Modelling the Spatial Expansion of Green Manure Considering Land Productivity and Implementing Strategies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Processing
2.3. Methods
2.3.1. Land Productivity Evaluation
2.3.2. Simulation of the Spatial Distribution of Green Manures Based on the CLUE-S Model
3. Results
3.1. Land Productivity Evaluation Results
3.2. Spatial Distribution of All Categories of 2011
3.3. Regression Analysis of Categories Changes
3.4. Quantitative Analysis of the Five Types under the Two Scenarios
3.5. Spatial Expansion of Green Manure Intercropping in 2020
3.6. The Accuracy of the Simulation of the CLUE-S Model
4. Discussion
4.1. Land Productivity Evaluation
4.2. Mechanisms of Spatial Changes of Green Manure under Different Scenarios
4.3. Implications for Orchard Green Manure Management
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Robertson, G.P.; Paul, E.A.; Harwood, R.R. Greenhouse Gases in Intensive Agriculture: Contributions of Individual Gases to the Radiative Forcing of the Atmosphere. Science 2000, 289, 1922–1925. [Google Scholar] [CrossRef] [PubMed]
- Tejada, M.; Gonzalez, J.L.; García-Martínez, A.M.; Parrado, J. Application of a green manure and green manure composted with beet vinasse on soil restoration: Effects on soil properties. Bioresour. Technol. 2008, 99, 4949–4957. [Google Scholar] [CrossRef] [PubMed]
- Tejada, M.; Gonzalez, J.L.; García-Martínez, A.M.; Parrado, J. Effects of different green manures on soil biological properties and maize yield. Bioresour. Technol. 2008, 99, 1758–1767. [Google Scholar] [CrossRef] [PubMed]
- Babulicová, M. Influence of fertilization on winter wheat in crop rotations and in long-term monoculture. Plant Soil Environ. 2008, 54, 190–196. [Google Scholar]
- Sharma, A.R.; Behera, U.K. Nitrogen contribution through Sesbania green manure and dual-purpose legumes in maize–wheat cropping system: Agronomic and economic considerations. Plant Soil 2009, 325, 289–304. [Google Scholar] [CrossRef]
- Miyazawa, K.; Murakami, T.; Takeda, M.; Murayama, T. Intercropping green manure crops—Effects on rooting patterns. Plant Soil 2009, 331, 231–239. [Google Scholar] [CrossRef]
- Hirel, B.; Tétu, T.; Lea, P.J.; Dubois, F. Improving Nitrogen Use Efficiency in Crops for Sustainable Agriculture. Sustainability 2011, 3, 1452–1485. [Google Scholar] [CrossRef]
- Liebman, M.; Graef, R.L.; Nettleton, D.; Cambardella, C.A. Use of legume green manures as nitrogen sources for corn production. Renew. Agric. Food Syst. 2012, 27, 180–191. [Google Scholar] [CrossRef]
- Talgre, L.; Lauringson, E.; Roostalu, H.; Astover, A.; Makke, A. Green manure as a nutrient source for succeeding crops. Plant Soil Environ. 2012, 58, 275–281. [Google Scholar]
- Kaur, J.; Singh, J.P. Long-term effects of continuous cropping and different nutrient management practices on the distribution of organic nitrogen in soil under rice-wheat system. Plant Soil Environ. 2014, 60, 63–68. [Google Scholar]
- Yang, Z.; Zheng, S.; Nie, J.; Liao, Y.; Xie, J. Effects of Long-Term Winter Planted Green Manure on Distribution and Storage of Organic Carbon and Nitrogen in Water-Stable Aggregates of Reddish Paddy Soil Under a Double-Rice Cropping System. J. Integr. Agric. 2014, 13, 1772–1781. [Google Scholar] [CrossRef]
- Chocano, C.; García, C.; González, D.; Melgares de Aguilar, J.; Hernández, T. Organic plum cultivation in the Mediterranean region: The medium-term effect of five different organic soil management practices on crop production and microbiological soil quality. Agric. Ecosyst. Environ. 2016, 221, 60–70. [Google Scholar] [CrossRef]
- Zhang, D.; Yao, P.; Zhao, N.; Yu, C.; Cao, W.; Gao, Y. Contribution of green manure legumes to nitrogen dynamics in traditional winter wheat cropping system in the Loess Plateau of China. Eur. J. Agron. 2016, 72, 47–55. [Google Scholar] [CrossRef]
- Mancinelli, R.; Marinari, S.; Di Felice, V.; Savin, M.C.; Campiglia, E. Soil property, CO2 emission and aridity index as agroecological indicators to assess the mineralization of cover crop green manure in a Mediterranean environment. Ecol. Indic. 2013, 34, 31–40. [Google Scholar] [CrossRef]
- Bossuyt, H.; Denef, K.; Six, J.; Frey, S.D.; Merckx, R.; Paustian, K. Influence of microbial populations and residue quality on aggregate stability. Appl. Soil Ecol. 2001, 16, 195–208. [Google Scholar] [CrossRef]
- Denef, K.; Six, J.; Bossuyt, H.; Frey, S.D.; Elliott, E.T.; Merckx, R.; Paustian, K. Influence of dry–wet cycles on the interrelationship between aggregate, particulate organic matter, and microbial community dynamics. Soil Biol. Biochem. 2001, 33, 1599–1611. [Google Scholar] [CrossRef]
- Denef, K.; Six, J.; Paustian, K.; Merckx, R. Importance of macroaggregate dynamics in controlling soil carbon stabilization: Short-term effects of physical disturbance induced by dry–wet cycles. Soil Biol. Biochem. 2001, 33, 2145–2153. [Google Scholar] [CrossRef]
- Six, J.; Bossuyt, H.; Degryze, S.; Denef, K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 2004, 79, 7–31. [Google Scholar] [CrossRef]
- Harrison-Kirk, T.; Beare, M.H.; Meenken, E.D.; Condron, L.M. Soil organic matter and texture affect responses to dry/wet cycles: Effects on carbon dioxide and nitrous oxide emissions. Soil Biol. Biochem. 2013, 57, 43–55. [Google Scholar] [CrossRef]
- Harrison-Kirk, T.; Beare, M.H.; Meenken, E.D.; Condron, L.M. Soil organic matter and texture affect responses to dry/wet cycles: Changes in soil organic matter fractions and relationships with C and N mineralisation. Soil Biol. Biochem. 2014, 74, 50–60. [Google Scholar] [CrossRef]
- Porqueddu, C.; Re, G.A.; Sanna, F.; Piluzza, G.; Sulas, L.; Franca, A.; Bullitta, S. Exploitation of Annual and Perennial Herbaceous Species for the Rehabilitation of a Sand Quarry in a Mediterranean Environment. Land Degrad. Dev. 2016, 27, 346–356. [Google Scholar] [CrossRef]
- Foucault, Y.; Lévêque, T.; Xiong, T.; Schreck, E.; Austruy, A.; Shahid, M.; Dumat, C. Green manure plants for remediation of soils polluted by metals and metalloids: Ecotoxicity and human bioavailability assessment. Chemosphere 2013, 93, 1430–1435. [Google Scholar] [CrossRef] [PubMed]
- Frøseth, R.B.; Bakken, A.K.; Bleken, M.A.; Riley, H.; Pommeresche, R.; Thorup-Kristensen, K.; Hansen, S. Effects of green manure herbage management and its digestate from biogas production on barley yield, N recovery, soil structure and earthworm populations. Eur. J. Agron. 2014, 52, 90–102. [Google Scholar] [CrossRef]
- Piotrowska, A.; Wilczewski, E. Effects of catch crops cultivated for green manure and mineral nitrogen fertilization on soil enzyme activities and chemical properties. Geoderma 2012, 189–190, 72–80. [Google Scholar] [CrossRef]
- Zotarelli, L.; Zatorre, N.P.; Boddey, R.M.; Urquiaga, S.; Jantalia, C.P.; Franchini, J.C.; Alves, B.J.R. Influence of no-tillage and frequency of a green manure legume in crop rotations for balancing N outputs and preserving soil organic C stocks. Field Crops Res. 2012, 132, 185–195. [Google Scholar] [CrossRef]
- Zhang, D.; Yao, P.; Na, Z.; Cao, W.; Zhang, S.; Li, Y.; Gao, Y. Soil Water Balance and Water Use Efficiency of Dryland Wheat in Different Precipitation Years in Response to Green Manure Approach. Sci. Rep. 2016, 6, 26856. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Kang, M.; Schmidt-Vogt, D.; Schrestha, R.P. Identification of agricultural factors for improving sustainable land resource management in northern Thailand: A case study in Chiang Mai Province. Int. J. Sustain. Dev. World Ecol. 2007, 14, 382–390. [Google Scholar] [CrossRef]
- Wei, J.; Xiao, D.; Zeng, H. Sustainable development of an agricultural system under ecological restoration based on Emergy analysis: A case study in northeastern China. Int. J. Sustain. Dev. World Ecol. 2008, 15, 103–112. [Google Scholar] [CrossRef]
- Kourouxou, M.; Siardos, G.; Iakovidou, O.; Kalburtji, K. Organic farmers in islands: Agricultural management and attitude towards the environment. Int. J. Sustain. Dev. World Ecol. 2008, 15, 553–564. [Google Scholar] [CrossRef]
- Tesio, F.; Ferrero, A. Allelopathy, a chance for sustainable weed management. Int. J. Sustain. Dev. World Ecol. 2010, 17, 377–389. [Google Scholar] [CrossRef]
- Gao, J.; Cao, W.; Li, D.; Xu, M.; Zeng, X.; Me, J.; Zhang, W. Effects of long-term double-rice and green manure rotation on rice yield and soil organic matter in paddy field. Acta Ecol. Sin. 2011, 31, 4542–4548. [Google Scholar]
- Lan, Y.; Huang, G.; Yang, B.; Chen, H.; Wang, S. Effect of green manure rotation on soil fertility and organic carbon pool. Trans. Chin. Soc. Agric. Eng. 2014, 30, 146–152. [Google Scholar]
- Verburg, P.H.; Eickhout, B.; van Meijl, H. A multi-scale, multi-model approach for analyzing the future dynamics of European land use. Ann. Reg. Sci. 2007, 42, 57–77. [Google Scholar] [CrossRef]
- Verburg, P.H.; Overmars, K.P. Combining top-down and bottom-up dynamics in land use modeling: Exploring the future of abandoned farmlands in Europe with the Dyna-CLUE model. Landsc. Ecol. 2009, 24, 1167–1181. [Google Scholar] [CrossRef]
- Verburg, P.H.; van de Steeg, J.; Veldkamp, A.; Willemen, L. From land cover change to land function dynamics: A major challenge to improve land characterization. J. Environ. Manag. 2009, 90, 1327–1335. [Google Scholar] [CrossRef] [PubMed]
- Britz, W.; Verburg, P.H.; Leip, A. Modelling of land cover and agricultural change in Europe: Combining the CLUE and CAPRI-Spat approaches. Agric. Ecosyst. Environ. 2011, 142, 40–50. [Google Scholar] [CrossRef]
- Verburg, P.H.; Soepboer, W.; Veldkamp, A.; Limpiada, R.; Espaldon, V.; Mastura, S.S.A. Modeling the Spatial Dynamics of Regional Land Use: The CLUE-S Model. Environ. Manag. 2014, 30, 391–405. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Tu, S.; Shah, F.; Xu, C.; Chen, J.; Han, D.; Liu, G.; Li, H.; Muhammad, I.; Cao, W. Substitution of fertilizer-N by green manure improves the sustainability of yield in double-rice cropping system in south China. Field Crops Res. 2016, 188, 142–149. [Google Scholar] [CrossRef]
- Alam, M.Z.; Lynch, D.H.; Sharifi, M.; Burton, D.L.; Hammermeister, A.M. The effect of green manure and organic amendments on potato yield, nitrogen uptake and soil mineral nitrogen. Biol. Agric. Hortic. 2016, 32, 221–236. [Google Scholar] [CrossRef]
- Berberoğlu, S.; Akın, A.; Clarke, K.C. Cellular automata modeling approaches to forecast urban growth for adana, Turkey: A comparative approach. Landsc. Urban Plan. 2016, 153, 11–27. [Google Scholar] [CrossRef]
- Luo, G.P.; Yin, C.Y.; Chen, X.; Xu, W.Q.; Lu, L. Combining system dynamic model and CLUE-S model to improve land use scenario analyses at regional scale: A case study of Sangong watershed in Xinjiang, China. Ecol. Complex. 2010, 7, 198–207. [Google Scholar] [CrossRef]
- Zhu, Z.Q.; Liu, L.M.; Chen, Z.T.; Zhang, J.L.; Verburg, P.H. Land-use change simulation and assessment of driving factors in the loess hilly region—A case study as Pengyang County. Environ. Monit. Assess. 2009, 164, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.P.; Zhang, S.W.; Zhou, Z.M.; Hou, S.; Huang, Y.F.; Cao, W.D. Spatial distribution prediction and benefits assessment of green manure in the Pinggu District, Beijing, based on the CLUE-S model. J. Integr. Agric. 2016, 15, 465–474. [Google Scholar] [CrossRef]
- Zhang, L.P.; Zhang, S.W.; Huang, Y.J.; Cao, M.; Huang, Y.F.; Zhang, H.Y. Exploring an ecologically sustainable scheme for landscape restoration of abandoned mine land: Scenario-based simulation integrated linear programming and CLUE-S model. Int. J. Environ. Res. Public Health 2016, 13, 354. [Google Scholar] [CrossRef] [PubMed]
- Herrero, M.; Thornton, P.K.; Bernués, A.; Baltenweck, I.; Vervoort, J.; van de Steeg, J.; Makokha, S.; van Wijk, M.T.; Karanja, S.; Rufino, M.C.; et al. Exploring future changes in smallholder farming systems by linking socio-economic scenarios with regional and household models. Glob. Environ. Chang. 2014, 24, 165–182. [Google Scholar] [CrossRef]
- Waiyasusri, K.; Yumuang, S.; Chotpantarat, S. Monitoring and predicting land use changes in the Huai Thap Salao Watershed area, Uthaithani Province, Thailand, using the CLUE-s model. Environ. Earth Sci. 2016, 75, 1–16. [Google Scholar] [CrossRef]
- Shrestha, S.; Htut, A.Y. Land Use and Climate Change Impacts on the Hydrology of the Bago River Basin, Myanmar. Environ. Model. Assess. 2016, 1–15. [Google Scholar] [CrossRef]
- Trisurat, Y.; Eawpanich, P.; Kalliola, R. Integrating land use and climate change scenarios and models into assessment of forested watershed services in Southern Thailand. Environ. Res. 2016, 147, 611–620. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Chen, Z.; Lei, X.; He, B.; Jia, K.; Zhang, Y. Simulation of urban agglomeration ecosystem spatial distributions under different scenarios: A case study of the Changsha–Zhuzhou–Xiangtan urban agglomeration. Ecol. Eng. 2016, 88, 112–121. [Google Scholar] [CrossRef]
- Malczewski, J. GIS and Multicriteria Decision Analysis; John Wiley and Sons: New York, NY, USA, 1999. [Google Scholar]
- Malczewski, J. GIS based multicriteria decision analysis: A survey of the literature. Int. J. Geogr. Inf. Sci. 2006, 20, 703–726. [Google Scholar] [CrossRef]
- Antognelli, S.; Vizzari, M. Landscape liveability spatial assessment integrating ecosystem and urban services with their perceived importance by stakeholders. Ecol. Indic. 2017, 72, 703–725. [Google Scholar] [CrossRef]
- Figueira, J.; Greco, S.; Ehrgott, M. Multiple Criteria Decision Analysis: State of the Art Surveys, Multiple Criteria Decision Analysis State of the Art Surveys; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Mendoza, G.A.; Martins, H. Multi-criteria decision analysis in natural resource management: A critical review of methods and new modelling paradigms. For. Ecol. Manag. 2006, 230, 1–22. [Google Scholar] [CrossRef]
- Modica, G.; Merlino, A.; Solano, F.; Mercurio, R. An index for the assessment of degraded Mediterranean forest ecosystems. For. Syst. 2015, 24, 1–13. [Google Scholar] [CrossRef]
- Vizzari, M.; Modica, G. Environmental effectiveness of swine sewage management: A multicriteria AHP-based model for a reliable quick assessment. Environ. Manag. 2013, 52, 1023–1039. [Google Scholar] [CrossRef] [PubMed]
- Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill Inc.: New York, NY, USA, 1980. [Google Scholar]
- Beijing Municipal Administration of Quality and Technology Supervision. The Rules for Cultivated Land Productivity Assessment in Beijing, China (DB11/T 1083-2014); Beijing Municipal Administration of Quality and Technology Supervision: Beijing, China, 2014.
- Zhang, Z.F.; Chen, B.M.; Guo, Z.S. Indicator system for evaluating arable land consolidation potential. China Land Sci. 2004, 18, 37–43. (In Chinese) [Google Scholar]
- Li, G; Wu, C.F.; Cao, S.A. Study on indicators system of selecting cultivated land into prime farmland. J. Agric. Mech. Res. 2006, 8, 46–48. (In Chinese) [Google Scholar]
- Pontius, R.G., Jr.; Schneider, L.C. Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agric. Ecosyst. Environ. 2001, 85, 239–248. [Google Scholar] [CrossRef]
- Gobin, A.; Campling, P.; Feyen, J. Logistic modelling to derive agricultural land use determinants: A case study from southeastern Nigeria. Agric. Ecosyst. Environ. 2002, 89, 213–228. [Google Scholar] [CrossRef]
- Nawaz, A.; Farooq, M.; Lal, R.; Rehman, A.; Hussain, T.; Nadeem, A. Influence of Sesbania Brown Manuring and Rice Residue Mulch on Soil Health, Weeds and System Productivity of Conservation Rice–Wheat Systems. Land Degrad. Dev. 2017, 28, 1078–1090. [Google Scholar] [CrossRef]
- Teng, Q.; Hu, X.-F.; Cheng, C.; Luo, Z.; Luo, F.; Xue, Y.; Jiang, Y.; Mu, Z.; Liu, L.; Yang, M. Ecological effects of rice-duck integrated farming on soil fertility and weed and pest control. J. Soils Sediments 2016, 16, 2395–2407. [Google Scholar] [CrossRef]
- Srivastava, P.; Singh, R.; Tripathi, S.; Raghubanshi, A.S. An urgent need for sustainable thinking in agriculture—An Indian scenario. Ecol. Indic. 2016, 67, 611–622. [Google Scholar] [CrossRef]
Criteria Level | Index Level | Unit | Classification Standards of Indicators | Weight (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
100 | 80 | 70 | 60 | 40 | 30 | 20 | 10 | - | ||||
Soil profile | Active soil depth | cm | ≥100 | 100–80 | 80–60 | 60–30 | <30 a | 15.1 | ||||
Soil texture | Medium loam or heavy loam | Light loam | Sandy loam | Clay or sand | Gravelly soil b | 22.8 | ||||||
Site condition | Elevation | m | <100 | 100–200 | 200–300 | 300–400 | ≥400 | 8.3 | ||||
Slope | ° | <3 c | 3–5 | 5–8 | 8–15 | 15–25 | ≥25 d | 4.3 | ||||
Aspect | ° | 135–225 | 90–135 or 225–270 | 45–90 or 270–315 | 315–360 or 0–45 | 6.7 | ||||||
Soil nutrients | Available phosphorus content | mg kg−1 | ≥40 | 40–30 | 30–20 | 20–10 | <10 | 3.2 | ||||
Available potassium content | mg kg−1 | ≥180 | 180–120 | 120–100 | 100–80 | <80 | 3.8 | |||||
Organic matter content | g kg−1 | ≥30 | 30–20 | 20–15 | 15–10 | <10 | 10.2 | |||||
Soil management | Guarantee of irrigation | Fully satisfied | Basically satisfied | Generally satisfied | Without irrigation | 21.3 | ||||||
Drainage capability | High | Medium | Low | 4.3 |
IPI | Grades |
---|---|
≥84 | highest |
75–84 | higher |
65–75 | medium |
53–65 | lower |
<53 | lowest |
Classification of Driving Factors | Driving Factors | Unit |
---|---|---|
Location condition | Distance to the nearest road (X1) | m |
Distance to the nearest railway (X2) | m | |
Distance to the nearest river (X3) | m | |
Distance to the nearest lake (X4) | m | |
Land use condition | Distance to the nearest main town (X5) | m |
Distance to the nearest rural resident site (X6) | m | |
Spatial characteristics of patches | Shape index (X7) | - |
Connectivity of orchard patches (X8) | - | |
Socioeconomic condition | Orchard areas (X9) | ha |
Fruit yield (X10) | t | |
Agricultural practitioners (X11) | person |
M1 | M2 | M3 | M4 | M5 | |
---|---|---|---|---|---|
M1 | 1 | 0 | 0 | 0 | 0 |
M2 | 1 | 1 | 1 | 1 | 1 |
M3 | 1 | 1 | 1 | 1 | 1 |
M4 | 1 | 1 | 1 | 1 | 1 |
M5 | 1 | 1 | 1 | 1 | 1 |
Driving Factors | M1 | M2 | M3 | M4 | M5 | |||||
---|---|---|---|---|---|---|---|---|---|---|
ß | Exp(ß) | ß | Exp(ß) | ß | Exp(ß) | ß | Exp(ß) | ß | Exp(ß) | |
Constant | 8.5464 | 5148.1876 | −2.2717 | 0.1031 | 1.6665 | 5.2936 | −3.9650 | 0.0190 | −9.5359 | 0.0001 |
X1 | −0.0373 | 0.9634 | −0.0426 | 0.9583 | 0.0387 | 1.0395 | −0.0170 | 0.9831 | ||
X2 | −0.0520 | 0.9493 | 0.0085 | 1.0085 | 0.0063 | 1.0063 | 0.0017 | 1.0017 | 0.0098 | 1.0098 |
X3 | 0.0357 | 1.0363 | 0.0030 | 1.0030 | −0.0088 | 0.9912 | −0.0112 | 0.9889 | −0.0241 | 0.9762 |
X4 | −0.0327 | 0.9678 | −0.0156 | 0.9845 | 0.0081 | 1.0081 | 0.0017 | 1.0017 | 0.0220 | 1.0222 |
X5 | −0.0195 | 0.9807 | 0.0528 | 1.0542 | −1.9093 | 0.1482 | 0.0089 | 1.0089 | −0.0155 | 0.9846 |
X6 | 0.0699 | 1.0724 | −0.8731 | 0.4177 | 0.0977 | 1.1026 | −0.0291 | 0.9713 | ||
X7 | −4.8340 | 0.0080 | −0.0095 | 0.9905 | −0.0055 | 0.9945 | 3.1032 | 22.2691 | 4.0341 | 56.4900 |
X8 | 0.0127 | 1.0128 | −0.0426 | 0.9583 | 0.0049 | 1.0049 | −0.2468 | 0.7813 | 0.5924 | 1.8083 |
X9 | 0.0104 | 1.0105 | 0.0085 | 1.0085 | −0.0012 | 0.9988 | 0.0020 | 1.0020 | ||
X10 | 0.0040 | 1.0040 | 0.0030 | 1.0030 | 0.0387 | 1.0395 | −0.0025 | 0.9975 | −0.0051 | 0.9949 |
X11 | −0.0003 | 0.9997 | −0.0156 | 0.9845 | 0.0063 | 1.0063 | 0.0061 | 1.0061 | 0.0108 | 1.0109 |
ROC | 0.850 | 0.848 | 0.863 | 0.897 | 0.896 |
Years | Scenario 1 | Scenario 2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
M1 | M2 | M3 | M4 | M5 | M1 | M2 | M3 | M4 | M5 | |
2011 | 1393 | 2167 | 8749 | 8622 | 1172 | 1393 | 2167 | 8749 | 8622 | 1172 |
2012 | 2893 | 667 | 8749 | 8622 | 1172 | 2893 | 2167 | 8749 | 8293 | 1 |
2013 | 4393 | 1 | 7915 | 8622 | 1172 | 4393 | 2167 | 8749 | 6793 | 1 |
2014 | 5893 | 1 | 6415 | 8622 | 1172 | 5893 | 2167 | 8749 | 5293 | 1 |
2015 | 7393 | 1 | 4915 | 8622 | 1172 | 7393 | 2167 | 8749 | 3793 | 1 |
2016 | 8893 | 1 | 3415 | 8622 | 1172 | 8893 | 2167 | 8749 | 2293 | 1 |
2017 | 10,393 | 1 | 1915 | 8622 | 1172 | 10,393 | 2167 | 8749 | 793 | 1 |
2018 | 11,893 | 1 | 415 | 8622 | 1172 | 11,893 | 2167 | 8041 | 1 | 1 |
2019 | 13,393 | 1 | 1 | 7536 | 1172 | 13,393 | 2167 | 6541 | 1 | 1 |
2020 | 14,893 | 1 | 1 | 6036 | 1172 | 14,893 | 2167 | 5041 | 1 | 1 |
Types | Demand (ha) | Simulated Results (ha) | Relative Error (%) | |||
---|---|---|---|---|---|---|
Scenario 1 | Scenario 2 | Scenario 1 | Scenario 2 | Scenario 1 | Scenario 2 | |
M1 | 14,893 | 14,893 | 14,888 | 14,889 | −0.03 | −0.03 |
M2 | 1 | 2167 | 1 | 2176 | 0 | 0.42 |
M3 | 1 | 5041 | 1 | 5036 | 0 | −0.10 |
M4 | 6036 | 1 | 6030 | 1 | −0.10 | 0 |
M5 | 1172 | 1 | 1183 | 1 | 0.94 | 0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Cao, M.; Xing, A.; Sun, Z.; Huang, Y. Modelling the Spatial Expansion of Green Manure Considering Land Productivity and Implementing Strategies. Sustainability 2018, 10, 225. https://doi.org/10.3390/su10010225
Zhang L, Cao M, Xing A, Sun Z, Huang Y. Modelling the Spatial Expansion of Green Manure Considering Land Productivity and Implementing Strategies. Sustainability. 2018; 10(1):225. https://doi.org/10.3390/su10010225
Chicago/Turabian StyleZhang, Liping, Meng Cao, An Xing, Zhongxiang Sun, and Yuanfang Huang. 2018. "Modelling the Spatial Expansion of Green Manure Considering Land Productivity and Implementing Strategies" Sustainability 10, no. 1: 225. https://doi.org/10.3390/su10010225
APA StyleZhang, L., Cao, M., Xing, A., Sun, Z., & Huang, Y. (2018). Modelling the Spatial Expansion of Green Manure Considering Land Productivity and Implementing Strategies. Sustainability, 10(1), 225. https://doi.org/10.3390/su10010225