Centralized and Decentralized Approaches to Water Demand Management
Abstract
:1. Introduction
2. Water Demand Management Problem Statement
2.1. Modelling Perspectives
2.2. Model Objectives
3. Centralized Approach
3.1. System-Wide Maximum Net Benefits
3.2. Modified Cooperative Reallocation
3.3. Negotiation Process over Cooperative Solutions
4. Decentralized Approach
4.1. Agent-Based Structure
4.2. Coordination Procedure
5. Case Study and Results
5.1. Case Study Description
5.2. Results, Comparisons, and Discussion
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Baumann, D.D.; Boland, J.J.; Hanemann, W.M. Urban Water Demand Management and Planning; McGraw-Hill: New York, NY, USA, 1997. [Google Scholar]
- Renzetti, S. The Economics of Water Demands; Kluwer Academic: Boston, MA, USA, 2002. [Google Scholar]
- Gleick, P.H. Global Freshwater Resources: Soft-Path Solutions for the 21st Century. Science 2003, 302, 1524–1528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brooks, D.B. An Operational Definition of Water Demand Management. Int. J. Water Resour. Dev. 2006, 22, 521–528. [Google Scholar] [CrossRef]
- Butler, D.; Memon, F.A. Water Demand Management; IWA Publishing: London, UK, 2006. [Google Scholar]
- Kindler, J. Water Demand Management. In A Review of Selected Hydrology Topics to Support Bank Operations, HEF (Hydrology Expert Facility) Technical Report 1; World Bank: Washington, DC, USA, 2010; pp. 35–49. [Google Scholar]
- Tortajada, C.; Joshi, Y.K. Water Demand Management in Singapore: Involving the Public. Water Resour. Manag. 2013, 27, 2729–2746. [Google Scholar] [CrossRef]
- Tate, D.M. Water Demand Management in Canada: A Review and Assessment. Can. Water Resour. J. 1989, 14, 71–82. [Google Scholar] [CrossRef]
- Savenije, H.H.; Van der Zaag, P. Water as an Economic Good and Demand Management Paradigms with Pitfalls. Water Int. 2002, 27, 98–104. [Google Scholar] [CrossRef]
- What the Experts Think: Understanding Urban Water Demand Management in Canada. Available online: http://www.polisproject.org/files/pub_database/experts.pdf (accessed on 2 September 2015).
- Sharp, L. Water Demand Management in England and Wales: Constructions of the Domestic Water User. J. Environ. Plann. Man. 2006, 49, 869–889. [Google Scholar] [CrossRef]
- Blanke, A.; Rozelle, S.; Lohmar, B.; Wang, J.; Huang, J. Water Saving Technology and Saving Water in China. Agric. Water Manag. 2007, 87, 139–150. [Google Scholar] [CrossRef]
- Olmstead, S.M.; Stavins, R.N. Comparing Price and Nonprice Approaches to Urban Water Conservation. Water Resour. Res. 2009, 45, 1–24. [Google Scholar] [CrossRef]
- Sharma, S.K.; Vairavamoorthy, K. Urban Water Demand Management: Prospects and Challenges for the Developing Countries. Water Environ. J. 2009, 23, 210–218. [Google Scholar] [CrossRef]
- Kampragou, E.; Lekkas, D.F.; Assimacopoulos, D. Water Demand Management: Implementation Principles and Indicative Case Studies. Water Environ. J. 2011, 25, 466–476. [Google Scholar] [CrossRef]
- Smith, N.J.; McDonald, G.W.; Murray, C.F. The Costs and Benefits of Water Demand Management: Evidence from New Zealand. Water Environ. J. 2015, 29, 180–189. [Google Scholar] [CrossRef]
- Gleick, P.H.; Christian-Smith, J.; Cooley, H. Water-Use Efficiency and Productivity: Rethinking the Basin Approach. Water Int. 2011, 36, 784–798. [Google Scholar] [CrossRef]
- Molden, D.; Oweis, T.; Steduto, P.; Bindraban, P.; Hanjra, M.A.; Kijne, J. Improving Agricultural Water Productivity: Between Optimism and Caution. Agric. Water Manag. 2010, 97, 528–535. [Google Scholar] [CrossRef]
- Cai, X.; Molden, D.; Mainuddin, M.; Sharma, B.; Ahmad, M.U.D.; Karimi, P. Producing More Food with Less Water in a Changing World: Assessment of Water Productivity in 10 Major River Basins. Water Int. 2011, 36, 42–62. [Google Scholar] [CrossRef]
- Yang, Y.C.E.; Cai, X.; Stipanović, D.M. A Decentralized Optimization Algorithm for Multiagent System–Based Watershed Management. Water Resour. Res. 2009, 45, 1–18. [Google Scholar] [CrossRef]
- Tedesco, F.; Ocampo-Martinez, C.; Casavola, A.; Puig, V. Centralized and Distributed Command Governor Approaches for Water Supply Systems Management. IEEE Trans. Syst. Man Cybern. Syst. 2016, 48, 586–595. [Google Scholar] [CrossRef]
- Organization for Economic Cooperation and Development (OECD). Alternatives to Traditional Regulation. Available online: https://www.oecd.org/gov/regulatory-policy/42245468.pdf (accessed on 18 September 2018).
- Zhao, J.; Cai, X.; Wang, Z. Comparing Administered and Market-Based Water Allocation Systems Through a Consistent Agent-Based Modeling Framework. J. Environ. Manag. 2013, 123, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Hahn, R.W.; Stavins, R.N. Economic Incentives for Environmental Protection: Integrating Theory and Practice. Am. Econ. Rev. 1992, 82, 464–468. [Google Scholar]
- Wang, L.; Fang, L.; Hipel, K.W. Mathematical Programming Approaches for Modeling Water Rights Allocation. J. Water Res. Plan. Man. 2007, 133, 50–59. [Google Scholar] [CrossRef]
- Brill, E.D.; Liebman, J.C.; ReVelle, C.S. Equity Measures for Exploring Water Quality Management Alternatives. Water Resour. Res. 1976, 12, 845–851. [Google Scholar] [CrossRef]
- Yaron, D.; Ratner, A. Regional Cooperation in the Use of Irrigation Water: Efficiency and Income Distribution. Agric. Econ. 1990, 4, 45–58. [Google Scholar] [CrossRef]
- Onal, H.; Algozin, K.A.; Isik, M.; Hornbaker, R.H. Economically Efficient Watershed Management with Environmental and Income Distribution Goals. J. Environ. Manag. 1998, 53, 241–253. [Google Scholar] [CrossRef]
- Kampas, A.; Mamalis, S. Assessing the Distributional Impacts of Transferable Pollution Permits: The Case of Phosphorus Pollution Management at a River Basin Scale. Agric. Econ. Rev. 2007, 7, 75–86. [Google Scholar]
- Xiao, Y.; Hipel, K.W.; Fang, L. Incorporating Water Demand Management into a Cooperative Water Allocation Framework. Water Resour. Manag. 2016, 30, 2997–3012. [Google Scholar] [CrossRef] [Green Version]
- Mahan, R.C.; Horbulyk, T.M.; Rowse, J.G. Market Mechanisms and the Efficient Allocation of Surface Water Resources in Southern Alberta. Socio-Econ. Plan. Sci. 2002, 36, 25–49. [Google Scholar] [CrossRef]
- Gupta, R.S. Hydrology and Hydraulic Systems, 4th Ed. ed; Waveland Press: Long Grove, IL, USA, 2016. [Google Scholar]
- Wang, L.; Fang, L.; Hipel, K.W. Basin-Wide Cooperative Water Resources Allocation. Eur. J. Oper. Res. 2008, 190, 798–817. [Google Scholar] [CrossRef]
- Young, H.P.; Okada, N.; Hashimoto, T. Cost Allocation in Water Resources Development. Water Resour. Res. 1982, 18, 463–475. [Google Scholar] [CrossRef]
- Tisdell, J.G.; Harrison, S.R. Estimating an Optimal Distribution of Water Entitlements. Water Resour. Res. 1992, 28, 3111–3117. [Google Scholar] [CrossRef]
- Lejano, R.P.; Davos, C.A. Cost Allocation of Multiagency Water Resource Projects: Game-Theoretic Approaches and Case Study. Water Resour. Res. 1995, 31, 1387–1393. [Google Scholar] [CrossRef]
- Owen, G. Game Theory, 3rd ed.; Academic Press: New York, NY, USA, 1995. [Google Scholar]
- Shapley, L.S. A Value for N-Person Games. In Contributions to the Theory of Games; Kuhn, H.W., Tucker, A.W., Eds.; Princeton University Press: Princeton, NY, USA, 1953; pp. 307–317. [Google Scholar]
- Wang, L.; Fang, L.; Hipel, K.W. Water Resources Allocation: A Cooperative Game Theoretic Approach. J. Environ. Inform. 2003, 2, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Hipel, K.W.; Fang, L.; Wang, L. Fair Water Resources Allocation with Application to the South Saskatchewan River Basin. Can. Water Resour. J. 2013, 38, 47–60. [Google Scholar] [CrossRef]
- Nash, J. Two-Person Cooperative Games. Econometrica 1953, 21, 128–140. [Google Scholar] [CrossRef]
- Muthoo, A. Bargaining Theory with Applications; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Macal, C.M.; North, M.J. Tutorial on Agent-Based Modelling and Simulation. J. Simul. 2010, 4, 151–162. [Google Scholar] [CrossRef]
- Bristow, M.; Fang, L.; Hipel, K.W. Agent-based Modeling of Competitive and Cooperative Behavior under Conflict. IEEE Trans. Syst. Man Cybern. Syst. 2014, 44, 834–850. [Google Scholar] [CrossRef]
- Xiao, Y.; Fang, L.; Hipel, K.W. Agent-Based Modeling Approach to Investigating the Impact of Water Demand Management. J. Water Res. Plan. Manag. 2018, 144, 04018006. [Google Scholar] [CrossRef] [Green Version]
Centralized Approach | Decentralized Approach | |
---|---|---|
Decision Process | Top-down Process/Command-and-Control | Bottom-up Procedure |
Efficiency | More Efficient | Less Efficient |
Information Exchange | Perfect Information Exchange | Partial Information Exchange |
Public Participation | Low Participation | High Participation |
A1 | A2 | City 1 | City 2 | Overall | |
---|---|---|---|---|---|
Centralized | 32.95 | 67.99 | 239.13 | 656.30 | 996.36 |
Decentralized | 10.24 | 48.33 | 190.58 | 696.73 | 945.87 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Y.; Fang, L.; Hipel, K.W. Centralized and Decentralized Approaches to Water Demand Management. Sustainability 2018, 10, 3466. https://doi.org/10.3390/su10103466
Xiao Y, Fang L, Hipel KW. Centralized and Decentralized Approaches to Water Demand Management. Sustainability. 2018; 10(10):3466. https://doi.org/10.3390/su10103466
Chicago/Turabian StyleXiao, Yi, Liping Fang, and Keith W. Hipel. 2018. "Centralized and Decentralized Approaches to Water Demand Management" Sustainability 10, no. 10: 3466. https://doi.org/10.3390/su10103466
APA StyleXiao, Y., Fang, L., & Hipel, K. W. (2018). Centralized and Decentralized Approaches to Water Demand Management. Sustainability, 10(10), 3466. https://doi.org/10.3390/su10103466