Hazards and Risks of Engineered Nanoparticles for the Environment and Human Health
Abstract
:1. Introduction
1.1. Background
1.2. Objectives
- Investigate the current state of knowledge of the risks of ENPs for the environment and human health.
- Estimate whether this knowledge is sufficient to facilitate comprehensive and effective risk assessment of ENPs.
- Provide recommendations on future research in the field of risk assessment of ENPs.
1.3. Methodology
2. Nanotechnology and Its Applications
2.1. Nanotechnology and Nanoparticles
2.2. Areas of Application
Areas | Applications |
---|---|
Automotive | Lightweight construction; Catalysts; Painting; Tires; Sensors; Windshield and body coatings |
Construction | Materials; Insulation; Flame retardants; Surface coatings; Mortar |
Electronics | Displays; Data memory; Laser diodes; Fiber optics; Optical switches; Filters; Conductive coatings; Antistatic coatings; Transistors |
Engineering | Protective coatings for tools, machines; Lubricant-free bearings |
Food and Drink | Packaging; Storage life sensors; Additives; Juice clarifiers |
Medicine | Drug delivery systems; Contrast medium; Rapid testing systems; Prostheses and implants; Antimicrobial agents; In-body diagnostic systems |
Textiles | Surface coatings; “Smart” clothes (anti-wrinkle, stain resistant, temperature controlled) |
Chemical | Fillers for paints; Composite materials; Impregnation of papers; Adhesives; Magnetic fluids |
Cosmetics | Sunscreen; Lipsticks; Skin creams; Toothpaste |
Energy | Lighting; Fuel cells; Solar cells; Batteries; Capacitors |
Environmental | Environmental monitoring; Soil and groundwater remediation; Toxic exposure sensors; Fuel changing catalysts; Green chemistry |
Household | Ceramic coatings for irons; Odor removers; Cleaners for glass, ceramics, metals |
Sports | Ski wax; Tennis rackets; Golf clubs; Tennis balls; Antifouling coatings for boats; Antifogging coatings for glasses, goggles |
Military | Neutralization materials for chemical weapons, bullet-proof protection |
3. Defining “Hazard” and “Risk”
4. Risk Assessment of ENPs
4.1. Hazard Identification
4.1.1. Current state of knowledge
In vivo studies
Carbon nanotubes (CNTs)
C60 fullerenes
Metal and metal oxide ENPs
In vitro studies
Carbon nanotubes (CNTs)
C60 fullerenes
Quantum dots (QDs)
Metal and metal oxide ENPs
4.1.2. Limitations to hazard identification of ENPs
4.2. Dose-Response Assessment
4.2.1. The concept of “dose”
4.2.2. Characterization of ENPs
Specific Research Field | State of Progress | Total | |||
---|---|---|---|---|---|
Unknown | In Progress | Completed | |||
Identification of metrics and associated methods for the measurement of ENPs and their properties | Number of studies | 4 | 12 | 12 | 28 |
Funding value (mill. €) | - | 16.23 | 6.80 | 23.02 | |
Development of standardised, well-characterised reference ENPs | Number of studies | 1 | 1 | 6 | 8 |
Funding value (mill. €) | - | 0.28 | 0.20 | 0.47 | |
Understanding the properties of ENPs in the context of their ignition and explosion potential | Number of studies | - | 1 | 2 | 3 |
Funding value (mill. €) | - | 5.57 | 0.32 | 5.89 |
4.3. Exposure Assessment
4.3.1. Environmental exposure assessment
Environmental fate of ENPs
Specific Research Field | State of Progress | Total | |||
---|---|---|---|---|---|
Unknown | In Progress | Completed | |||
Identification of sources of ENPs | Number of studies | 1 | 11 | 13 | 25 |
Funding value (mill. €) | - | 13.35 | 2.37 | 15.72 | |
Understanding the environmental fate, behaviour and interaction of ENPs in air | Number of studies | 7 | 5 | 12 | |
Funding value (mill. €) | - | 1.42 | 2.20 | 3.62 | |
Understanding the environmental fate, behaviour and interaction of ENPs in soils and water | Number of studies | 13 | 23 | 36 | |
Funding value (mill. €) | - | 1.74 | 5.09 | 6.83 |
Fate of ENPs in air
Fate of ENPs in water
Fate of ENPs in soil
Biodegradation and chemical transformation of ENPs
4.3.2. Occupational exposure assessment
General considerations
Experimental results
4.3.3. Consumer exposure assessment
4.4. Risk Characterization
4.4.1. Completed risk characterization studies with ENPs
4.4.2. Limitations to risk characterization of ENPs
5. Overcoming the Limitations to the Risk Assessment of ENPs
5.1. Recommendations on Future Research
Field(s) | Research Needs |
---|---|
Metrology and Characterization of ENPs |
|
HI and DRA |
|
EEA |
|
OEA |
|
CEA |
|
5.2. On-Going Research Efforts
6. Managing Uncertainty
7. Conclusions and Recommendations
Objective 1: Investigate the Current state of Knowledge of the Risks of ENPs for the Environment and Human Health
Objective 2: Estimate Whether Current Knowledge is Sufficient to Facilitate Comprehensive and Effective Risk Assessment of ENPs
Objective 3: Provide Recommendations on Future Research in the Field of Risk Assessment of ENPs
References
- Holister, P.; Weener, J.; Vas, C.; Harper, T. Nanoparticles: Technology White Papers nr. 3; Cientifica: London, UK, 2003. Available online: http://images.iop.org/dl/nano/wp/nanoparticles_WP.pdf (accessed 10 September 2009).
- Helland, A. Nanoparticles: A Closer Look at the Risks to Human Health and the Environment. Perceptions and Precautionary Measures of Industry and Regulatory Bodies in Europe; International Institute for Industrial Environmental Economics (IIIEE): Lund, Sweden, 2004. Available online: http://www.iiiee.lu.se/Publication.nsf/$webAll/D9CA9F1E83E4FA12C1256F9D00539C39/$FILE/Asgeir%20Helland.pdf (accessed 13 October 2009).
- Pertsov, E. Nanomaterials: New Research Developments; Nova Science Publishers: Fargo, ND, USA, 2008. [Google Scholar]
- Applications of Nanotechnology; International Society for Complexity, Information and Design (INCID): Altoona, PA, USA, 2008. Available online: http://www.iscid.org/encyclopedia/Applications_of_Nanotechnology (accessed 10 September 2009).
- U.S. Environmental Protection Agency Nanotechnology White Paper; U.S. EPA: Washington, DC, USA, 2007. Available online: http://www.epa.gov/osa/pdfs/nanotech/epa-nanotechnology-whitepaper-0207.pdf (accessed 10 September 2009).
- Perret, H.; Audetat, M.; Petriccione, B.; Joseph, C.; Kaufmann, A. Approaches of Risk: An Introduction; RIBios et IUED: Geneva, Switzerland, 2005. Available online: http://www.rezoscience.ch/rp/296/version/default/part/AttachmentData/data/ribiosbroch-approchesrisque-20061030.pdf (accessed 10 September 2009).
- Hansen, S. Regulation and Risk Assessment of Nanomaterials—Too Little, Too Late? Technical University of Denmark (DTU): Lyngby, Denmark, 2009. Available online: http://www2.er.dtu.dk/publications/fulltext/2009/ENV2009-069.pdf (accessed 10 September 2009).
- International Programme on Chemical Safety. IPCS Risk Assessment Terminology; World Health Organization: Geneva, Switzerland, 2004. Available online: http://www.who.int/ipcs/methods/harmonization/areas/ipcsterminologyparts1and2.pdf (accessed 10 September 2009).
- Nielsen, E.; Ostergaard, G.; Larsen, J. Toxicological Risk Assessment of Chemicals: A Practical Guide; Informa Healthcare: New York, NY, USA, 2007; pp. 2–3. [Google Scholar]
- Leeuwen, C.; Vermeire, T. Risk Assessment of Chemicals. An Introduction; Springer: Wiesbaden, Germany, 2007; pp. 688–694. [Google Scholar]
- European Commission Technical Guidance Document (TGD) on Risk Assessment; European Commission Joint Research Center (ECJRC): Location, Country, 2003. Available online: http://ecb.jrc.ec.europa.eu/tgd/ (accessed 10 September 2009).
- Hansen, S.; Larsen, B.; Olsen, S.; Baun, A. Categorization framework to aid hazard identification of nanomaterials. Nanotoxicology 2007, 11, 243–250. [Google Scholar] [CrossRef]
- Lam, C.; James, J.; McCluskey, R.; Hunter, R. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Sci. 2004, 77, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Warheit, D.; Laurence, B.; Reed, K.; Roach, D.; Reynolds, G.; Webb, T. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol. Sci. 2004, 77, 117–125. [Google Scholar]
- Smith, C.; Shaw, B.; Handy, R. Toxicity of single walled carbon nanotubes on rainbow trout, (Oncorhynchus mykiss): respiratory toxicity, organ pathologies, and other physiological effects. Aquat. Toxicol. 2007, 82, 94–109. [Google Scholar] [CrossRef] [PubMed]
- Carrero-Sanchez, J.; Elias, A.; Mancilla, R.; Arrellin, G.; Terrones, H.; Laclette, J.; Terrones, M. Biocompatibility and toxicological studies of carbon nanotubes doped with nitrogen. Nano Lett. 2007, 6, 1609–1616. [Google Scholar] [CrossRef]
- Poland, C.; Duffin, R.; Kinloch, I.; Maynard, A.; Wallace, W.; Seaton, A.; Stone, V.; Brown, S.; Macnee, W.; Donaldson, K. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat. Nanotechnol. 2008, 3, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.; Chen, W.; Chiang, L. Free radical scavenging activity of fullerenol on the ischemia-reperfusion intestine in dogs. World J. Surg. 2000, 24, 450–454. [Google Scholar] [CrossRef] [PubMed]
- Oberdörster, E. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in juvenile largemouth bass. Environ. Health Perspect. 2004, 112, 1058–1062. [Google Scholar] [CrossRef] [PubMed]
- Oberdörster, E. Toxicity of C60 Fullerenes to Two Aquatic Species: Daphnia and Largemouth Bass; American Chemical Society: Anaheim, CA, USA, 2004. [Google Scholar]
- Zhu, S.; Oberdorster, E.; Haasch, M. Toxicity of an engineered nanoparticle (Fullerene, C60) in two aquatic species, daphnia and fathead minnow. Mar. Environ. Res. 2006, 62, S5–S9. [Google Scholar] [CrossRef] [PubMed]
- Sayes, C.; Marchione, A.; Reed, K.; Warheit, D. Comparative pulmonary toxicity assessments of C60 water suspensions in rats: few differences in fullerene toxicity in vivo in contrast to in vitro profiles. Nano Lett. 2007, 7, 2399–2406. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Yu, C.; Ueng, T.; Chen, S.; Chen, B.; Huang, K.; Chiang, L. Acute and subacute toxicity study of water-soluble polyalkylsulfonated C60 in rats. Toxicol. Pathol. 1998, 26, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Oberdorster, E.; Zhu, S.; Blickley, T.; Clellan-Green, P.; Haasch, M. Ecotoxicology of carbon-based engineered nanoparticles: effects of fullerene (C60) on aquatic organisms. Carbon 2006, 44, 1112–1120. [Google Scholar] [CrossRef]
- Li, X.; Brown, D.; Smith, S.; MacNee, W.; Donaldson, K. Short term inflammatory responses following intratracheal instillation of fine and ultrafine carbon black in rats. Inhal. Toxicol. 1999, 11, 709–731. [Google Scholar] [CrossRef] [PubMed]
- Gordon, T.; Chen, L.; Fine, J.; Schlesinger, R.; Su, W.; Kimmel, T.; Amdur, M. Pulmonary effects of inhaled zinc-oxide in human-subjects, guinea-pigs, rats, and rabbits. Am. Ind. Hyg. Assoc. J. 1992, 53, 503–509. [Google Scholar] [CrossRef]
- Beckett, W.; Chalupa, D.; Pauly-Brown, A.; Speers, D.; Stewart, J.; Frampton, M.; Utell, M.; Huang, L.; Cox, C.; Zareba, W.; Oberdorster, G. Comparing inhaled ultrafine versus fine zinc oxide particles in healthy adults: a human inhalation study. Am. J. Respir. Crit. Care Med. 2005, 171, 1129–1135. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Feng, W.; Wang, T.; Jia, G.; Wang, M.; Shi, J.; Zhang, F.; Zhao, Y.; Chai, Z. Acute toxicity of nano- and micro-scale zinc powder in healthy adult mice. Toxicol. Lett. 2006, 161, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Watts, D. Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol. Lett. 2005, 158, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Oberdörster, G. Toxicology of ultrafine particles: in vivo studies. Phil. Trans. R. Soc. Lond. 2000, A 358, 2719–2740. [Google Scholar] [CrossRef]
- Oberdörster, G.; Ferin, J.; Lehnert, B. Correlation between particle size, in vivo particle persistence and lung injury. Environ. Health Perspect. 1994, 102, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Warheit, D.; Webb, T.; Sayes, C.; Colvin, V.; Reed, K. Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: toxicity is not dependent upon particle size and surface area. Toxicol. Sci. 2006, 91, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhou, G.; Chen, C.; Yu, H.; Wang, T.; Ma, Y.; Jia, G.; Gao, Y.; Li, B.; Sun, J.; Li, Y.; Jiao, F.; Zhao, Y.; Chai, Z. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol. Lett. 2007, 168, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Bourrinet, P.; Bengele, H.; Bonnemain, B.; Dencausse, A.; Idee, J. M.; Jacobs, P. M.; Lewis, J. M. Preclinical safety and pharcokinitic profile of ferumoxtran-10, an ultrasmall superparamagnetic iron oxide magnetic resonance contrast agent. Invest. Radiol. 2006, 41, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Shvedova, A.; Castranova, V.; Kisin, E.; Schwegler-Berry, D.; Murray, A.R.; Gandelsman, V.Z.; Maynard, A.; Baron, P. Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J. Toxicol. Environ. Heal. 2006, 66, 1909–1926. [Google Scholar] [CrossRef]
- Cui, D.; Tian, F.; Ozkan, C.; Wang, M.; Gao, H. Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol. Lett. 2005, 155, 73–85. [Google Scholar] [CrossRef] [PubMed]
- Sayes, C.; Liang, F.; Hudson, J.; Mendez, J.; Guo, W.; Beach, J.; Moore, V.; Doyle, C.; West, J.; Billups, W.; Ausman, K.; Colvin, V. Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol. Lett. 2006, 161, 135–142. [Google Scholar]
- Bottini, M.; Bruckner, S.; Nika, K.; Bottini, N.; Bellucci, S.; Magrini, A.; Bergamaschi, A.; Mustelin, T. Multi-walled carbon nanotubes induce t-lymphocyte apoptosis. Toxicol. Lett. 2006, 160, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Monteiro-Riviere, N.; Nemanich, R.; Inman, A.; Wang, Y.; Riviere, J. Multi-walled Carbon nanotube interactions with human epidermal keratinocytes. Toxicol. Lett. 2005, 155, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Mauter, M.; Elimelech, M. Physicochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity. Environ. Sci. Technol. 2008, 42, 5843–5859. [Google Scholar] [CrossRef] [PubMed]
- Adelman, P.; Baierl, T.; Drosselmeyer, E.; Politis, C.; Polzer, G.; Seidel, A.; Steinleitner, C. Effect of Fullerenes on Alveolar Macrophages in Vitro. In Toxic and Carcinogenic Effect of Solid Particles in the Respiratory Tract; Mohr, U., Dungworth, D., Mauderly, J., Oberdoester, G., Eds.; ILSI Press: Washington, DC, USA, 1994; pp. 405–407. [Google Scholar]
- Porter, A.; Muller, K.; Skepper, J.; Midgley, P.; Welland, M. Uptake of C60 by human monocyte macrophages, its localization and implications for toxicity: studied by high resolution electron microscopy and electron tomography. Acta Biomater. 2006, 2, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Rubins, J. Alveolar macrophages: wielding the double-edged sword of inflammation. Am. J. Respir. Crit. Care Med. 2003, 167, 103–104. [Google Scholar] [CrossRef] [PubMed]
- Yamawaki, H.; Iwai, N. Cytotoxicity of water-soluble fullerene in vascular endothelial cells. Am. J. Cell Physiol. 2006, 290, C1495–C1502. [Google Scholar] [CrossRef]
- Rouse, J.; Yang, J.; Barron, A.; Monteiro-Riviere, N. Fullerene-based amino acid nanoparticle interactions with human epidermal keratinocytes. Toxicology in Vitro 2006, 20, 1313–1320. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, J.; Mattoussi, H.; Mauro, J.; Simon, S. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol. 2003, 21, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Hoshino, A.; Hanaki, K.; Suzuki, K.; Yamamoto, K. Applications of t-lymphoma labeled with fluorescent quantum dots to cell tracing markers in mouse body. Biochem. Bioph. Res. Co. 2004, 314, 46–53. [Google Scholar] [CrossRef]
- Lovric, J.; Bazzi, H.; Cuie, Y.; Fortin, G.; Winnik, F.; Maysinger, D. Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J. Mol. Med. 2005, 83, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Green, M.; Howman, E. Semiconductor quantum dots and free radical induced DNA nicking. Chem. Commun. 2005, 1, 121–123. [Google Scholar] [CrossRef]
- Chang, E.; Thekkek, N.; Yu, W.; Colvin, V.; Drezek, R. Evaluation of quantum dot cytotoxicity based on intracellular uptake. Toxicol. Lett. 2006, 2, 1412–1417. [Google Scholar]
- Sayes, C.; Wahi, R.; Kurian, P.; Liu, Y.; West, J.; Ausman, K.; Warheit, D.; Colvin, V. Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol. Sci. 2006, 92, 174–185. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sanderson, B.; Wang, H. Cyto-and genotoxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells. Mutat. Res-Gen. Tox. En. 2007, 628, 99–106. [Google Scholar] [CrossRef]
- Chen, M.; von Mikecz, A. Formation of nucleoplasmic protein aggregates impairs nuclear function in response to SiO2 nanoparticles. Exp. Cell Res. 2005, 305, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Muller, K.; Skepper, J.; Posfai, M.; Trivedi, R.; Howarth, S.; Corot, C.; Lancelot, E.; Thompson, P.; Brown, A.; Gillard, J. Effect of ultrasmall superparamagnetic iron oxide nanoparticles (ferumoxtran-10) on human monocytemacrophages in vitro. Biomaterials 2007, 28, 1629–1642. [Google Scholar] [CrossRef] [PubMed]
- Alt, V.; Bechert, T.; Steinrucke, P.; Wagener, M.; Seidel, P.; Dingeldein, E.; Domann, E.; Schnettler, R. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 2004, 25, 4383–4391. [Google Scholar] [CrossRef] [PubMed]
- Baker, C.; Pradhan, A.; Pakstis, L.; Pochan, D.; Shah, S. Synthesis and antibacterial properties of silver nanoparticles. J. Nanosci. Nanotechnol. 2005, 5, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Sayes, C.; Reed, K.; Warheit, D. Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol. Sci. 2007, 97, 163–180. [Google Scholar] [CrossRef] [PubMed]
- Warheit, D. How meaningful are the results of nanotoxicity studies in the absence of adequate material characterization? Toxicol Sci. 2008, 101, 183–185. [Google Scholar] [CrossRef] [PubMed]
- Plata, D.L.; Gschwend, P.M.; Reddy, C. Industrially synthesized single-walled carbon nanotubes: compositional data for users, environmental risk assessments, and source apportionment. Nanotechnology 2008, 19, 185706. [Google Scholar] [CrossRef] [PubMed]
- Oberdörster, G.; Maynard, A.; Donaldson, K.; Castranova, V.; Fitzpatrick, J.; Ausman, K.; Carter, J.; Karn, B.; Kreyling, W.; Lai, D.; Olin, S.; Monteiro-Riviere, N.; Warheit, D.; Yang, H. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Partic. Fibre Toxicol. 2005, 2, 8. [Google Scholar] [CrossRef]
- Oberdorster, G.; Oberdorster, E.; Oberdorster, J. Concepts of nanoparticle dose metric and response metric. Environ. Health Perspect. 2007, 115, A290. [Google Scholar]
- Stoeger, T.; Reinhard, C.; Takenaka, S.; Schroeppel, A.; Karg, E.; Ritter, B.; Heyder, J.; Schultz, H. Instillation of six different ultrafine carbon particles indicates surface area threshold dose for acute lung inflammation in mice. Environ. Health Perspect. 2006, 114, 328–333. [Google Scholar] [CrossRef] [PubMed]
- Stoeger, T.; Schmid, O.; Takenaka, S.; Schulz, H. Inflammatory response to TiO2 and carbonaceous particles scales best with BET surface area. Environ. Health Perspect. 2006, 115, A290–A291. [Google Scholar] [CrossRef]
- Wittmaack, K. In Search of the most relevant parameter for quantifying lung inflammatory response to nanoparticle exposure: particle number, surface area, or what? Environ. Health Perspect. 2007, 115, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Wittmaack, K. Dose and response metrics in nanotoxicology: Wittmaack responds to Oberdoerster et al. and Stoeger et al. Environ. Health Perspect. 2007, 115, A290–291. [Google Scholar] [CrossRef] [PubMed]
- Warheit, D.; Webb, T.; Colvin, V.; Reed, K.; Sayes, C. Pulmonary bioassay studies with nanoscale and fine-quartz particles in rats: toxicity is not dependent upon particle size but on surface characteristics. Toxicol. Sci. 2007, 95, 270–280. [Google Scholar] [CrossRef] [PubMed]
- Warheit, D.; Webb, T.; Reed, K.; Frerichs, S.; Sayes, C. Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: Differential responses related to surface properties. Toxicology 2007, 230, 90–104. [Google Scholar] [CrossRef] [PubMed]
- Aitken, R.; Hankin, S.; Ross, B.; Tran, C.; Stone, V.; Fernandes, T.; Donaldson, K.; Duffin, R.; Chaudhry, Q.; Wilkins, T.; Wilkins, S.; Levy, L.; Rocks, S.; Maynard, A. EMERGNANO: A Review of Completed and Near Completed Environment, Health and Safety Research on Nanomaterials and Nanotechnology; Defra Project CB0409 Report: London, UK, 2009. Available online: http://randd.defra.gov.uk/Default.aspx?Menu=Menu&Module=More&Location=None&ProjectID=16006 (accessed 10 September 2009).
- Wiesner, M.; Lowry, G.; Alvarez, P.; Dionysiou, D.; Bisawas, P. Assessing the role of manufactured nanomaterials. Environ. Sci. Tech. 2006, 40, 4336–4345. [Google Scholar] [CrossRef]
- Aitken, R.; Creely, K.; Tran, C. Nanoparticles: An Occupational Hygiene Review; Institute of Occupational Medicine: Edingburgh, UK, 2004. Available online: http://www.hse.gov.uk/research/rrpdf/rr274.pdf (accessed 10 September 2009).
- Dennekamp, M.; Mehenni, O.; Cherrie, J.; Seaton, A. Exposure to ultrafine particles and PM 2.5 in different micro-environments. Ann. Occup. Hyg. 2002, 46, 412–414. [Google Scholar] [CrossRef]
- Colvin, V. The potential environmental impact of engineered nanoparticles. J. Nat. Biotechnol. 2003, 21, 1166–1170. [Google Scholar] [CrossRef]
- Oberdörster, G.; Oberdorster, E.; Oberdorster, J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 2005, 113, 823–839. [Google Scholar] [CrossRef] [PubMed]
- Hoon, H.; Fortner, J.; Hughes, J.; Kim, J. Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environ. Sci. Techn. 2007, 41, 179–184. [Google Scholar] [CrossRef]
- Moore, M. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ. Int. 2006, 32, 967–976. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W. Nanoscale iron particles for environmental remediation: an overview. J. Nanopart. Res. 2003, 5, 323–332. [Google Scholar] [CrossRef]
- Lecoanet, H.; Wiesner, M. Velocity effects on fullerene and oxide nanoparticle deposition in porous media. Environ. Sci. Technol. 2004, 38, 4377–4382. [Google Scholar] [CrossRef] [PubMed]
- Lecoanet, H.; Bottero, J.; Wiesner, M. Laboratory assessment of the mobility of nanomaterials in porous media. Environ. Sci. Technol. 2004, 38, 5164–5169. [Google Scholar] [CrossRef] [PubMed]
- Filley, T.; Ahn, M.; Held, B.; Blanchette, R. Investigations of fungal mediated (C60-C70) fullerene decomposition. Div. Environ. Chem. 2005, 45, 446–450. [Google Scholar]
- Fortner, J.; Lyon, D.; Sayes, C.; Boyd, A.; Falkner, J.; Hotze, E.; Alemany, L.; Tao, Y.; Guo, W.; Ausman, K.; Colvin, V.; Hughes, J. C60 in water: nanocrystal formation and microbial response. J. Environ. Sci. Technol. 2005, 39, 4307–4316. [Google Scholar] [CrossRef]
- Brzoska, M.; Langer, K.; Coester, C.; Loitsch, S.; Wagner, T.; Mallinckrodt, C. Incorporation of biodegradable nanoparticles into human airway epithelium cells- in vitro. Study of the suitability as a vehicle for drug or gene delivery in pulmonary diseases. J. Biochem. Biophys. Res. Commun. 2004, 318, 562–570. [Google Scholar] [CrossRef]
- Hardman, R. A toxicological review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ. Health Perspect. 2006, 114, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Luther, W.; Malanowski, N. Innovations-und Technikanalyse: Nanotechnologie als Wirtschaftlicher Wachstumsmarkt; VDI Technologiecentrum: Düsseldorf, Germany, 2004. Available online: http://www.bmbf.de/pub/nanotech_als_wachstumsmarkt.pdf (accessed 10 September 2009).
- Approaches to Safe Nanotechnology: An Information Exchange with NIOSH; Department Of Health And Human Services Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health: Washington DC, USA, 2006. Available online: http://www.cdc.gov/niosh/docs/2009-125/pdfs/2009-125.pdf (accessed 10 September 2009).
- Maynard, A.; Baron, P.; Foley, M.; Shvedova, A.; Kisin, E.; Castranova, V. Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material. J. Toxicol. Environ. Health. 2004, 67, 87–107. [Google Scholar] [CrossRef]
- Han, J.; Lee, E.; Lee, J.; So, K.; Lee, Y.; Bae, G.; Lee, S.; Ji, J.; Cho, M.; Yu, I. Monitoring multi-walled carbon nanotube exposure in carbon nanotube research facility. Inhal. Toxicol. 2008, 20, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Yeganeh, B.; Kull, C.; Hull, M.; Marr, L. Characterization of airborne particles during production of carbonaceous nanomaterials. Environ. Sci. Techn. 2008, 42, 4600–4606. [Google Scholar] [CrossRef]
- Fujitani, Y.; Kobayashi, T.; Arashidani, K.; Kunugita, N.; Suemura, K. Measurement of the physical properties of aerosols in a fullerene factory for inhalation exposure assessment. J. Occup. Environ. Hyg. 2008, 5, 380–389. [Google Scholar] [CrossRef] [PubMed]
- Bello, D.; Hart, A.; Ahn, K.; Hallock, M.; Yamamoto, M.; Garcia, E.; Ellenbecker, M.; Wardle, B. Particle exposure levels during CVD growth and subsequent handling of vertically-aligned carbon nanotube films. Carbon 2008, 46, 974–981. [Google Scholar] [CrossRef]
- Biswas, P.; Wu, C. Critical review: nanoparticles and the environment. J. Air Waste Manag. Assoc. 2007, 55, 708–746. [Google Scholar] [CrossRef]
- Mazzuckelli, J.; Methner, M.; Birch, M.; Evans, D.; Ku, B.; Crouch, K.; Hoover, M. Case study: identification and characterization of potential sources of worker exposure to carbon nanofibers during polymer composite laboratory operations. J. Occ. Environ. Hyg. 2007, 4, 125–130. [Google Scholar] [CrossRef]
- Möhlmann, C. Vorkommen ultrafeiner Aerosole an Arbeitsplätzen. Gefahrst. Reinhalt. Luft. 2005, 65, 469–471. [Google Scholar]
- Schneider, T. Evaluation and Control of Occupational Health Risks from Nanoparticles; Nordic Council of Ministers: Copenhagen, Denmark, 2007. Available online: www.norden.org/pub/sk/showpub.asp?pubnr=2007:581 (accessed 3 November 2009).
- Brun, E.; Op de Beeck, R.; van Herpe, S.; Isotalo, L.; Laamanen, I.; Blotière, C.; Guimon, M.; Mur, J.; Orthen, B.; Wagner, E.; Flaspöler, E.; Reinert, D.; Galwas, M.; Poszniak, M.; Carreras, E.; Guardino, X.; Solans, X. European Risk Observatory Report: Expert Forecast on Emerging Chemical Risks Related to Occupational Safety and Health; Office for Official Publications of the European Communities: Luxembourg, Luxembourg, 2008. Available online: http://osha.europa.eu/en/publications/reports/TE3008390ENC_chemical_risks (accessed 3 November 2009).
- Hansen, S.; Michelson, E.; Kamper, A.; Borling, P.; Stuer-Lauridsen, F.; Baun, A. Categorization framework to aid exposure assessment of nanomaterials in consumer products. Ecotoxicology 2008, 17, 438–447. [Google Scholar] [CrossRef] [PubMed]
- Wijnhoven, S.; Dekkers, S.; Hagens, W.; De Jong, W. Exposure to Nanomaterials in Consumer Products; RIVM: Bilthoven, The Netherlands, 2009. Available online: http://www.rivm.nl/bibliotheek/rapporten/340370001.pdf (accessed 3 November 2009).
- Mueller, N.; Nowack, B. Exposure modeling of engineered nanoparticles in the environment. Eviron. Sci. Technol. 2008, 42, 4447–4453. [Google Scholar] [CrossRef]
- Park, B.; Donaldson, K.; Duffin, R.; Tran, L.; Kelly, F.; Mudway, I.; Morin, J.; Guest, R.; Jenkinson, P.; Samaras, Z.; Giannouli, M.; Kouridis, H.; Martin, P. Hazard and risk assessment of a nanoparticulate cerium oxide-based diesel fuel additive—a case study. Inhal. Toxicol. 2008, 20, 547–566. [Google Scholar] [CrossRef] [PubMed]
- NIST Reference Materials Are “Gold Standard” for Bio-Nanotech Research; NIST: Gaithersburg, MD, USA, 2009. Available online: http://www.nist.gov/public_affairs/techbeat/tb2008_0108.htm (accessed 3 November 2009).
- Nanotechnology-Related Environmental, Health, and Safety (nanoEHS) Research at NIST; NIST: Gaithersburg, MD, USA, 2009. Available online: http://www.nist.gov/public_affairs/nanoehs.html (accessed 3 November 2009).
- International Alliance for NanoEHS Harmonization. http://nanoehsalliance.org/ (accessed 3 November 2009).
- IOM Launches ENPRA—A Novel Integrated Approach to Assessing Engineered Nanoparticle Risk; Institute of Occupational Medicine (IOM): Edingburg, UK, 2009. Available online: http://www.iom-world.org/news_archive/enpra.php (accessed 3 November, 2009).
- EU Nanotechnology R&D in the Field of Health and Environmental Impact of Nanoparticles; European Commission, Research DG: Brussels, Belgium, 2008. Available online: ftp://ftp.cordis.europa.eu/pub/nanotechnology/docs/final-version.pdf (accessed 3 November 2009).
- Nordan, M.; Holman, M.; Bünger, M. Nanotech Commercialization Has Advanced, but Government Action to Address Risk Has Not; Testimony before the U.S. Congress, House Committee on Science: Washington, DC, USA, 2006. [Google Scholar]
- Small Is Different: A Science Perspective on the Regulatory Challenges of the Nanoscale; The Council of Canadian Academies (CCA): Ottawa, Canada, 2008. Available online: http://www.scienceadvice.ca/documents/(2008_07_10)_Report_on_Nanotechnology.pdf (accessed 10 September 2009).
- Linkov, I.; Satterstrom, K.; Steevens, J.; Ferguson, E.; Pleus, R. Multicriteria decision analysis and environmental risk assessment for nanomaterials. J. Nanopar. Res. 2007, 9, 543–554. [Google Scholar] [CrossRef]
- Linkov, I.; Satterstrom, F.; Kiker, G.; Batchelor, C.; Bridges, T.; Ferguson, E. From comparative risk assessment to multi-criteria decision analysis and adaptive management: recent developments and applications. Environ. In. 2006, 32, 1072–1093. [Google Scholar]
- Bettinger, N.; Cura, J.; Finkelstein, K.; Hope Henning, M.; Menzie, C.; Mitchell, D.; Petron, S.; Potocki, B.; Svirsky, S.; Tyler, P. A Weight-of-evidence Approach for Evaluating Ecological Risks; Massachusetts Weight-of-Evidence Workgroup: Boston, MA, USA, 1995. Available online: http://www.mass.gov/dep/cleanup/laws/weightev.pdf (accessed 10 September 2009).
- Kerr, R. Risk assessment: a new way to ask the experts: rating radioactive waste risks. Science 1996, 274, 913–914. [Google Scholar] [CrossRef]
- Kandlikar, M.; Ramachandran, G.; Maynard, A.; Murdock, B.; Toscano, W. Health risk assessment for nanoparticles: a case for using expert judgment. J. Nanopar. Res. 2007, 9, 137–156. [Google Scholar] [CrossRef]
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Hristozov, D.; Malsch, I. Hazards and Risks of Engineered Nanoparticles for the Environment and Human Health. Sustainability 2009, 1, 1161-1194. https://doi.org/10.3390/su1041161
Hristozov D, Malsch I. Hazards and Risks of Engineered Nanoparticles for the Environment and Human Health. Sustainability. 2009; 1(4):1161-1194. https://doi.org/10.3390/su1041161
Chicago/Turabian StyleHristozov, Danail, and Ineke Malsch. 2009. "Hazards and Risks of Engineered Nanoparticles for the Environment and Human Health" Sustainability 1, no. 4: 1161-1194. https://doi.org/10.3390/su1041161