2024; 14(4):1496-1506. https://doi.org/10.3390/clinpract14040120
Chicago/Turabian StyleArceri, Alberto, Antonio Mazzotti, Sofia Gaia Liosi, Simone Ottavio Zielli, Elena Artioli, Laura Langone, Francesco Traina, Lorenzo Brognara, and Cesare Faldini. 2024. "Safety Footwear Impact on Workers’ Gait and Foot Problems: A Comparative Study" Clinics and Practice 14, no. 4: 1496-1506. https://doi.org/10.3390/clinpract14040120
APA StyleArceri, A., Mazzotti, A., Liosi, S. G., Zielli, S. O., Artioli, E., Langone, L., Traina, F., Brognara, L., & Faldini, C. (2024). Safety Footwear Impact on Workers’ Gait and Foot Problems: A Comparative Study. Clinics and Practice, 14(4), 1496-1506. https://doi.org/10.3390/clinpract14040120