Assessment of Odour and Ammonia Impacts for a Novel Fattening Piggery Tailored for Animal Welfare and Low Emission Rates
Abstract
:1. Introduction
2. Description of the Fattening Piggery
3. Methodology
4. Results
4.1. Odour
4.2. Ammonia
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Commission (EC). Directive (EU) 2016/2284 of the European Parliament and of the Council of 14 December 2016 on the reduction of national emissions of certain atmospheric pollutants, amending Directive 2003/35/EC and repealing Directive 2001/81/EC. Off. J. Eur. Union 2016, 59, 1–31. [Google Scholar]
- European Environmental Agency (EEA). European Union Emission Inventory Report 1990–2020 under the UNECE Air Convention; Rep. No 03/2022; European Environmental Agency: Copenhagen, Denmark, 2022; 170p. [Google Scholar]
- Hooiveld, M.; van Dijk, C.; van der Sman-de Beer, F.; Smit, L.A.M.; Vogelaar, M.; Wouters, I.M.; Heederik, D.J.; Yzermans, C.J. Odour annoyance in the neighbourhood of livestock farming—Perceived health and health care seeking behaviour. Ann. Agric. Environ. Med. 2015, 22, 55–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loussouarn, A.; Lagadec, S.; Robin, P.; Hassouna, M. V-shaped scraper: Environmental and technical assessment for seven years in the Guernévez experimental farm. J. Rech. Porc. 2014, 46, 199–204. [Google Scholar]
- VDI 3894-1; Emissions and Immissions from Animal Husbandries. Housing Systems and Emissions. Pigs, Cattle, Poultry, Horses. German Engineering Association VDI: Düsseldorf, Germany, 2011; 84p.
- Flesch, T.K.; Harper, L.A.; Powell, J.M.; Wilsdon, J.D. Inverse-Dispersion Calculation of Ammonia Emissions from Wisconsin Dairy Farms. Am. Soc. Agric. Biol. Eng. 2009, 52, 253–265. [Google Scholar]
- Puchalski, M.A.; Sather, M.E.; Walker, J.T.; Lehmann, C.M.B.; Gay, D.A.; Mathewe, J.; Robargef, W.P. Passive ammonia monitoring in the United States: Comparing three different sampling devices. J. Environ. Monit. 2011, 13, 3156–3167. [Google Scholar] [CrossRef] [PubMed]
- VDI 3869-4; Measurement of Ammonia in Ambient Air—Sampling with Diffusive Samplers—Photometric or Ion Chromatographic Analysis. German Engineering Association VDI: Düsseldorf, Germany, 2012; 38p.
- VDI 3788-1; Environmental Meteorology—Dispersion of Odorants in the Atmosphere—Fundamentals. German Engineering Association VDI: Düsseldorf, Germany, 2000; 25p.
- Janicke, L.; Janicke, U. Development of the Dispersion Model AUSTAL2000G; Berichte zur Umweltphysik, 5; Ingenieurbüro Janicke: Dunum, Germany, 2004; 122p, Available online: http://www.janicke.de/data/bzu/bzu-005-02.pdf (accessed on 22 November 2022).
- Oettl, D.; Kropsch, M.; Mandl, M. Odour assessment in the vicinity of a pig-fatting farm using field inspections (EN 16841-1) and dispersion modelling. Atmos. Environ. 2018, 181, 54–60. [Google Scholar] [CrossRef]
- Oettl, D. Documentation of the Lagrangian Particle Model GRAL Vs. 20.1; Amt d. Stmk. Landesregierung: Graz, Austria, 2020; 208p, Available online: https://www.umwelt.steiermark.at/cms/beitrag/12894598/2222407/ (accessed on 24 October 2022).
- Oettl, D.; Ferrero, E. A simple model to assess odour hours for regulatory purposes. Atmos. Environ. 2017, 155, 162–173. [Google Scholar] [CrossRef]
- Brancher, M.; Hieden, A.; Baumann-Stanzer, K.; Schauberger, G.; Piringer, M. Performance evaluation of approaches to predict sub-hourly peak odour concentrations. Atmos. Environ. X 2020, 7, 100076. [Google Scholar] [CrossRef]
- Oettl, D.; Goulart, A.; Degrazia, G.; Anfossi, D. A new hypothesis on meandering atmospheric flows in low wind speed conditions. Atmos. Environ. 2005, 39, 1739–1748. [Google Scholar] [CrossRef]
- Oettl, D. Quality assurance of the prognostic, microscale wind-field model GRAL 14.8 using wind-tunnel data provided by the German VDI guideline 3783-9. J. Wind Eng. Ind. Aerodyn. 2015, 142, 104–110. [Google Scholar] [CrossRef]
- Oettl, D. Evaluation of the revised Lagrangian particle model GRAL against wind-tunnel and field experiments in the presence of obstacles. Bound. Layer Meteorol. 2015, 155, 271–287. [Google Scholar] [CrossRef]
- Oettl, D.; Ferrero, E.; Moshammer, H.; Weitensfelder, L.; Kropsch, M.; Mandl, M. Recent developments in odour modelling and assessment in five provinces in Austria. Air Qual Atmos. Health 2022, 15, 1647–1657. [Google Scholar] [CrossRef]
- Chang, J.C.; Hanna, S.R. Air quality model performance evaluation. Meteorol. Atmos. Phys. 2004, 87, 167–196. [Google Scholar] [CrossRef]
- Bächlin, W.; Rühling, A.; Lohmeyer, A. Bereitstellung von Validierungsdaten für Geruchsausbreitungsmodelle—Naturmessungen; Ingenieurbüro Lohmeyer: Karlsruhe, Germany, 2003; 187p, Available online: http://www.lohmeyer.de/de/system/files/content/download/publikationen/1408bericht.pdf (accessed on 19 October 2022).
- EN 16841-1; Ambient Air—Determination of Odour in Ambient Air by Using Field Inspection—Part 1: Grid Method. Draft Version; European Standard (EN): Vienna, Austria, 2016; 53p.
- EN 13725; Air Quality—Determination of Odour Concentration by Dynamic Olfactometry. European Standard (EN): Vienna, Austria, 2003; 71p.
- Grawe, D.; Schlünzen, K.H.; Pascheke, F. Comparison of results of an obstacle resolving microscale model with wind tunnel data. Atmos. Environ. 2013, 79, 495–509. [Google Scholar] [CrossRef]
- US-EPA. Meteorological Monitoring Guidance for Regulatory Modeling Applications; EPA-454/R-99-005; Office of Air and Radiation, Office of Air Quality Planning and Standards: Research Triangle Park, NC, USA, 2000; 171p.
- VDI 3783-8; Environmental Meteorology—Turbulence Parameters for Dispersion Models Supported by Measurement Data. German Engineering Association VDI: Düsseldorf, Germany, 2012; 70p.
- ON M9440; Dispersion of Pollutants in the Atmosphere—Calculation of Ambient Air Concentrations. Austrian Standards: Vienna, Austria, 2019; 22p.
- VDI 3940-1; Measurement of Odour Impact by Field Inspection—Measurement of the Impact Frequency of Recognizable Odours—Grid Measurement. German Engineering Association VDI: Düsseldorf, Germany, 2006; 29p.
- Mösenbacher, I.; Huber, G.; Gasteiner, J.; Bachler, C.; Mayer, M.; Zainer, J.; Brettschuh, S.; Rudorfer, B.; Schauer, A.; Kitzer, R.; et al. Untersuchung eines Futtermittelzusatzes im Hinblick auf Emissionsminderung und Leistungsdaten unter Berücksichtigung der IEP (IPPC)-Richtlinie (Investigation of a Fodder Supplement with Respect to Lowering Emissions and Animal Growth in the Frame of the IPPC Directive); Rep. Nr. 3594; HBLFA Raumberg-Gumpenstein: Irdning, Austria, 2011; 32p. [Google Scholar]
- Sun, G.; Guo, H.; Peterson, J. Seasonal Odor, Ammonia, Hydrogen Sulfide, and Carbon Dioxide Concentrations and Emissions from Swine Grower-Finisher Rooms. J. Air Waste Manag. Assoc. 2010, 60, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Santonja, G.G.; Georgitzikis, K.; Scalet, B.M.; Montobbio, P.; Roudier, S.; Sancho, L.D. JRC Science for Policy Report. Best Available Techniques (BAT) Reference Document for the Intensive Rearing of Poultry or Pigs. Industrial Emissions Directive 2010/75/EU; Rep. EUR 28674-EN; EU Publications: Luxembourg, 2017; 898p. [Google Scholar] [CrossRef]
- Hayes, E.T.; Curran, T.P.; Dodd, V.A. Odour and ammonia emissions from intensive poultry units in Ireland. Bioresour. Technol. 2006, 97, 933–939. [Google Scholar] [CrossRef] [Green Version]
- Rzeźnik, W.; Mielcarek-Bocheńska, P. Odour Emissions from Livestock Buildings. Atmosphere 2022, 13, 254. [Google Scholar] [CrossRef]
- Calafat, C.; Gallego-Salguero, A. Livestock odour dispersion and its implications for rural tourism: Case study of Valencian Community (Spain). Span. J. Agric. Res. 2020, 18, e0106. [Google Scholar] [CrossRef]
- Ogink, N.W.M.; Groot Koerkamp, P.W.G. Comparison of odour emissions from animal housing systems with low ammonia emission. Water Sci. Technol. 2001, 43, 245–252. [Google Scholar] [CrossRef]
- EMEP/EEA. Air Pollutant Emission Inventory Guidebook 2019; Technical Guidance to Prepare National Emission Inventories. Rep. No 13/2019; European Environmental Agency: Copenhagen, Denmark, 2019; Available online: https://www.eea.europa.eu/publications/emep-eea-guidebook-2019 (accessed on 11 October 2022).
- TÜV Austria. Geruchsbegehaungen und Ausbreitungsrechnungen am Außenklima-Schweinestall Langdorf 3, 4714 Meggenhofen; Bericht Nr. 17-IN-AT-UW-WE-EX-267; TÜV Austria: Vienna, Austria, 2018; 97p. [Google Scholar]
<35 kg | 35–45 kg | 45–70 kg | 70–90 kg | >90 kg | |
---|---|---|---|---|---|
Dry mass [g] | 880 | 880 | 880 | 880 | 880 |
Raw protein [%] | 15.90 | 15.18 | 14.77 | 14.15 | 13.83 |
Metabolizable energy [MJ] | 12.83 | 12.91 | 13.00 | 12.96 | 12.99 |
Lysine [g] | 11.77 | 11.41 | 11.01 | 10.24 | 9.25 |
Staff | Samples | Day | Samples | Time | Samples | |
---|---|---|---|---|---|---|
P1 | 7 | Monday | 8 | 0 a.m. | 4 | |
P2 | 5 | Tuesday | 7 | 2 a.m. | 4 | |
P3 | 5 | Wednesday | 8 | 4 a.m. | 4 | |
P4 | 5 | Thursday | 8 | 6 a.m. | 4 | |
P5 | 9 | Friday | 8 | 8. a.m. | 4 | |
P6 | 8 | Saturday | 7 | 10 a.m. | 5 | |
P7 | 7 | Sunday | 7 | 12 a.m. | 5 | |
P8 | 6 | 2 p.m. | 5 | |||
P9 | 1 | 4 p.m. | 5 | |||
6 p.m. | 5 | |||||
8 p.m. | 4 | |||||
10 p.m. | 4 | |||||
Total | 53 | 53 | 53 |
Study |
Emission Factor
[OUE kg−1 s−1] | Remarks | Country |
---|---|---|---|
This work | 0.015 | Separation liquid/solid excrements Protein-adjusted feeding Reduced excretion area Excretion area outside | Austria |
Oettl et al. [11] | 0.277 | No reduction measures. | Austria |
Mösenbacher et al. [28] | 0.282 | No reduction measures. | Austria |
Sun et al. [29] | 0.299 | No reduction measures. | Canada |
0.212 | Partly slatted floor. | ||
VDI 3894-1 [5] | 0.100 | No reduction measures. | Germany |
Hayes et al. [31] | 0.246 | No reduction measures. | Ireland |
Rzeźnik and Mielcarek-Bocheńska [32] | 0.419 | No reduction measures. | Poland |
Calafat and Gallego-Salguero [33] | 0.196 | No reduction measures. | Spain |
Ogink and Koerkamp [34] | 0.299 | No reduction measures. | Netherlands |
0.128 | Restricted emitting surface. | ||
0.144 | Cooled surface of stored slurry. | ||
0.145 | Flushing system (twice daily) | ||
Santonja et al. [30] | 0.079 | V-shaped manure belts Partly slatted floor | Netherlands |
Study |
Emission Factor
[kg AP−1 a−1] | Remarks | Country |
---|---|---|---|
This work | 0.73 | Separation liquid/solid excrements Protein-adjusted feeding Reduced excretion area Excretion area outside | Austria |
Mösenbacher et al. [28] | 3.26 | No reduction measures. | Austria |
Sun et al. [29] | 5.68 | No reduction measures. | Canada |
3.79 | Partly slatted floor. | ||
VDI 3894-1 [5] | 3.64 | No reduction measures. | Germany |
Hayes et al. [31] | 3.66 | No reduction measures. | Ireland |
Santonja et al. [30] | 1.05 | V-shaped manure belts Partly slatted floor | Netherlands |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oettl, D.; Zentner, E.; Zentner, A.; Mair, R.; Oettl, H.; Kropsch, M. Assessment of Odour and Ammonia Impacts for a Novel Fattening Piggery Tailored for Animal Welfare and Low Emission Rates. Atmosphere 2023, 14, 75. https://doi.org/10.3390/atmos14010075
Oettl D, Zentner E, Zentner A, Mair R, Oettl H, Kropsch M. Assessment of Odour and Ammonia Impacts for a Novel Fattening Piggery Tailored for Animal Welfare and Low Emission Rates. Atmosphere. 2023; 14(1):75. https://doi.org/10.3390/atmos14010075
Chicago/Turabian StyleOettl, Dietmar, Eduard Zentner, Andreas Zentner, Robert Mair, Hannah Oettl, and Michael Kropsch. 2023. "Assessment of Odour and Ammonia Impacts for a Novel Fattening Piggery Tailored for Animal Welfare and Low Emission Rates" Atmosphere 14, no. 1: 75. https://doi.org/10.3390/atmos14010075
APA StyleOettl, D., Zentner, E., Zentner, A., Mair, R., Oettl, H., & Kropsch, M. (2023). Assessment of Odour and Ammonia Impacts for a Novel Fattening Piggery Tailored for Animal Welfare and Low Emission Rates. Atmosphere, 14(1), 75. https://doi.org/10.3390/atmos14010075