Influence of Reduced Protein Content in Complete Diets with a Consistent Arginine–Lysine Ratio on Performance and Nitrogen Excretion in Broilers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals, Housing and Experimental Design
2.2. Diets and Feeding Concept
2.3. Measurements
2.3.1. Technical Performance
2.3.2. Excreta and Litter Sampling
2.3.3. Foot Pad Dermatitis Scoring Criteria
2.3.4. Dissection
2.3.5. Histological Investigations
2.3.6. Analysis of Feed, Excreta, and Litter Samples
2.3.7. Estimations of Efficiencies of Nitrogen or Rather Protein Utilisation
2.4. Statistical Analysis
3. Results
3.1. Technical Performance
3.2. Excreta and Litter Quality
3.3. Footpad Dermatitis
3.4. Histological Investigations
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- De Vries, M.; de Boer, I.J.M. Comparing environmental impacts for livestock products: A review of life cycle assessments. Livestig. Sci. 2010, 128, 1–11. [Google Scholar] [CrossRef]
- Steinfeld, H.; Gerber, P.; Wassenaar, T.; Castel, V.; Rosales, M.; Rosales, M.; de Haan, C. Livestock’s Long Shadow: Environmental Issues and Options; Food & Agriculture Org.: Rome, Italy, 2006. [Google Scholar]
- Leip, A.; Billen, G.; Garnier, J.; Grizzetti, B.; Lassaletta, L.; Reis, S.; Simpson, D.; Sutton, M.A.; De Vries, W.; Weiss, F. Impacts of european livestock production: Nitrogen, sulphur, phosphorus and greenhouse gas emissions, land-use, water eutrophication and biodiversity. Environ. Res. Lett. 2015, 10, 115004. [Google Scholar] [CrossRef]
- Meier, M.S.; Stoessel, F.; Jungbluth, N.; Juraske, R.; Schader, C.; Stolze, M. Environmental impacts of organic and conventional agricultural products—Are the differences captured by life cycle assessment? J. Environ. Manag. 2015, 149, 193–208. [Google Scholar] [CrossRef] [PubMed]
- Ferket, P.R.; van Heugten, E.; van Kempen, T.A.T.G.; Angel, R. Nutritional strategies to reduce environmental emissions from nonruminants. J. Anim. Sci. 2002, 80, E168–E182. [Google Scholar] [CrossRef]
- Mallin, M.A.; Cahoon, L.B. Industrialized animal production—A major source of nutrient and microbial pollution to aquatic ecosystems. Popul. Environ. 2003, 24, 369–385. [Google Scholar] [CrossRef]
- Clark, M.; Tilman, D. Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environ. Res. Lett. 2017, 12, 064016. [Google Scholar] [CrossRef] [Green Version]
- Leip, A.; Weiss, F.; Lesschen, J.; Westhoek, H. The nitrogen footprint of food products in the european union. J. Agric. Sci. 2014, 152, 20–33. [Google Scholar] [CrossRef]
- Ospina-Rojas, I.C.; Murakami, A.E.; Duarte, C.R.A.; Eyng, C.; Oliveira, C.A.L.; Janeiro, V. Valine, isoleucine, arginine and glycine supplementation of low-protein diets for broiler chickens during the starter and grower phases. Br. Poult. Sci. 2014, 55, 766–773. [Google Scholar] [CrossRef] [PubMed]
- Blair, R.; Jacob, J.P.; Ibrahim, S.; Wang, P. A quantitative assessment of reduced protein diets and supplements to improve nitrogen utilization. J. Appl. Poult. Res. 1999, 8, 25–47. [Google Scholar] [CrossRef]
- Moran, E.T.; Bushong, R.D.; Bilgili, S.F. Reducing dietary crude protein for broilers while satisfying amino-acid-requirements by least-cost formulation—Live performance, litter composition, and yield of fast-food carcass cuts at 6 weeks. Poult. Sci. 1992, 71, 1687–1694. [Google Scholar] [CrossRef]
- Bregendahl, K.; Sell, J.L.; Zimmerman, D.R. Effect of low-protein diets on growth performance and body composition of broiler chicks. Poult. Sci. 2002, 81, 1156–1167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laudadio, V.; Passantino, L.; Perillo, A.; Lopresti, G.; Passantino, A.; Khan, R.; Tufarelli, V. Productive performance and histological features of intestinal mucosa of broiler chickens fed different dietary protein levels. Poult. Sci. 2012, 91, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Laudadio, V.; Dambrosio, A.; Normanno, G.; Khan, R.U.; Naz, S.; Rowghani, E.; Tufarelli, V. Effect of reducing dietary protein level on performance responses and some microbiological aspects of broiler chickens under summer environmental conditions. Avian Biol. Res. 2012, 5, 88–92. [Google Scholar] [CrossRef]
- Namroud, N.F.; Shivazad, M.; Zaghari, M. Effects of fortifying low crude protein diet with crystalline amino acids on performance, blood ammonia level, and excreta characteristics of broiler chicks. Poult. Sci. 2008, 87, 2250–2258. [Google Scholar] [CrossRef] [PubMed]
- Shao, D.; Shen, Y.R.; Zhao, X.; Wang, Q.; Hu, Y.; Shi, S.R.; Tong, H.B. Low-protein diets with balanced amino acids reduce nitrogen excretion and foot pad dermatitis without affecting the growth performance and meat quality of free-range yellow broilers. Ital. J. Anim. Sci. 2018, 17, 698–705. [Google Scholar] [CrossRef]
- Khajali, F.; Wideman, R. Dietary arginine: Metabolic, environmental, immunological and physiological interrelationships. World Poult. Sci. J. 2010, 66, 751–766. [Google Scholar] [CrossRef]
- Wu, G.; Bazer, F.W.; Dai, Z.; Li, D.; Wang, J.; Wu, Z. Amino acid nutrition in animals: Protein synthesis and beyond. Annu. Rev. Anim. Biosci. 2014, 2, 387–417. [Google Scholar] [CrossRef] [PubMed]
- Council, N.R. Nutrient Requirements of Poultry; National Academic Press: Washington, DC, USA, 1994. [Google Scholar]
- Corzo, A.; Kidd, M. Arginine needs of the chick and growing broiler. Int. J. Poult. Sci. 2003, 2, 379–382. [Google Scholar]
- Corzo, A.; Moran, E., Jr.; Hoehler, D. Arginine need of heavy broiler males: Applying the ideal protein concept. Poult. Sci. 2003, 82, 402–407. [Google Scholar] [CrossRef] [PubMed]
- Siebert, D.; Khan, D.R.; Esteve-Garcia, E. Investigations on the optimal arginine:lysine ratio in the starter phase of meat-type chickens. In Proceedings of the 21st European Society of Veterinary and Comparative Nutrition Congress; Harris, P., Moore-Colyer, M., Eds.; European Society of Veterinary & Comparative Nutrition: Cirencester, UK, 2017; Volume 21, p. 144. [Google Scholar]
- Mayne, R.; Else, R.; Hocking, P. High litter moisture alone is sufficient to cause footpad dermatitis in growing turkeys. Br. Poult. Sci. 2007, 48, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Slaoui, M.; Fiette, L. Histopathology procedures: From tissue sampling to histopathological evaluation. In Drug Safety Evaluation; Springer: Cham, Switzerland, 2011; pp. 69–82. [Google Scholar]
- Naumann, C.; Bassler, R. Methoden der Landwirtschaftlichen Forschungs-und Untersuchungsanstalt, Biochemische Untersuchung von Futtermitteln; Methodenbuch iii (einschließlich der achten Ergänzungen); VDLUFA: Darmstadt, Germany, 2012. [Google Scholar]
- Aletor, V.A.; Hamid, I.I.; Niess, E.; Pfeffer, E. Low-protein amino acid-supplemented diets in broiler chickens: Effects on performance, carcass characteristics, whole-body composition and efficiencies of nutrient utilisation. J. Sci. Food. Agric. 2000, 80, 547–554. [Google Scholar] [CrossRef]
- Ernährungsphysiologie, G.F. Empfehlungen zur Energie-und Nährstoffversorgung der Legehennen und Masthühner (Broiler); DLG Verlag: Frankfurt am Main, Germany, 1999. [Google Scholar]
- Kamran, Z.; Sarwar, M.; Nisa, M.; Nadeem, M.; Ahmad, S.; Mushtaq, T.; Ahmad, T.; Shahzad, M. Effect of lowering dietary protein with constant energy to protein ratio on growth, body composition and nutrient utilization of broiler chicks. Asian Austral J. Anim. 2008, 21, 1629–1634. [Google Scholar] [CrossRef]
- Aviagen. Ross 308 Broiler Performance Objectives; Aviagen Group: Huntsville, AL, USA, 2014. [Google Scholar]
- Willems, O.; Miller, S.; Wood, B. Aspects of selection for feed efficiency in meat producing poultry. World Poult. Sci. J. 2013, 69, 77–88. [Google Scholar] [CrossRef]
Parameter [%] | Starter | Grower | Finisher | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CP-C | CP-1 | CP-2 | CP-3 | CP-C | CP-1 | CP-2 | CP-3 | CP-C | CP-1 | CP-2 | CP-3 | |
Supplementary Feedingstuff * | 80.0 | 80.0 | 80.0 | 80.0 | 80.0 | 80.0 | 80.0 | 80.0 | 80.0 | 80.0 | 80.0 | 80.0 |
Corn | 0.30 | 4.51 | 8.83 | 13.6 | 4.31 | 9.44 | 13.1 | 9.95 | 7.15 | 10.8 | 15.3 | 7.77 |
Soybean meal | 14.8 | 10.8 | 6.83 | 2.40 | 10.8 | 6.00 | 2.40 | 0.00 | 8.50 | 5.25 | 1.00 | 0.00 |
Plant oil | 3.40 | 2.68 | 1.85 | 1.00 | 4.15 | 3.30 | 2.60 | 4.35 | 4.10 | 3.30 | 2.50 | 5.60 |
Limestone | 0.75 | 0.74 | 0.73 | 0.72 | 0.30 | 0.29 | 0.30 | 0.28 | 0.05 | 0.04 | 0.02 | 0.00 |
Mono-Ca-phosphate | 0.50 | 0.57 | 0.63 | 0.70 | 0.25 | 0.33 | 0.39 | 0.52 | 0.00 | 0.06 | 0.13 | 0.26 |
Salt | 0.12 | 0.08 | 0.04 | 0.00 | 0.10 | 0.05 | 0.02 | 0.00 | 0.07 | 0.04 | 0.00 | 0.00 |
Sodium Bicarbonate | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.06 | 0.11 | 0.14 | 0.00 | 0.05 | 0.09 | 0.10 |
Arginine | 0.00 | 0.12 | 0.23 | 0.36 | 0.00 | 0.14 | 0.25 | 0.35 | 0.00 | 0.10 | 0.22 | 0.29 |
Isoleucine | 0.00 | 0.07 | 0.14 | 0.21 | 0.00 | 0.08 | 0.15 | 0.21 | 0.00 | 0.06 | 0.13 | 0.17 |
L-Lysine-HCl | 0.04 | 0.17 | 0.30 | 0.44 | 0.04 | 0.20 | 0.32 | 0.42 | 0.04 | 0.15 | 0.29 | 0.35 |
L-Methionine | 0.03 | 0.05 | 0.06 | 0.08 | 0.00 | 0.02 | 0.04 | 0.06 | 0.00 | 0.01 | 0.03 | 0.05 |
Threonine | 0.07 | 0.13 | 0.19 | 0.26 | 0.05 | 0.01 | 0.18 | 0.24 | 0.08 | 0.13 | 0.19 | 0.24 |
Valine | 0.00 | 0.07 | 0.13 | 0.20 | 0.00 | 0.08 | 0.14 | 0.20 | 0.00 | 0.05 | 0.12 | 0.17 |
Caolin | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 3.32 | 0.00 | 0.00 | 0.00 | 5.00 |
Item [g/kg; 88% DM] | Starter | Grower | Finisher | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CP-C | CP-1 | CP-2 | CP-3 | CP-C | CP-1 | CP-2 | CP-3 | CP-C | CP-1 | CP-2 | CP-3 | |
Crude ash | 58.7 | 56.4 | 54.4 | 51.9 | 50.5 | 48.6 | 47.6 | 73.8 | 45.4 | 46.5 | 43.3 | 84.4 |
Crude fat (EE) | 78.8 | 75.3 | 68.7 | 64.4 | 89.8 | 83.3 | 79.3 | 93.7 | 93.3 | 83.5 | 76.4 | 103 |
Crude fibre | 20.5 | 19.6 | 18.5 | 16.2 | 19.2 | 19.1 | 18.2 | 18.4 | 20.7 | 20.7 | 19.3 | 18.2 |
Crude protein | 222 | 215 | 202 | 192 | 205 | 194 | 186 | 177 | 199 | 192 | 181 | 170 |
Nitrogen free extract 1 | 500 | 514 | 536 | 556 | 516 | 535 | 549 | 517 | 522 | 537 | 560 | 504 |
Starch | 335 | 356 | 382 | 410 | 355 | 384 | 406 | 380 | 376 | 385 | 412 | 371 |
Sugar | 52.5 | 51.9 | 47.2 | 43.3 | 48.7 | 44.6 | 41.1 | 37.4 | 49.1 | 44.4 | 39.8 | 35.8 |
Calcium | 9.67 | 9.72 | 9.69 | 9.67 | 8.02 | 7.62 | 7.59 | 7.60 | 6.03 | 6.04 | 6.04 | 6.07 |
Phosphorus | 7.43 | 6.59 | 7.25 | 7.47 | 6.34 | 6.42 | 5.99 | 6.13 | 5.77 | 5.45 | 5.24 | 5.31 |
Potassium | 9.85 | 8.91 | 8.12 | 7.29 | 8.87 | 7.92 | 7.22 | 7.61 | 8.41 | 7.73 | 7.44 | 8.37 |
Arginine | 14.8 | 14.8 | 14.3 | 14.8 | 13.5 | 13.6 | 14.1 | 13.6 | 13.7 | 13.1 | 12.8 | 12.6 |
Cysteine | 2.23 | 2.28 | 2.03 | 2.02 | 2.24 | 2.23 | 2.05 | 1.84 | 2.02 | 2.30 | 1.97 | 1.66 |
Histidine | 5.87 | 5.53 | 4.76 | 4.72 | 5.28 | 4.98 | 4.68 | 4.28 | 5.22 | 5.00 | 4.33 | 4.04 |
Isoleucine | 9.62 | 9.42 | 8.99 | 9.38 | 9.24 | 8.72 | 9.04 | 8.73 | 7.96 | 8.55 | 8.18 | 8.11 |
Leucine | 16.9 | 16.1 | 14.6 | 14.0 | 16.3 | 14.7 | 14.4 | 12.7 | 15.5 | 15.0 | 13.3 | 12.5 |
Lysine | 12.8 | 12.9 | 12.4 | 12.6 | 12.0 | 11.7 | 12.3 | 11.7 | 11.7 | 11.4 | 11.3 | 10.8 |
Methionine | 5.18 | 5.73 | 5.43 | 5.59 | 5.04 | 5.45 | 5.01 | 5.00 | 5.18 | 5.10 | 4.70 | 5.16 |
Phenylalanine | 10.8 | 10.2 | 9.04 | 8.74 | 10.4 | 9.30 | 8.99 | 7.96 | 10.1 | 9.41 | 8.24 | 7.66 |
Threonine | 8.30 | 8.64 | 8.14 | 8.64 | 7.77 | 6.73 | 8.18 | 7.56 | 7.86 | 8.11 | 7.82 | 7.36 |
Valine | 10.3 | 10.5 | 9.86 | 10.3 | 9.83 | 9.47 | 10.1 | 9.69 | 9.30 | 9.33 | 9.07 | 8.85 |
Metabolizable energy AMEN 2 [MJ/kg DM] | 12.4 | 12.5 | 12.5 | 12.6 | 12.8 | 12.9 | 12.9 | 12.8 | 13.2 | 12.8 | 12.8 | 12.8 |
Item | Group | Week 1 | Week 2 | Week 3 | Week 4 | Week 5 * |
---|---|---|---|---|---|---|
Body weight [in g; end of week] | CP-C | 216 A ± 19.8 | 535 A ± 58.1 | 989 B,C ± 116 | 1589 B,C ± 189 | 2192 B,C ± 258 |
CP-1 | 218 A ± 16.5 | 541 A ± 51.7 | 1004 A,B ± 116 | 1632 A,B ± 199 | 2244 A,B ± 275 | |
CP-2 | 217 A ± 15.6 | 552 A ± 47.1 | 1034 A ± 106 | 1678 A ± 182 | 2329 A ± 266 | |
CP-3 | 206 B ± 20.1 | 517 B ± 45.6 | 956 C ± 99.8 | 1548 C ± 175 | 2131 C ± 244 | |
FCR [Ø in week] | CP-C | 0.987 ± 0.073 | 1.169 ± 0.023 | 1.363 ± 0.043 | 1.488 ± 0.039 | 1.848 ± 0.066 |
CP-1 | 0.952 ± 0.034 | 1.185 ± 0.025 | 1.342 ± 0.026 | 1.474 ± 0.026 | 1.817 ± 0.020 | |
CP-2 | 0.996 ± 0.044 | 1.165 ± 0.009 | 1.334 ± 0.047 | 1.494 ± 0.032 | 1.776 ± 0.050 | |
CP-3 | 1.025 ± 0.070 | 1.199 ± 0.042 | 1.389 ± 0.047 | 1.518 ± 0.026 | 1.827 ± 0.104 |
Item | Group | Week 1 | Week 2 | Week 3 | Week 4 | Week 5 * |
---|---|---|---|---|---|---|
Dry matter (DM) excreta † [in g/kg; end of week] | CP-C | 188 B ± 8.34 | 200 B ± 10.8 | 189 B ± 7.92 | 188 B ± 9,31 | 184 B ± 9.46 |
CP-1 | 193 A,B ± 9.27 | 208 B ± 9.27 | 188 B ± 6.62 | 186 B ± 11.9 | 184 B ± 8.18 | |
CP-2 | 199 A,B ± 14.8 | 207 B ± 12.1 | 192 B ± 16.9 | 184 B ± 14.2 | 181 B ± 8.01 | |
CP-3 | 206 A ± 9.47 | 228 A ± 7.25 | 228 A ± 20.2 | 232 A ± 2.76 | 219 A ± 9.77 | |
Dry matter litter ‡ [in g/kg; end of week] | CP-C | 815 ± 36.2 | 816 B ± 23.9 | 712 A,B ± 53.8 | 588 B ± 54.3 | 609 B ± 69.8 |
CP-1 | 829 ± 29.3 | 837 A,B ± 24.6 | 698 B ± 42.2 | 596 A,B ± 67.6 | 610 B ± 31.3 | |
CP-2 | 817 ± 31.5 | 831 A,B ± 43.9 | 718 A,B ± 58.0 | 617 A,B ± 58.0 | 584 B ± 61.6 | |
CP-3 | 830 ± 30.7 | 856 A ± 24.3 | 763 A ± 49.7 | 667 A ± 66.7 | 709 A ± 45.1 |
Item | Group | Week 1 | Week 2 | Week 3 | Week 4 | Week 5 |
---|---|---|---|---|---|---|
Nitrogen content [in g/kg DM; end of week] | CP-C | 44.7 A ± 2.16 | 43.5 A ± 1.45 | 44.8 A ± 1.28 | 46.3 A ± 1.43 | 50.0 A ± 3.13 |
CP-1 | 43.4 A,B ± 2.05 | 38.7 B ± 0.71 | 42.1 B ± 1.79 | 45.0 A ± 1.59 | 47.9 A ± 3.02 | |
CP-2 | 40.4 A,B ± 2.12 | 36.4 C ± 2.01 | 36.4 C ± 2.56 | 41.2 B ± 1.94 | 42.4 B ± 2.64 | |
CP-3 | 35.4 C ± 3.03 | 29.1 D ± 0.86 | 28.4 D ± 1.29 | 29.7 C ± 1.63 | 31.7 C ± 1.99 |
Group | N-Intake From Feed [g/box] | N-Amount in Final Litter [g/box] | Weight Gain ∆ Final-Start [g/box] | N-Retained [g/box] |
---|---|---|---|---|
CP-C | 1517 A ± 52.5 | 581 A ± 39.6 | 32,033 B,C ± 781 | 938 B ± 22.8 |
CP-1 | 1484 A,B ± 52.9 | 522 B ± 28.2 | 32,923 A,B ± 1147 | 938 B ± 22.9 |
CP-2 | 1451 B ± 35.8 | 477 C ± 25.3 | 34,190 A ± 987 | 1001 A ± 28.8 |
CP-3 | 1278 C ± 30.8 | 416 D ± 20.0 | 31,220 C ± 803 | 914 B ± 23.5 |
Group | N-Retention Efficiency * [%] | N-Efficiency Ratio † [g/g] | N-Excretion (Apparent) ‡ [g/box] | N-Excretion (Apparent) ‡ [g/animal] |
---|---|---|---|---|
CP-C | 61.9 C ± 1.46 | 21.1 D ± 0.50 | 579 A ± 39.8 | 38.6 A ± 2.66 |
CP-1 | 63.3 C ± 2.76 | 22.2 C ± 0.17 | 546 A ± 56.7 | 36.4 A ± 3.78 |
CP-2 | 69.0 B ± 0.81 | 23.6 B ± 0.28 | 450 B ± 15.2 | 30.0 B ± 1.01 |
CP-3 | 71.5 A ± 0.70 | 24.4 A ± 0.24 | 364 C ± 12.6 | 24.2 C ± 0.84 |
Item | Group | Week 1 | Week 2 | Week 3 | Week 4 | Week 5 |
---|---|---|---|---|---|---|
FPD Scores [averages of both feet; end of week] | CP-C | 0.04 ± 0.13 | 0.46 ± 0.38 | 0.94 B ± 0.20 | 0.97 ± 0.15 | 0.68 ± 0.39 |
CP-1 | 0.03 ± 0.12 | 0.43 ± 0.37 | 1.02 A,B ± 0.23 | 0.97 ± 0.12 | 0.61 ± 0.41 | |
CP-2 | 0.05 ± 0.17 | 0.38 ± 0.37 | 1.04 A ± 0.23 | 0.97 ± 0.12 | 0.63 ± 0.40 | |
CP-3 | 0.03 ± 0.12 | 0.45 ± 0.38 | 0.99 A,B ± 0.28 | 1.01 ± 0.12 | 0.74 ± 0.41 |
Item | Group | Dissection |
---|---|---|
Villus height * [in µm] | CP-C | 454 ± 68.3 |
CP-1 | 448 ± 58.1 | |
CP-2 | 455 ± 50.4 | |
CP-3 | 446 ± 75.9 | |
Villus width † [in µm] | CP-C | 139 ± 23.0 |
CP-1 | 142 ± 18.1 | |
CP-2 | 140 ± 26.9 | |
CP-3 | 140 ± 25.8 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullrich, C.; Langeheine, M.; Brehm, R.; Taube, V.; Siebert, D.; Visscher, C. Influence of Reduced Protein Content in Complete Diets with a Consistent Arginine–Lysine Ratio on Performance and Nitrogen Excretion in Broilers. Sustainability 2018, 10, 3827. https://doi.org/10.3390/su10113827
Ullrich C, Langeheine M, Brehm R, Taube V, Siebert D, Visscher C. Influence of Reduced Protein Content in Complete Diets with a Consistent Arginine–Lysine Ratio on Performance and Nitrogen Excretion in Broilers. Sustainability. 2018; 10(11):3827. https://doi.org/10.3390/su10113827
Chicago/Turabian StyleUllrich, Cristina, Marion Langeheine, Ralph Brehm, Venja Taube, Diana Siebert, and Christian Visscher. 2018. "Influence of Reduced Protein Content in Complete Diets with a Consistent Arginine–Lysine Ratio on Performance and Nitrogen Excretion in Broilers" Sustainability 10, no. 11: 3827. https://doi.org/10.3390/su10113827
APA StyleUllrich, C., Langeheine, M., Brehm, R., Taube, V., Siebert, D., & Visscher, C. (2018). Influence of Reduced Protein Content in Complete Diets with a Consistent Arginine–Lysine Ratio on Performance and Nitrogen Excretion in Broilers. Sustainability, 10(11), 3827. https://doi.org/10.3390/su10113827