Consumer Preferences and Welfare Evaluation under Current Food Inspection Measures in China: Evidence from Real Experiment Choice of Rice Labels
Abstract
:1. Introduction
2. Real Choice Experiment
2.1. Lancaster’s Consumer Theory
2.2. Attribute Selection and Choice Set
2.3. Experimental Design
2.4. Experimental Sites
2.5. Data Description
3. Econometric Modeling
3.1. Random Parameters Logit andLatent Class Model
3.2. Willingness to Pay
3.3. Consumer Welfare
4. Empirical Results
4.1. Heterogeneity in Consumer Preferences
4.2. Willingness to Pay Estimation
4.3. Consumer Welfare Evaluation
5. Conclusions and Implications
Author Contributions
Funding
Conflicts of Interest
Appendix A
Variables | Latent Class Model | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Class 1 Label & Rice Lovers | Class 2 Rice Avoiders | Class 3 Budget Conscious | Class 4 Price Sensitive | Class 5 Label Skeptics | ||||||
Coefficient | S.E. | Coefficient | S.E. | Coefficient | S.E. | Coefficient | S.E. | Coefficient | S.E. | |
Main Effect | ||||||||||
Govern | 1.721 *** | 0.336 | 0.174 | 0.843 | 0.085 | 0.866 | 0.760 | 1.432 | 5.327 | 3.345 |
Third | 1.143 *** | 0.401 | 1.326 | 0.879 | 1.521 | 1.206 | 1.162 | 1.537 | −1.992 | 2.093 |
Trace | 1.223 *** | 0.295 | −0.735 | 0.854 | −0.117 | 0.677 | 0.460 | 1.018 | 3.026 | 2.156 |
Grade | 0.178 | 0.291 | 1.077 | 0.751 | −0.828 | 0.903 | −0.629 | 0.945 | 1.274 | 2.102 |
Brand | 1.400 *** | 0.294 | −0.272 | 0.631 | −0.043 | 0.634 | −0.037 | 1.067 | 0.470 | 2.915 |
Price | −0.052 | 0.049 | −0.552 *** | 0.117 | −0.920 *** | 0.117 | −1.647 *** | 0.276 | −1.272 *** | 0.391 |
Chooseno | −1.648 *** | 0.274 | −1.154 | 0.746 | −6.621 *** | 0.777 | −7.656 *** | 1.285 | −6.062 *** | 1.914 |
Interaction Effect | ||||||||||
Govern*Trace | −0.012 | 0.121 | 0.143 | 0.284 | −0.339 | 0.360 | −1.287 ** | 0.540 | 0.896 | 1.042 |
Govern*Grade | −0.070 | 0.144 | −0.374 | 0.493 | −0.522 | 0.429 | −0.520 | 0.418 | −0.249 | 0.587 |
Govern*Brand | 0.041 | 0.121 | 0.198 | 0.257 | 0.274 | 0.551 | 0.273 | 0.542 | −1.469 | 0.980 |
Third*Trace | −0.260 ** | 0.107 | 0.292 | 0.232 | 0.202 | 0.377 | 0.418 | 0.367 | −0.659 | 0.857 |
Third*Grade | −0.110 | 0.143 | −0.871 * | 0.480 | 0.090 | 0.393 | 1.175 ** | 0.586 | 0.289 | 0.758 |
Third*Brand | −0.454 *** | 0.117 | −0.810 *** | 0.232 | −0.158 | 0.388 | 0.974 | 0.606 | 0.109 | 0.914 |
Trace*Grade | −0.083 | 0.081 | −0.114 | 0.206 | −0.285 | 0.320 | 0.169 | 0.419 | 0.492 | 0.573 |
Trace*Brand | −0.026 | 0.102 | −0.342 | 0.211 | −0.275 | 0.379 | 0.344 | 0.381 | −0.394 | 0.561 |
Grade*Brand | −0.244 ** | 0.098 | −0.431 ** | 0.200 | 0.104 | 0.212 | −0.339 | 0.3556 | 0.564 | 0.807 |
Income*Govern | −0.094 | 0.065 | 0.616 *** | 0.174 | 0.498 ** | 0.194 | −0.547 ** | 0.2480 | −0.1923 | 0.544 |
Income*Third | 0.010 | 0.071 | −0.313 ** | 0.152 | −0.267 | 0.278 | −0.199 | 0.2964 | 0.7993 | 0.499 |
Income*Trace | −0.121 ** | 0.057 | 0.215 | 0.163 | 0.2601 * | 0.145 | 0.078 | 0.2777 | −0.4552 * | 0.275 |
Income*Grade | 0.084 | 0.054 | −0.048 | 0.143 | 0.193 | 0.161 | 0.113 | 0.2569 | −0.0843 | 0.592 |
Income*Brand | −0.093 * | 0.047 | 0.188 | 0.117 | 0.331 ** | 0.134 | −0.132 | 0.3149 | 0.2325 | 0.440 |
Edu*Govern | −0.003 | 0.110 | −0.081 | 0.237 | −0.486 * | 0.259 | 0.916 ** | 0.4250 | −1.5324 | 1.092 |
Edu*Third | −0.262 ** | 0.109 | 0.190 | 0.245 | 0.335 | 0.356 | −0.146 | 0.553 | 0.026 | 0.831 |
Edu*Trace | 0.080 | 0.091 | 0.556 ** | 0.247 | 0.037 | 0.204 | 0.160 | 0.337 | −0.732 | 0.642 |
Edu*Grade | 0.106 | 0.095 | 0.330 | 0.210 | 0.234 | 0.278 | 0.328 | 0.385 | −0.149 | 0.731 |
Edu*Brand | −0.009 | 0.084 | 0.694 *** | 0.221 | −0.320* | 0.175 | 0.290 | 0.332 | −0.160 | 1.018 |
Class probability | 43.931 | 19.595 | 19.060 | 10.932 | 6.481 | |||||
Log likelihood | −2614.500 | |||||||||
χ2(P = 0.000) | 4391.534 | |||||||||
McFadden R2 | 0.464 |
References
- Akerlof, G.A. The Market for “Lemons”: Quality uncertainty and the market mechanism. Q. J. Econ. 1970, 84, 488–500. [Google Scholar] [CrossRef]
- Antle, J.M. Efficient food safety regulation in the food manufacturing sector. Am. J. Agric. Econ. 1996, 78, 1242–1247. [Google Scholar] [CrossRef]
- Velde, F. Gresham’s Law. In The New Palgrave Dictionary of Money and Finance; Palgrave Macmillan: London, UK, 2008. [Google Scholar]
- Lusk, J.L.; Tonsor, G.T.; Schroeder, T.C.; Hayes, D.J. Effect of government quality grade labels on consumer demand for pork chops in the short and long run. Food Policy 2018, 77, 91–102. [Google Scholar] [CrossRef]
- Quan, S.; Zeng, Y.; Yu, X.; Bao, T. WTP for baby milk formula in China: Using attribute nonattendance as a priori information to select attributes in choice experiment. Agribusiness 2018, 34, 300–320. [Google Scholar] [CrossRef]
- Wang, J.; Ge, J.; Ma, Y. Urban Chinese consumers’ willingness to pay for pork with certified labels: A discrete choice experiment. Sustainability 2018, 10, 603. [Google Scholar] [CrossRef]
- Asche, F.; Larsen, T.A.; Smith, M.D.; Sogn-Grundvag, G.; Young, J.A. Pricing of eco-labels with retailer heterogeneity. Food Policy 2015, 53, 82–93. [Google Scholar] [CrossRef] [Green Version]
- Lewis, K.E.; Grebitus, C.; Colson, G.; Hu, W. German and British consumer willingness to pay for beef labeled with food safety attributes. J. Agric. Econ. 2017, 68, 451–470. [Google Scholar] [CrossRef]
- Lim, K.H.; Hu, W. How local is local? A reflection on Canadian local food labeling policy from consumer preference. Can. J. Agric. Econ. 2016, 64, 71–88. [Google Scholar] [CrossRef]
- China Statistical Yearbook 2017. Available online: http://www.stats.gov.cn/tjsj/ndsj/2017/indexeh.htm (accessed on 1 November 2018).
- Zhao, F.; Ma, Y.; Zhu, Y.; Tang, Z.; McGrath, S.P. Soil contamination in China: Current status and mitigation strategies. Environ. Sci. Technol. 2015, 49, 750–759. [Google Scholar] [CrossRef] [PubMed]
- Drichoutis, A.C.; Vassilopoulos, A.; Lusk, J.L.; Nayga, R.M. Consumer preferences for fair labour certification. Eur. Rev. Agric. Econ. 2017, 44, 455–474. [Google Scholar] [CrossRef]
- Wolfe, E.; Popp, M.; Bazzani, C.; Nayga, R.M.; Danforth, D.; Popp, J.; Chen, P.Y.; Seo, H.S. Consumers’ willingness to pay for edamame with a genetically modified label. Agribusiness 2018, 34, 283–299. [Google Scholar] [CrossRef]
- Meyerding, S.G.H.; Gentz, M.; Altmann, B.; Meier-Dinkel, L. Beef quality labels: A combination of sensory acceptance test, stated willingness to pay, and choice-based conjoint analysis. Appetite 2018, 127, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Gracia, A.; Loureiro, M.L.; Nayga, R.M. Are valuations from nonhypothetical choice experiments different from those of experimental auctions? Am. J. Agric. Econ. 2011, 93, 1358–1373. [Google Scholar] [CrossRef]
- Penn, J.M.; Hu, W.Y. Understanding hypothetical bias: An enhanced meta-analysis. Am. J. Agric. Econ. 2018, 100, 1186–1206. [Google Scholar] [CrossRef]
- Loureiro, M.L.; Umberger, W.J. A choice experiment model for beef: What US consumer responses tell us about relative preferences for food safety, country-of-origin labeling and traceability. Food Policy 2007, 32, 496–514. [Google Scholar] [CrossRef]
- Louviere, J.J.; Hensher, D.A.; Swait, J.D. Stated Choice Methods: Analysis and Applications; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Alphonce, R.; Alfnes, F. Eliciting consumer WTP for food characteristics in a developing context: Application of four valuation methods in an African market. J. Agric. Econ. 2017, 68, 123–142. [Google Scholar] [CrossRef]
- Bernard, J.C.; Liu, Y. Are beliefs stronger than taste? A field experiment on organic and local apples. Food Qual. Preference 2017, 61, 55–62. [Google Scholar] [CrossRef]
- Lancaster, K. A new approach to consumer theory. J. Political Econ. 1966, 74, 132–157. [Google Scholar] [CrossRef]
- Hensher, D.A.; Rose, J.M.; Greene, W.H. Applied Choice Analysis, 2nd ed.; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Allenby, G.M.; Rossi, P.E. Marketing models of consumer heterogeneity. J. Econ. 1998, 89, 57–78. [Google Scholar] [CrossRef]
- Wu, L.; Xu, L.; Zhu, D.; Wang, X. Factors affecting consumer willingness to pay for certified traceable food in Jiangsu province of China. Can. J. Agric. Econ. 2012, 60, 317–333. [Google Scholar] [CrossRef]
- Pennings, J.M.E.; Wansink, B.; Meulenberg, M.T.G. A note on modeling consumer reactions to a crisis: The case of the mad cow disease. Int. J. Res. Mark. 2002, 19, 91–100. [Google Scholar] [CrossRef]
- Lim, K.H.; Hu, W.; Maynard, L.J.; Goddard, E. A taste for safer beef? How much does consumers’ perceived risk influence willingness to pay for country-of-origin labeled beef. Agribusiness 2014, 30, 17–30. [Google Scholar] [CrossRef]
- McFadden, D. Conditional Logit Analysis of Qualitative Choice Behavior; Academic Press: Cambridge, MA, USA, 1974; pp. 105–142. [Google Scholar]
- Train, K.E. Discrete Choice Methods with Simulation, 2nd ed.; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Ouma, E.; Abdulai, A.; Drucker, A. Measuring heterogeneous preferences for cattle traits among cattle-keeping households in East Africa. Am. J. Agric. Econ. 2007, 89, 1005–1019. [Google Scholar] [CrossRef]
- Ortega, D.L.; Wang, H.H.; Wu, L.; Olynk, N.J. Modeling heterogeneity in consumer preferences for select food safety attributes in China. Food Policy 2011, 36, 318–324. [Google Scholar] [CrossRef]
- Krinsky, I.; Robb, A.L. On approximating the statistical properties of elasticities: A correction. Rev. Econ. Stat. 1986, 68, 715–719. [Google Scholar] [CrossRef]
- Halton, J.; Smith, G.B. Algorithm 247: Radical-inverse quasi-random point sequence. Commun. ACM 1964, 7, 701–702. [Google Scholar] [CrossRef]
Attributes | Level | Code | Description |
---|---|---|---|
Certification | Government | Govern = 1 Third = 0 | The product carries certification labels issued by the government or domestic third parties, ensuring that it meets the safety requirements. |
Third party | Govern = 0 Third = 1 | ||
No | Govern = −1 Third = −1 | ||
Traceability | Yes | Yes = 1 | The product is traceable for the entire information chain including production environment, pesticide usage, shipping, marketing, etc. |
No | No = −1 | ||
Grade | Yes | Yes = 1 | Food grading labels represent a comprehensive index of visible sensory characteristics, invisible taste and quality characteristics. |
No | No = −1 | ||
Brand | Yes | Yes = 1 | Brand is a unique symbol that distinguishes its products from competitors and transmits quality information to consumers. |
No | No = −1 | ||
Price | 3 | The sale price for a unit of rice is CNY/500 g (500 g = 1 jin, a Chinese unit of measurement). A unit of currency CNY ≈ 0.15 USD in June 2018. | |
5 | |||
7 |
Variables | Group | Proportion (%) | Mean (Std. Dev.) | China Census Data |
---|---|---|---|---|
Age | 17–24 | 13.75 | 39.64 (15.08) | 37.35 |
25–34 | 32.73 | |||
35–44 | 17.84 | |||
45–54 | 17.47 | |||
55–64 | 10.78 | |||
>64 | 7.43 | |||
Gender | Male | 37.92 | 51.01 | |
Female | 62.08 | 48.99 | ||
Household size(person) | 1–2 | 29.55 | 3.13 (1.30) | 2.90 |
3–4 | 56.33 | |||
>4 | 14.12 | |||
Monthly household income | <3k | 4.83 | ||
(CNY) | 3k–6k | 18.77 | ||
6k–10k | 33.84 | |||
10k–15k | 23.98 | |||
15k–20k | 10.22 | |||
>20k | 8.36 | |||
Monthly per capita income(CNY) | 3611.02 | 3413.92 | ||
Education | Junior school or below | 13.01 | 14.15 | 11.68 |
Senior school | 23.79 | |||
Undergraduate | 53.91 | |||
Graduate | 9.29 | |||
Primary shopper | Yes | 60.41 | ||
No | 39.59 | |||
Risk perception | 2.43 (0.99) | |||
Risk attitude | 3.84 (1.42) |
Variables | Random Parameters Logit | Latent Class Model | ||||||
---|---|---|---|---|---|---|---|---|
Class 1 Label & Rice Lovers | Class2 Price Sensitive | Class 3 Rational Consumers | ||||||
Coefficient | S.E. | Coefficient | S.E. | Coefficient | S.E. | Coefficient | S.E. | |
Main Effect | ||||||||
Govern | 0.6925 *** | 0.1841 | 1.0111 *** | 0.2707 | 1.0985 ** | 0.4309 | 1.2380 ** | 0.5666 |
Third | 0.6207 *** | 0.1660 | 1.0360 *** | 0.2880 | 0.1309 | 0.4449 | 1.2878 ** | 0.5782 |
Trace | 0.3191 ** | 0.1504 | 0.6572 *** | 0.2261 | 0.3369 | 0.3258 | 0.9376 ** | 0.4651 |
Grade | −0.0913 | 0.1356 | 0.2075 | 0.2034 | −0.1481 | 0.3087 | −0.7325 | 0.4544 |
Brand | 0.2072 | 0.1523 | 0.8410 *** | 0.2227 | −0.1461 | 0.3004 | 0.0937 | 0.3253 |
Price | −0.4476 *** | 0.0216 | −0.0752 *** | 0.0180 | −0.9642 *** | 0.0791 | −0.9108 *** | 0.0994 |
Opt-out | −2.8376 *** | 0.1210 | −1.1722 *** | 0.2042 | −4.2578 *** | 0.3702 | −6.1841 *** | 0.5887 |
Interaction Effect | ||||||||
Govern*Trace | −0.0222 | 0.0539 | 0.1332 | 0.0860 | −0.0482 | 0.1407 | −0.5524 ** | 0.2629 |
Govern*Grade | −0.1397 *** | 0.0504 | −0.0219 | 0.0835 | −0.2107 | 0.1504 | 0.0847 | 0.2189 |
Govern*Brand | 0.0736 | 0.0548 | 0.1288 | 0.0905 | −0.0902 | 0.1434 | 0.5422 ** | 0.2506 |
Third*Trace | −0.1418 *** | 0.0510 | −0.2241 *** | 0.0799 | 0.1156 | 0.1476 | −0.0395 | 0.2307 |
Third*Grade | −0.0296 | 0.0512 | −0.1198 | 0.0846 | 0.3522 ** | 0.1498 | −0.2972 | 0.2108 |
Third*Brand | −0.2566 *** | 0.0543 | −0.3196 *** | 0.0883 | 0.0723 | 0.1514 | −0.2992 | 0.2389 |
Trace*Grade | −0.0628 | 0.0410 | −0.0494 | 0.0666 | 0.0030 | 0.1049 | 0.2418 | 0.1724 |
Trace*Brand | −0.1096 ** | 0.0433 | 0.0237 | 0.0673 | −0.0775 | 0.1061 | 0.1721 | 0.1926 |
Grade*Brand | −0.0610 | 0.0405 | −0.0813 | 0.0697 | −0.0089 | 0.0969 | 0.0816 | 0.1339 |
Income*Govern | 0.1460 *** | 0.0410 | 0.1273 ** | 0.0586 | 0.0103 | 0.1096 | 0.0223 | 0.1100 |
Income*Third | −0.0104 | 0.0362 | −0.0917 | 0.0572 | 0.0914 | 0.0995 | 0.0172 | 0.1310 |
Income*Trace | 0.0588 * | 0.0332 | −0.0123 | 0.0470 | 0.0245 | 0.0820 | 0.0793 | 0.1017 |
Income*Grade | 0.1020 *** | 0.0302 | 0.0873 ** | 0.0419 | 0.0208 | 0.0728 | 0.2113 ** | 0.1062 |
Income*Brand | 0.0840 ** | 0.0337 | −0.0139 | 0.0440 | 0.1260* | 0.0742 | 0.1151 * | 0.0688 |
Edu*Govern | 0.0348 | 0.0610 | −0.0511 | 0.0864 | −0.2366 | 0.1538 | −0.0093 | 0.1688 |
Edu*Third | −0.0883 | 0.0547 | −0.1291 | 0.0919 | −0.0842 | 0.1500 | −0.0560 | 0.1931 |
Edu*Trace | 0.1442 *** | 0.0499 | 0.1139 | 0.0732 | −0.0368 | 0.1076 | 0.0545 | 0.1458 |
Edu*Grade | 0.1982 *** | 0.0449 | 0.0884 | 0.0654 | 0.2879 *** | 0.1036 | 0.1065 | 0.1506 |
Edu*Brand | 0.1711 *** | 0.0506 | 0.1107 | 0.0702 | 0.1192 | 0.1015 | −0.1064 | 0.1029 |
Standard Deviations of Parameter Distributions | ||||||||
sdGovern | 0.6094 *** | 0.0664 | ||||||
sdThird | 0.2783 *** | 0.0867 | ||||||
sdTrace | 0.4552 *** | 0.0530 | ||||||
sdGrade | 0.2970 *** | 0.0592 | ||||||
sdBrand | 0.5618 *** | 0.0719 | ||||||
Class probability | 54.888 | 20.643 | 24.470 | |||||
Log likelihood | −2798.1085 | −2612.3888 | ||||||
χ2(P = 0.000) | 3860.6376 | 4232.0770 | ||||||
McFadden R2 | 0.4082 | 0.4475 |
Random Parameters Logit | Latent Class Model | |||||||
---|---|---|---|---|---|---|---|---|
Class 1 Label & Rice Lovers | Class 2 Price Sensitive | Class 3 Rational Consumers | ||||||
CNY | CI | CNY | CI | CNY | CI | CNY | CI | |
Lower income < 3k, Lower education = Junior school or below | ||||||||
Govern | 3.9037 | [3.8876,3.9198] | 29.7667 | [29.5658,29.9675] | 1.8246 | [1.8074,1.8418] | 2.7367 | [2.7118,2.7617] |
Third | 2.3509 | [2.3360,2.3658] | 22.5162 | [22.2930,22.7394] | 0.2781 | [0.2611,0.2952] | 2.7611 | [2.7330,2.7892] |
Trace | 2.3350 | [2.3219,2.3480] | 20.9226 | [20.7443,21.1009] | 0.6836 | [0.6714,0.6959] | 2.3565 | [2.3360,2.3769] |
Grade | 0.9354 | [0.9240,0.9467] | 10.4722 | [10.3614,10.5831] | 0.3291 | [0.3175,0.3406] | −0.9124 | [−0.9325,−0.8923] |
Brand | 2.0686 | [2.0556,2.0815] | 25.7534 | [25.5668,25.9400] | 0.2064 | [0.1954,0.2174] | 0.2341 | [0.2199,0.2484] |
Sample average income = 12k, average education = Senior school or Undergraduate | ||||||||
Govern | 5.7309 | [5.7221,5.7398] | 35.9483 | [35.7654,36.1312] | 1.0776 | [1.0694,1.0859] | 2.8423 | [2.8273,2.8573] |
Third | 1.5947 | [1.5872,1.6021] | 10.9001 | [10.7878,11.0124] | 0.4750 | [0.4663,0.4837] | 2.6651 | [2.6476,2.6826] |
Trace | 3.9927 | [3.9856,3.9998] | 24.9435 | [24.8074,25.0796] | 0.6777 | [0.6710,0.6845] | 2.9673 | [2.9541,2.9806] |
Grade | 3.4510 | [3.4453,3.4566] | 19.9191 | [19.8479,19.9903] | 1.3925 | [1.3865,1.3985] | 0.5917 | [0.5825,0.6010] |
Brand | 4.1943 | [4.1872,4.2014] | 29.6432 | [29.4957,29.7907] | 1.2377 | [1.2312,1.2441] | 0.4759 | [0.4678,0.4840] |
Higher income > 20k, Higher education = Graduate | ||||||||
Govern | 7.6399 | [7.6211,7.6586] | 42.8423 | [42.6005,43.0842] | 0.4487 | [0.4262,0.4712] | 2.9533 | [2.9294,2.9773] |
Third | 0.9219 | [0.9068,0.9370] | −0.7881 | [−0.9269,−0.6493] | 0.7324 | [0.7082,0.7567] | 2.5708 | [2.5422,2.5995] |
Trace | 5.6006 | [5.5857,5.6156] | 28.3982 | [28.2275,28.5688] | 0.6899 | [0.6712,0.7086] | 3.6042 | [3.5812,3.6271] |
Grade | 5.8786 | [5.8654,5.8918] | 29.3053 | [29.1746,29.4360] | 2.3454 | [2.3289,2.3618] | 2.1259 | [2.1066,2.1453] |
Brand | 6.2503 | [6.2352,6.2654] | 32.7333 | [32.5600,32.9065] | 2.2655 | [2.2476,2.2834] | 0.7945 | [0.7786,0.8104] |
Random Parameters Logit | Latent Class Model | |||||||
---|---|---|---|---|---|---|---|---|
Class 1 Label & Rice Lovers | Class 2 Price Sensitive | Class 3 Rational Consumers | ||||||
CNY | CI | CNY | CI | CNY | CI | CNY | CI | |
Choice Welfare (CNY/choice/person) | ||||||||
Govern | 1.3996 | [1.3988,1.4004] | 6.2211 | [5.6304,6.8118] | 0.1683 | [0.1680,0.1686] | 0.5144 | [0.5138,0.5150] |
Third | 0.0050 | [0.0048,0.0051] | 0.0586 | [0.0011,0.1162] | 0.2424 | [0.2420,0.2428] | 0.4049 | [0.4045,0.4054] |
Trace | 0.3628 | [0.3620,0.3636] | 2.1394 | [1.7886,2.4902] | 0.1359 | [0.1356,0.1362] | 0.5949 | [0.5940,0.5958] |
Grade | 0.5494 | [0.5487,0.5501] | 1.7702 | [1.4982,2.0422] | 0.4014 | [0.4009,0.4019] | 0.1975 | [0.1970,0.1980] |
Brand | 0.8781 | [0.8772,0.8791] | 4.6736 | [4.1444,5.2029] | 0.3163 | [0.3159,0.3167] | 0.1996 | [0.1990,0.2002] |
Individual Welfare (CNY/year/person) | ||||||||
Govern | 13.3579 | [13.3503,13.3655] | 59.3746 | [53.7370,65.0123] | 1.6063 | [1.6034,1.6091] | 4.9095 | [4.9037,4.9152] |
Third | 0.0477 | [0.0458,0.0487] | 0.5593 | [0.0105,1.1090] | 2.3135 | [2.3097,2.3173] | 3.8644 | [3.8606,3.8692] |
Trace | 3.4626 | [3.4550,3.4702] | 20.4186 | [17.0705,23.7667] | 1.2970 | [1.2942,1.2999] | 5.6778 | [5.6692,5.6864] |
Grade | 5.2435 | [5.2368,5.2502] | 16.8949 | [14.2989,19.4909] | 3.8310 | [3.8262,3.8358] | 1.8850 | [1.8802,1.8897] |
Brand | 8.3807 | [8.3721,8.3902] | 44.6052 | [39.5545,49.6569] | 3.0188 | [3.0150,3.0226] | 1.9050 | [1.8993,1.9107] |
National Welfare (billion CNY/year) | ||||||||
Govern | 68.5753 | [68.5364,68.6144] | 304.8114 | [275.8695,333.7534] | 8.2461 | [8.2314,8.2606] | 25.2037 | [25.1741,25.2332] |
Third | 0.2450 | [0.2351,0.2500] | 2.8712 | [0.0539,5.6933] | 11.8767 | [11.8573,11.8963] | 19.8386 | [19.8192,19.8633] |
Trace | 17.7759 | [17.7369,17.8150] | 104.8229 | [87.6348,122.0110] | 6.6586 | [6.6440,6.6733] | 29.1480 | [29.1040,29.1923] |
Grade | 26.9186 | [26.8841,26.9529] | 86.7334 | [73.4062,100.0604] | 19.6672 | [19.6426,19.6918] | 9.6768 | [9.6524,9.7011] |
Brand | 43.0237 | [42.9798,43.0727] | 228.9895 | [203.0608,254.9235] | 15.4976 | [15.4781,15.5171] | 9.7797 | [9.7504,9.8090] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, W.; Abler, D.; Zhu, L.; Li, T.; Lin, G. Consumer Preferences and Welfare Evaluation under Current Food Inspection Measures in China: Evidence from Real Experiment Choice of Rice Labels. Sustainability 2018, 10, 4003. https://doi.org/10.3390/su10114003
Nie W, Abler D, Zhu L, Li T, Lin G. Consumer Preferences and Welfare Evaluation under Current Food Inspection Measures in China: Evidence from Real Experiment Choice of Rice Labels. Sustainability. 2018; 10(11):4003. https://doi.org/10.3390/su10114003
Chicago/Turabian StyleNie, Wenjing, David Abler, Liqun Zhu, Taiping Li, and Guanghua Lin. 2018. "Consumer Preferences and Welfare Evaluation under Current Food Inspection Measures in China: Evidence from Real Experiment Choice of Rice Labels" Sustainability 10, no. 11: 4003. https://doi.org/10.3390/su10114003
APA StyleNie, W., Abler, D., Zhu, L., Li, T., & Lin, G. (2018). Consumer Preferences and Welfare Evaluation under Current Food Inspection Measures in China: Evidence from Real Experiment Choice of Rice Labels. Sustainability, 10(11), 4003. https://doi.org/10.3390/su10114003