High Mobility Thin Film Transistors Based on Amorphous Indium Zinc Tin Oxide
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
4. Summary and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488–492. [Google Scholar] [CrossRef] [PubMed]
- Staebler, D.L.; Wronski, C.R. Reversible conductivity changes in discharge-produced amorphous Si. Appl. Phys. Lett. 1977, 31, 292–294. [Google Scholar] [CrossRef]
- Jahinuzzaman, S.M.; Sultana, A.; Sakariya, K.; Servati, P.; Nathan, A. Threshold voltage instability of amorphous silicon thin-film transistors under constant current stress. Appl. Phys. Lett. 2005, 87, 023502. [Google Scholar] [CrossRef]
- Chang, T.S.; Chang, T.C.; Liu, P.T.; Tu, C.H.; Yeh, F.S. Improvement of hydrogenated amorphous-silicon TFT performance with low-k siloxane-based Hydrogen Silsesquioxane (HSQ) passivation layer. IEEE Electron Device Lett. 2006, 27, 902–904. [Google Scholar] [CrossRef]
- Karim, S.K.; Nathan, A.; Hack, M.; Milne, W.I. Drain-bias dependence of threshold voltage stability of amorphous silicon TFTs. IEEE Electron Device Lett. 2004, 25, 188–190. [Google Scholar] [CrossRef]
- Arai, T. Oxide-TFT technologies for next-generation AMOLED displays. J. Soc. Inf. Disp. 2012, 20, 156–161. [Google Scholar] [CrossRef]
- Chung, H.K.; Lee, K.Y.; Lee, S.T. Alternative approach to large-size AMOLED HDTV. J. Soc. Inf. Disp. 2006, 14, 49–55. [Google Scholar] [CrossRef]
- Hong, S.K.; Kim, B.K.; Ha, Y.M. LTPS technology for improving the uniformity of AMOLEDs. SID Symp. Dig. Tech. Pap. 2007, 38, 1366–1369. [Google Scholar] [CrossRef]
- Hayashi, R.; Sato, A.; Ofuji, M.; Abe, K.; Yabuta, H.; Sano, M.; Kumomi, H.; Nomura, K.; Kamiya, T.; Hirano, M.; et al. Improved amorphous In-Ga-Zn-O TFTs. SID Symp. Dig. Tech. Pap. 2008, 39, 621–624. [Google Scholar] [CrossRef]
- Park, S.H.K.; Hwang, C.S.; Cho, D.H.; Yoon, S.M.; Yang, S.; Byun, C.; Ryu, M.; Lee, J.I.; Kwon, O.; Cheong, W.S.; et al. Effect of channel/insulator interface formation process on the oxide TFT performance. SID Symp. Dig. Tech. Pap. 2009, 40, 276–279. [Google Scholar] [CrossRef]
- Caglar, Y.; Caglar, M.; Ilican, S.; Aksoy, S.; Yakuphanoglu, F. Effect of channel thickness on the field effect mobility ZnO-TFT fabricated by sol gel process. J. Alloy. Compd. 2015, 621, 189–193. [Google Scholar] [CrossRef]
- Fortunato, E.; Barquinha, P.; Pimintel, A.; Pereira, L.; Goncalves, G.; Martins, R. Amorphous IZO TTFTs with saturation mobilities exceeding 100 cm2/Vs−1. Phys. Status Solid 2007, 34, R34–R36. [Google Scholar] [CrossRef]
- Avis, C.; Jang, J. High-performance processed Oxide TFT with aluminum oxide gate dielectric fabricated by a sol-gel method. J. Mater. Chem. 2011, 21, 10649–10652. [Google Scholar] [CrossRef]
- Hoel, C.A.; Gaillard, J.F.; Poeppelmeier, K.R. Probing the local structure of crystalline ZITO: In2−2xSnxZnxO3 (x ≤ 0.4). Solid State Chem. 2010, 183, 761–768. [Google Scholar] [CrossRef]
- Putri, M.; Koo, C.Y.; Lee, J.A.; Kim, J.J.; Lee, H.Y. Transparent conducting indium zinc tin oxide thin films with low indium content deposited by radio frequency magnetron sputtering. Thin Solid Films 2014, 559, 44–48. [Google Scholar] [CrossRef]
- Damisih; Ma, H.C.; Kim, J.J.; Lee, H.Y. The electrical and optical properties of indium zinc tin oxide thin films with different Sn/Zn ratio. Thin Solid Films 2012, 520, 3741–3745. [Google Scholar] [CrossRef]
- Damisih; Ma, H.C.; Yoon, D.J.; Kim, D.J.; Lee, H.Y. Transparent conductive indium zinc tin oxide thin films for solar cell applications. J. Nanoelectron. Optoelectron. 2011, 6, 223–229. [Google Scholar] [CrossRef]
- Wagner, C.D.; Gale, L.H.; Raymond, R.H. Two-dimensional chemical state plots: A standardized data set for use in identifying chemical states by X-ray photoelectron spectroscopy. Anal. Chem. 1979, 51, 466–482. [Google Scholar] [CrossRef]
- Fuh, C.S.; Liu, P.T.; Huang, W.H. Effect of annealing on defect elimination for high mobility amorphous indium-zinc-tin-oxide thin-film transistor. IEEE Electron Device Lett. 2014, 35, 1103–1105. [Google Scholar] [CrossRef]
- Saji, K.J.; Jayaraj, M.K. Optical and electrical properties of co-sputtered amorphous transparent conducting zinc oxide thin films. Thin Solid Films 2008, 516, 6002–6007. [Google Scholar] [CrossRef]
- Hung, L.S.; Chen, C.H. Recent progress of molecular organic electroluminescent materials and devices. Mater. Sci. Eng. 2002, 39, 143–222. [Google Scholar] [CrossRef]
- Ow-Yang, C.W.; Yeom, H.Y.; Paine, D.C. Fabrication of transparent conducting amorphous Zn-Sn-In-O thin films by direct current magnetron sputtering. Thin Solid Films 2008, 516, 3105–3111. [Google Scholar] [CrossRef]
- Tauc, J.; Grigorovici, R.; Vancu, A. Optical properties and electronic structure of amorphous germanium. Phys. Status Solid 1966, 15, 627–637. [Google Scholar] [CrossRef]
- Kim, S.H.; Ahn, C.H.; Yun, M.G.; Cho, S.W.; Cho, H.K. Anomalous tin chemical bonding in indium-zinc-tin oxide films and their thin film transistor performance. J. Phys. D 2014, 47, 485101. [Google Scholar] [CrossRef]
- Nayak, P.K.; Hedhili, M.N.; Cha, D.; Alshareef, H.N. High performance In2O3 thin film transistors using chemically derived aluminum oxide dielectric. Appl. Phys. Lett. 2013, 103, 033518. [Google Scholar] [CrossRef]
- Kofstad, P. Defect reactions. In Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides; Wiley Interscience: New York, NY, USA, 1972; Chapter 2. [Google Scholar]
- Kim, M.H.; Lee, H.S. Effect of in addition and annealing temperature on the device performance of solution-processed In-Zn-Sn-O thin film transistors. Solid-State Electron. 2014, 96, 14–18. [Google Scholar] [CrossRef]
- Bang, S.; Lee, S.; Park, J.; Park, S.; Jeong, W.; Jeon, H. Investigation of the effects of interface carrier concentration on ZnO thin film transistors fabricated by atomic layer deposition. J. Phys. D 2009, 42, 235102. [Google Scholar] [CrossRef]
- Nguyen, C.P.T.; Trinh, T.T.; Dao, V.A.; Raja, J.; Jang, K.; Le, T.A.H.; Iftiquar, S.M.; Yi, J. Bias-stress-induced threshold voltage shift dependence of negative charge trapping in the amorphous indium tin zinc oxide thin-film transistors. Semiconduct. Sci. Technol. 2013, 28, 105014. [Google Scholar] [CrossRef]
- Denny, Y.R.; Lee, K.; Seo, S.; Oh, S.K.; Kang, H.J.; Yang, D.S.; Heo, S.; Chung, J.C.; Lee, J.C. Electrical, electronic and optical properties of amorphous indium zinc tin oxide thin films. Appl. Surf. Sci. 2014, 315, 454–458. [Google Scholar] [CrossRef]
- Jun, T.; Song, K.; Jung, Y.; Jeong, S.; Moon, J. Bias stress stable aqueous solution derived Y-doped ZnO thin film transistors. J. Mater. Chem. 2011, 21, 13524–13529. [Google Scholar] [CrossRef]
- Olziersky, A.; Barquinha, P.; Vila, A.; Pereira, L.; Goncalves, G.; Fortunato, E.; Martins, R.; Morante, J.R. Insight on the SU-8 resist as passivation layer for transparent Ga2O3-In2O3-ZnO thin-film transistors. J. Appl. Phys. 2010, 108, 064505. [Google Scholar] [CrossRef]
Annealing Temperature | Rq (nm) |
---|---|
As-Deposited | 0.21 |
150 °C | 0.31 |
250 °C | 0.23 |
350 °C | 0.33 |
Annealing Temperature | Carrier Concentration (cm−3) | Resistivity (Ω·cm) |
---|---|---|
As-Deposited | 5.4 × 1016 | 10 |
150 °C | 6.7 × 1016 | 9.5 |
250 °C | 7.2 × 1017 | 0.60 |
350 °C | 1.0 × 1018 | 0.33 |
Annealing Temperature | Binding Energy (eV) | Peak Area (%) | |||
---|---|---|---|---|---|
Metal-Oxide | O-OH | Oxy. Vac | Metal-Oxide | Oxy. Vac | |
As-Deposited | 529.42 | 531.39 | 530.40 | 82 | 18 |
150 °C | 529.28 | 531.33 | 530.40 | 77 | 23 |
250 °C | 529.32 | 531.34 | 530.40 | 75.8 | 24.2 |
350 °C | 529.31 | 531.39 | 530.40 | 71.2 | 28.8 |
Annealing Temperature | µFE (cm2/Vs) | Ion/off (A) | VT (V) | SS (V/dec) | NT (cm−2) |
---|---|---|---|---|---|
As-Deposited | 2.5 | ~106 | 18.6 | 1.22 | 2.1 × 1012 |
150 °C | 4.0 | ~107 | 4.6 | 0.38 | 5.8 × 1011 |
250 °C | 14 | ~107 | −0.8 | 0.15 | 1.6 × 1011 |
350 °C | 34 | ~108 | −4.6 | 0.12 | 1.1 × 1011 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noviyana, I.; Lestari, A.D.; Putri, M.; Won, M.-S.; Bae, J.-S.; Heo, Y.-W.; Lee, H.Y. High Mobility Thin Film Transistors Based on Amorphous Indium Zinc Tin Oxide. Materials 2017, 10, 702. https://doi.org/10.3390/ma10070702
Noviyana I, Lestari AD, Putri M, Won M-S, Bae J-S, Heo Y-W, Lee HY. High Mobility Thin Film Transistors Based on Amorphous Indium Zinc Tin Oxide. Materials. 2017; 10(7):702. https://doi.org/10.3390/ma10070702
Chicago/Turabian StyleNoviyana, Imas, Annisa Dwi Lestari, Maryane Putri, Mi-Sook Won, Jong-Seong Bae, Young-Woo Heo, and Hee Young Lee. 2017. "High Mobility Thin Film Transistors Based on Amorphous Indium Zinc Tin Oxide" Materials 10, no. 7: 702. https://doi.org/10.3390/ma10070702
APA StyleNoviyana, I., Lestari, A. D., Putri, M., Won, M. -S., Bae, J. -S., Heo, Y. -W., & Lee, H. Y. (2017). High Mobility Thin Film Transistors Based on Amorphous Indium Zinc Tin Oxide. Materials, 10(7), 702. https://doi.org/10.3390/ma10070702