Assessing the Effects of Urban Morphology Parameters on Microclimate in Singapore to Control the Urban Heat Island Effect
Abstract
:1. Introduction
- (1)
- Continuous field measurement at 27 points in the studied area to collect the microclimatic weather conditions at 2.5-m height for one year to investigate the spatial and temporal microclimate parameters related to the distribution of open space at the local scale in Singapore, and explain changes in microclimate within this specific morphology.
- (2)
- Determine the relationship between urban morphology parameters and microclimate parameters, as well as the influence radius of the surrounding urban morphology parameters.
- (3)
- Develop empirical models to correlate the air temperature at 2.5-m height with the urban morphology parameters and weather parameters.
2. Methodology
2.1. Study Area
2.2. Microclimate Parameter Measurements
2.3. Weather Data Selection for Analysis
- Daily maximum solar radiation larger than 900 W/m2;
- Hourly temperature and hourly solar radiation take on a bell shape profile;
- Daily average temperature higher than 24 °C; and
- Daily average wind speed less than 3 m/s.
2.4. Urban Morphology Parameter Measurement and Computation
- Tg = Globe temperature (°C)
- Va = Air velocity (m/s)
- Ta = Air temperature (°C)
- D = Globe diameter (mm)
- ε = Globe emissivity
- LAIn: leaf area index of species n
- An: canopy area of species n
- nn: number of plants of species n on the site
2.5. Regression Analysis for Model Development
3. Results and Analysis
3.1. Correlation between Air Temperature and Urban Morphology Parameters
(R2 = 98.7, F = 9815.39, Standard Error = 0.51)
(R2 = 92.1, F = 9134.51, Standard Error = 0.55)
(R2 = 91.7, F = 8814.31, Standard Error = 0.322)
(R2 = 77.7, F = 12991.11, Standard Error = 0.33)
3.2. Influence of Temporal and Spatial Variation on Microclimate
3.3. Influence of Site Geometry Parameter on Microclimate
3.4. Influence of Land Cover Parameters on Temperature
3.5. Influence of Spatial Location Parameters on Temperature
4. Discussion
5. Conclusions
Acknowledgment
Author Contributions
Conflicts of Interest
References
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Alavipanah, S.; Wegmann, M.; Qureshi, S.; Weng, Q.; Koellner, T. The role of vegetation in mitigating urban land surface temperatures: A case study of Munich, Germany during the warm season. Sustainability 2015, 7, 4689–4706. [Google Scholar] [CrossRef]
- Santamouris, M. Heat island research in Europe: The state of the art. Adv. Build. Energy Res. 2007, 1, 123–150. [Google Scholar] [CrossRef]
- Jeong, S.Y.; Yoon, S.H. Method to quantify the effect of apartment housing design parameters on outdoor thermal comfort in summer. Build. Environ. 2012, 53, 150–158. [Google Scholar] [CrossRef]
- Eliasson, I. The use of climate knowledge in urban planning. Landsc. Urban Plan. 2000, 48, 31–44. [Google Scholar] [CrossRef]
- Brown, R.D. Ameliorating the effects of climate change: Modifying microclimates through design. Landsc. Urban Plan. 2011, 100, 372–374. [Google Scholar] [CrossRef]
- Jusuf, S.K.; Wong, N.H.; Wong, Z.Y.; Tan, E. Transformation of industrial planning in Singapore: Study on the micro-climatic condition of different industrial estates. Build. Environ. 2014, 80, 48–60. [Google Scholar] [CrossRef]
- Givoni, B. Impact of planted areas on urban environmental quality: A review. Atmos. Environ. Part B Urban Atmos. 1991, 25, 289–299. [Google Scholar] [CrossRef]
- Salata, F.; Golasi, I.; Petitti, D.; de Lieto Vollaro, E.; Coppi, M.; de Lieto Vollaro, A. Relating microclimate, human thermal comfort and health during heat waves: An analysis of heat island mitigation strategies through a case study in an urban outdoor environment. Sustain. Cities Soc. 2017, 30, 79–96. [Google Scholar] [CrossRef]
- Lee, H.; Mayer, H.; Chen, L. Contribution of trees and grasslands to the mitigation of human heat stress in a residential district of Freiburg, Southwest Germany. Landsc. Urban Plan. 2016, 148, 37–50. [Google Scholar] [CrossRef]
- Yu, C.; Hien, W.N. Thermal benefits of city parks. Energy Build. 2006, 38, 105–120. [Google Scholar] [CrossRef]
- Skelhorn, C.; Lindley, S.; Levermore, G. The impact of vegetation types on air and surface temperatures in a temperate city: A fine scale assessment in Manchester, UK. Landsc. Urban Plan. 2014, 121, 129–140. [Google Scholar] [CrossRef]
- Upmanis, H.; Chen, D. Influence of geographical factors and meteorological variables on nocturnal urban park temperature differences a case study of summer 1995 in Göteborg, Sweden. Clim. Res. 1999, 13, 125–139. [Google Scholar] [CrossRef]
- Ca, V.T.; Asaeda, T.; Abu, E.M. Reductions in air conditioning energy caused by a nearby park. Energy Build. 1998, 29, 83–92. [Google Scholar] [CrossRef]
- Oke, T.R.; Johnson, G.T.; Steyn, D.G.; Watson, I.D. Simulation of surface urban heat islands under ‘ideal’ conditions at night Part 2: Diagnosis of causation. Bound. Layer Meteorol. 1991, 56, 339–358. [Google Scholar] [CrossRef]
- Sun, C.Y. A street thermal environment study in summer by the mobile transect technique. Theor. Appl. Climatol. 2011, 106, 433–442. [Google Scholar] [CrossRef]
- Yan, H.; Fan, S.; Guo, C.; Wu, F.; Zhang, N.; Dong, L. Assessing the effects of landscape design parameters on intra-urban air temperature variability: The case of Beijing, China. Build. Environ. 2014, 76, 44–53. [Google Scholar] [CrossRef]
- Yokobori, T.; Ohta, S. Effect of land cover on air temperatures involved in the development of an intra-urban heat island. Clim. Res. 2009, 39, 61–73. [Google Scholar] [CrossRef]
- Eliasson, I. Urban nocturnal temperatures, street geometry and land use. Atmos. Environ. 1996, 30, 379–392. [Google Scholar] [CrossRef]
- Liang, J.; Gong, J.; Sun, J.; Liu, J. A customizable framework for computing sky view factor from large-scale 3D city models. Energy Build. 2017, 149, 38–44. [Google Scholar] [CrossRef]
- Golasi, I.; Salata, F.; de Lieto Vollaro, E.; Coppi, M.; de Lieto Vollaro, A. Thermal perception in the mediterranean area: Comparing the mediterranean outdoor comfort index (moci) to other outdoor thermal comfort indices. Energies 2016, 9, 550. [Google Scholar] [CrossRef]
- Krüger, E.; Rossi, F.; Drach, P. Calibration of the physiological equivalent temperature index for three different climatic regions. Int. J. Biometeorol. 2017, 61, 1323–1336. [Google Scholar] [CrossRef] [PubMed]
- WEATHER Wise Singapore. National Environment Agency. Available online: http://app2.nea.govsg/data/cmsresource/20090721544571208250.pdf (accessed on 21 July 2009).
- Wong, N.H.; Yu, C. Study of green areas and urban heat island in a tropical city. Habitat Int. 2005, 29, 547–558. [Google Scholar] [CrossRef]
- Bahi, H.; Rhinane, H.; Bensalmia, A.; Scherer, D. Effects of urbanization and seasonal cycle on the surface urban heat island patterns in the coastal growing cities: A case study of Casablanca, Morocco. Remote Sens. 2016, 8, 829. [Google Scholar] [CrossRef]
- Geletič, J.; Lehnert, M.; Dobrovolný, P. Land Surface Temperature Differences within Local Climate Zones, Based on Two Central European Cities. Remote Sens. 2016, 8, 788. [Google Scholar] [CrossRef]
- Wang, J.; Zhan, Q.; Guo, H. The Morphology, Dynamics and Potential Hotspots of Land Surface Temperature at a Local Scale in Urban Areas. Remote Sens. 2015, 8, 18. [Google Scholar] [CrossRef]
- Sismanidis, P.; Keramitsoglou, I.; Kiranoudis, C.T.; Bechtel, B. Assessing the capability of a downscaled urban land surface temperature time series to reproduce the spatiotemporal features of the original data. Remote Sens. 2016, 8, 274. [Google Scholar] [CrossRef]
- Jusuf, S.K. Development of Estate Level Climate Related Impact Assessment Framework and Air Temperature Prediction within Urban Climatic Mapping Method in Singapore. Ph.D. Thesis, National University of Singapore, Singapore, 2009. [Google Scholar]
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex environments—Application of the RayMan model. Int. J. Biometeorol. 2007, 51, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Wong, N.H.; Jusuf, S.K.; Tan, C.L. Integrated urban microclimate assessment method as a sustainable urban development and urban design tool. Landsc. Urban Plan. 2011, 100, 386–389. [Google Scholar] [CrossRef]
- American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE). Handbook A, Fundamentals; American Society of Heating, Refrigerating and Air Conditioning Engineers: Atlanta, GA, USA, 2001; pp. 99–110. ISBN 0910110565. [Google Scholar]
- International Standard Organization (ISO). ISO 7726, Ergonomics of the Thermal Environment, Instruments for Measuring Physical Quantities; International Standard Organization: Geneva, Switzerland, 1998; pp. 45–51. ISBN 058038651. [Google Scholar]
- Ong, B.L. Green plot ratio: An ecological measure for architecture and urban planning. Landsc. Urban Plan. 2003, 63, 197–211. [Google Scholar] [CrossRef]
- Zakşek, K.; Bechtel, B. Source area estimation of urban air temperatures. Urban Remote Sens. Event (JURSE) 2015, 1–4. [Google Scholar] [CrossRef]
- Krüger, E.; Givoni, B. Outdoor measurements and temperature comparisons of seven monitoring stations: Preliminary studies in Curitiba, Brazil. Build. Environ. 2007, 42, 1685–1698. [Google Scholar] [CrossRef]
- Bernard, J.; Musy, M.; Calmet, I.; Bocher, E.; Keravec, P. Urban heat island temporal and spatial variations: Empirical modeling from geographical and meteorological data. Build. Environ. 2017, 125, 423–438. [Google Scholar] [CrossRef]
- Hien, W.N.; Jusuf, S.K. Air temperature distribution and the influence of sky view factor in a green Singapore estate. J. Urban Plan. Dev. 2009, 136, 261–272. [Google Scholar] [CrossRef]
- Chow, W.T.L.; Roth, M. Temporal dynamics of the urban heat island of Singapore. Int. J. Climatol. 2006, 26, 2243–2260. [Google Scholar] [CrossRef]
- Johansson, E. Influence of urban geometry on outdoor thermal comfort in a hot dry climate: A study in Fez, Morocco. Build. Environ. 2006, 41, 1326–1338. [Google Scholar] [CrossRef]
Time Period | Average Temperature (°C) | Average Number of Rainy Days | Average Morning Relative Humidity (%) | Average Evening Relative Humidity (%) | Average Wind Speed (km/h) |
---|---|---|---|---|---|
ANNUAL | 27 | 218 | 91 | 74 | 12 |
JAN | 27 | 18 | 92 | 74 | 17 |
FEB | 27 | 10 | 92 | 69 | 16 |
MAR | 28 | 15 | 92 | 72 | 14 |
APR | 28 | 18 | 93 | 74 | 9 |
MAY | 28 | 20 | 92 | 76 | 9 |
JUN | 28 | 17 | 90 | 72 | 9 |
JUL | 28 | 19 | 90 | 73 | 9 |
AUG | 27 | 17 | 89 | 73 | 12 |
SEP | 27 | 19 | 92 | 75 | 9 |
OCT | 27 | 19 | 92 | 73 | 8 |
NOV | 27 | 24 | 92 | 77 | 6 |
DEC | 26 | 22 | 93 | 8012 | 8 |
Temperature/RH | HOBO UX100-014M | |
---|---|---|
Global temperature (Tg) | −40 °C to 70 °C, ± 0.18 °C | |
ONSET HOBO U23-001 | ||
Temperature range/accuracy | −40 °C to 70 °C, ±0.2 °C | |
RH measurement range/accuracy | 0–100%, ±2.5% | |
Wind speed/direction | ONSET S-WSET-A Wind speed & direction sensor | |
Wind direction range | 2-Axis ultrasonic wind sensor | |
Wind speed range/accuracy | 0–45 m/s (0–100 mph) ±1.1 m/s (2.4 mph) | |
Data logger | HOBO Micro station logger H21-002 | −25 °C to 65 °C |
Sky view factor (SVF) | Nikon D80 Digital SLR camera with fish eye lens |
40 Days for Model Development | 10 Days for Model Validation | ||
---|---|---|---|
February 2017 | 2, 8, 9, 25 | February 2017 | 3, 10,26 |
March 2017 | 5, 7, 8, 16 | April 2017 | 6, 10, 15 |
April 2017 | 2, 5, 6, 10, 13 | July 2017 | 4, 15 |
May 2017 | 25, 26, 27 | August 2017 | 18, 21 |
June 2017 | 6, 8, 11, 13, 15, 25, 27 | September 2017 | 18, 20 |
July 2017 | 1, 3, 5, 6, 10, 18, 21 | ||
August 2017 | 17, 22, 23, 25, 26, 27 | ||
September 2017 | 5, 7, 8, 16 | ||
October 2017 | 1, 6, 10, 18 |
No | SVF | BPR | GnPR | PP (%) | DP (m) | DW (m) | Temp. (°C) | RH (%) | Tmrt (°C) | Description of Measurement Sites |
---|---|---|---|---|---|---|---|---|---|---|
1 | 0.76 | 1 | 1.06 | 70 | 506 | 188 | 30.77 | 72.88 | 31.71 | Broad street, multi-story buildings |
2 | 0.57 | 0.35 | 1.06 | 63.6 | 757 | 397 | 29.76 | 77.24 | 30.32 | Broad street, multi-story buildings |
3 | 0.38 | 0 | 1.25 | 8.5 | 238 | 150 | 29.16 | 79.76 | 29.75 | Park’s perimeter road, tree cover |
4 | 0.62 | 1.86 | 0.20 | 51.2 | 769 | 458 | 30.01 | 75.01 | 30.52 | High-rise buildings without trees |
5 | 0.48 | 5.72 | 3.24 | 50 | 919 | 606 | 29.59 | 79.09 | 29.77 | Broad street, high-rise buildings |
6 | 0.51 | 2.28 | 0.62 | 47.2 | 714 | 1028 | 30.04 | 77.18 | 30.06 | Broad street, open space |
7 | 0.32 | 4.3 | 0.41 | 31.2 | 1256 | 1112 | 28.94 | 81.45 | 29.28 | High-rise buildings, tree cover |
8 | 0.51 | 0.08 | 0.43 | 30.4 | 767 | 958 | 29.79 | 78.75 | 30.25 | High-rise buildings, tree cover |
9 | 0.34 | 5.7 | 1.64 | 28.1 | 1124 | 1195 | 29.09 | 81.17 | 29.68 | Broad street, multi-story buildings |
10 | 0.52 | 3.2 | 2.95 | 51.4 | 1229 | 1410 | 29.51 | 80.24 | 30.2 | Broad street, multi-story buildings |
11 | 0.46 | 2.4 | 1.0 | 19.7 | 1453 | 1539 | 29.19 | 84.56 | 30.4 | Open area with lawn |
12 | 0.32 | 3.7 | 1.55 | 9.6 | 1521 | 1778 | 29.43 | 79.76 | 31.44 | Broad street, multi-story buildings |
13 | 0.68 | 0.8 | 1.89 | 63.1 | 1455 | 1751 | 30.01 | 73.46 | 31.41 | Shopping mall without tree |
14 | 0.55 | 1.05 | 0.16 | 31.7 | 1020 | 1325 | 30.21 | 76.50 | 30.02 | Multi-story buildings, tree cover |
15 | 0.48 | 2.42 | 0.41 | 50.8 | 937 | 1254 | 29.24 | 80.41 | 30.01 | Multi-story buildings, tree cover |
16 | 0.61 | 1.9 | 2.59 | 31.8 | 695 | 994 | 29.41 | 81.26 | 30.03 | Open area with few tree |
17 | 0.51 | 1.8 | 3.85 | 21.3 | 505 | 791 | 29.43 | 75.11 | 30.01 | Multi-story buildings, tree cover |
18 | 0.37 | 5.4 | 3.43 | 29.4 | 224 | 520 | 28.99 | 83.51 | 29.38 | Broad street, multi-story buildings |
19 | 0.66 | 0.1 | 0.49 | 34.2 | 122 | 150 | 30.39 | 78.90 | 30.11 | Open area with lawn |
20 | 0.82 | 0 | 0.17 | 33 | 185 | 10 | 30.87 | 75.03 | 31.12 | Inside the park, open area with lawn |
21 | 0.41 | 0.37 | 3.0 | 47.4 | 148 | 514 | 29.64 | 77.13 | 30.25 | Open area, parking lot |
22 | 0.44 | 0.22 | 0.58 | 30.8 | 289 | 443 | 29.51 | 76.96 | 30.44 | Open area, parking lot, tree cover |
23 | 0.54 | 1.05 | 1.97 | 20.7 | 569 | 882 | 29.69 | 75.57 | 30.45 | High-rise buildings, tree cover |
24 | 0.72 | 1.17 | 2.78 | 61.9 | 579 | 883 | 29.89 | 78.21 | 31 | Open area without tree |
25 | 0.59 | 1.57 | 0.69 | 30.1 | 630 | 980 | 29.89 | 78.21 | 30.95 | Multi-story buildings without tree |
26 | 0.51 | 0.9 | 1.29 | 40.8 | 1011 | 1406 | 29.81 | 75.33 | 30.1 | Open area with tree |
27 | 0.33 | 0.9 | 4.37 | 42.9 | 1351 | 1774 | 29.59 | 74.87 | 29.67 | Open area with tree |
Variables | 20 m | 50 m | 70 m | |||||||
---|---|---|---|---|---|---|---|---|---|---|
B | Beta | Sig. | B | Beta | Sig. | B | Beta | Sig. | ||
Day-time | SVF | 2.1 | 0.58 | 0.000 | 2.792 | 0.724 | 0.000 | 2.338 | 0.612 | 0.000 |
BPR | −0.75 | −0.27 | 0.439 | −0.019 | −0.243 | 0.05 | 0.011 | −0.255 | 0.055 | |
GnPR | −0.004 | −0.18 | 0.052 | −0.003 | −0.51 | 0.333 | −0.007 | −0.46 | 0.137 | |
PP | 0.04 | 0.125 | 0.410 | 1.76 | 0.21 | 0.444 | 1.47 | 0.133 | 0.468 | |
DP | 0.000 | −0.03 | 0.905 | −0.000 | 0.113 | 0.127 | −0.000 | −0.099 | 0.388 | |
DW | 0.000 | −0.182 | 0.470 | 0.000 | −0.091 | 0.929 | 0.000 | −0.082 | 0.778 | |
Constant | 28.90 | 28.57 | 29.44 | |||||||
R2 | 0.832 | 0.917 | 0.874 | |||||||
Adjusted R2 | 0.795 | 0.863 | 0.771 | |||||||
Night-time | SVF | −0.664 | 0.276 | 0.139 | −0.706 | −0.293 | 0.131 | −0.733 | −0.293 | 0.147 |
BPR | 0.039 | 0.208 | 0.305 | 0.026 | 0.132 | 0.472 | 0.026 | 0.147 | 0.412 | |
GnPR | −0.015 | −0.332 | 0.041 | −0.014 | −0.306 | 0.047 | −0.027 | −0.333 | 0.050 | |
PP | 0.003 | 0.141 | 0.512 | 0.026 | 0.132 | 0.239 | 0.026 | 0.139 | 0.331 | |
DP | 0.000 | −0.197 | 0.589 | 0.000 | −0.245 | 0.507 | 0.000 | −0.211 | 0.557 | |
DW | 0.000 | 0.530 | 0.139 | 0.000 | 0.605 | 0.107 | 0.000 | 0.555 | 0.122 | |
Constant | 29.026 | 28.894 | 27.97 | |||||||
R2 | 0.670 | 0.777 | 0.642 | |||||||
Adjusted R2 | 0.615 | 0.629 | 0.607 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, H.; Cui, P.; Wong, N.H.; Ignatius, M. Assessing the Effects of Urban Morphology Parameters on Microclimate in Singapore to Control the Urban Heat Island Effect. Sustainability 2018, 10, 206. https://doi.org/10.3390/su10010206
Jin H, Cui P, Wong NH, Ignatius M. Assessing the Effects of Urban Morphology Parameters on Microclimate in Singapore to Control the Urban Heat Island Effect. Sustainability. 2018; 10(1):206. https://doi.org/10.3390/su10010206
Chicago/Turabian StyleJin, Hong, Peng Cui, Nyuk Hien Wong, and Marcel Ignatius. 2018. "Assessing the Effects of Urban Morphology Parameters on Microclimate in Singapore to Control the Urban Heat Island Effect" Sustainability 10, no. 1: 206. https://doi.org/10.3390/su10010206
APA StyleJin, H., Cui, P., Wong, N. H., & Ignatius, M. (2018). Assessing the Effects of Urban Morphology Parameters on Microclimate in Singapore to Control the Urban Heat Island Effect. Sustainability, 10(1), 206. https://doi.org/10.3390/su10010206