Spatio-Temporal Reorganization of Cropland Development in Central Asia during the Post-Soviet Era: A Sustainable Implication in Kazakhstan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset Preprocessing
- (1)
- (2)
- The word steppe was used instead of grasslands in this study. As one Russian word for “grassy plain”, steppe is mostly dominated by short grasses without trees [2].
2.3. Analysis Methods
3. Results
3.1. Spatio-Temporal Change of Cropland Area at National and Regional Scales
3.1.1. National Level
3.1.2. Regional Level
3.2. Net Areal Changes of Cropland and Their Contributors
3.3. Abandonment and Recultivation Cycle Analysis
3.4. Spatial Pattern of Rainfed and Irrigated Cropland
4. Discussion
4.1. Cropland Area Change in the Post-Soviet Era
4.2. Cropland Gains and Spatial Reorganization
4.3. Cycle of Abandonment and Recultivation between Cropland and Steppe
5. Conclusions and Implications for Sustainability
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Amitai, R.; Biran, M. Nomads as Agents of Cultural Change: The Mongols and Their Eurasian Predecessors; University of Hawaii Press: Honolulu, HI, USA, 2015. [Google Scholar]
- McColl, R.W. Encyclopedia of World Geography; Facts on File, Inc.: New York, NY, USA, 2005. [Google Scholar]
- Harmatta, J.; Puri, B.N.; Eternadi, G.F. History of Civilizations of Central Asia—Volume 2: The Development of Sedentary and Nomadic Civilizations: 700 B.C. to A.D. 250; UNESCO Publishing: Paris, France, 1994. [Google Scholar]
- Amitai, R.; Biran, M. Mongols, Turks, and Others: Eurasian Nomads and the Sedentary World; Brill: Leidon, The Netherlands, 2005. [Google Scholar]
- Bell-Fialkoff, A. The Role of Migration in the History of the Eurasian Steppe: Sedentary Civilization vs. “Barbarian” and Nomad; Macmillan Press Ltd.: Houndmills, UK, 2000. [Google Scholar]
- Cui, X.; Guo, K.; Hao, Y.; Chen, Z. Degradation and management of steppes in China. In Eurasian Steppes: Ecological Problems and Livelihoods in a Changing World; Werger, M.J.A., van Staalduinen, M.A., Eds.; Springer Science + Business Media B.V.: Dordrecht, The Netherlands, 2012; pp. 475–490. [Google Scholar]
- Josephson, P.; Dronin, N.; Cherp, A.; Mnatsakanian, R.; Efremenko, D.; Larin, V. An Environmental History of Russia; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Smelansky, I.E.; Tishkov, A.A. The steppe biome in Russia: Ecosystem services, conservation status, and actual challenges. In Eurasian Steppes: Ecological Problems and Livelihoods in a Changing World; Werger, M.J.A., van Staalduinen, M.A., Eds.; Springer Science + Business Media B.V.: Dordrecht, The Netherlands, 2012; pp. 45–102. [Google Scholar]
- McCauley, M. Khrushchev and the Development of Soviet Agriculture: Virgin Land Program, 1953–64; The Macmillan Press Ltd.: London, UK, 1976. [Google Scholar]
- Chan, A.L. Mao’s Crusade: Politics and Policy Implementation in China’s Great Leap Forward; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Werger, M.J.A.; van Staalduinen, M.A. Eurasian Steppes: Ecological Problems and Livelihoods in a Changing World; Springer Science + Business Media B.V.: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Moon, D. The Plough that Broke the Steppes: Agriculture and Environment on Russia’s Grasslands, 1700–1914; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Li, Z. Reform and Development of Agriculture in China; Springer: Singapore, 2017. [Google Scholar]
- Lerman, Z.; Csaki, C.; Feder, G. Agriculture in Transition: Land Policies and Evolving Farm Structures in Post-Soviet Countries; Lexington Books: Lanham, MD, USA, 2004. [Google Scholar]
- Gutman, G.; Radeloff, V. Land-Cover and Land-Use Changes in Eastern Europe after the Collapse of the Soviet Union in 1991; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Meyfroidt, P.; Schierhorn, F.; Prishchepov, A.V.; Müller, D.; Kuemmerle, T. Drivers, constraints and trade-offs associated with recultivating abandoned cropland in Russia, Ukraine and Kazakhstan. Glob. Environ. Chang. 2016, 37, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Petrick, M.; Wandel, J.; Karsten, K. Rediscovering the Virgin Lands: Agricultural investment and rural livelihoods in a Eurasian frontier area. World Dev. 2013, 43, 164–179. [Google Scholar] [CrossRef]
- Pavlović, Z. Kazakhstan; Chelsea House Publishers: New York, NY, USA, 2013. [Google Scholar]
- Kraemer, R.; Prishchepov, A.V.; Müller, D.; Kuemmerle, T.; Radeloff, V.C.; Dara, A.; Terekhov, A.; Frühauf, M. Long-term agricultural land-cover change and potential for cropland expansion in the former Virgin Lands area of Kazakhstan. Environ. Res. Lett. 2015, 10, 054012. [Google Scholar] [CrossRef] [Green Version]
- Swinnen, J.; Burkitbayeva, S.; Schierhorn, F.; Prishchepov, A.V.; Müller, D. Production potential in the “bread baskets” of Eastern Europe and Central Asia. Glob. Food Secur. 2017, 14, 38–53. [Google Scholar] [CrossRef]
- Laird, R.D.; Chappell, J.E. Kazakhstan: Russia’s agricultural crutch. Russ. Rev. 1961, 20, 326–343. [Google Scholar] [CrossRef]
- OECD. OECD Review of Agricultural Policies: Kazakhstan 2013; OECD Publishing: Paris, France, 2013. [Google Scholar]
- Yerkinbayeva, L.K.; Bekturganov, A.E. Legal Problems of the Modern Agricultural Policy of the Republic of Kazakhstan. Procedia-Soc. Behav. Sci. 2013, 81, 514–519. [Google Scholar] [CrossRef]
- Prishchepov, A.V.; Müller, D.; Dubinin, M.; Baumann, M.; Radeloff, V.C. Determinants of agricultural land abandonment in post-Soviet European Russia. Land Use Policy 2013, 30, 873–884. [Google Scholar] [CrossRef] [Green Version]
- Wright, C.K.; de Beurs, K.M.; Henebry, G.M. Combined analysis of land cover change and NDVI trends in the Northern Eurasian grain belt. Front. Earth Sci. 2012, 6, 177–187. [Google Scholar] [CrossRef]
- Dara, A.; Baumann, M.; Kuemmerle, T.; Pflugmacher, D.; Rabe, A.; Griffiths, P.; Hölzel, N.; Kamp, J.; Freitag, M.; Hostert, P. Mapping the timing of cropland abandonment and recultivation in northern Kazakhstan using annual Landsat time series. Remote Sens. Environ. 2018, 213, 49–60. [Google Scholar] [CrossRef]
- Barrett, T.; Feola, G.; Krylova, V.; Khusnitdinova, M. The application of Rapid Appraisal of Agricultural Innovation Systems (RAAIS) to agricultural adaptation to climate change in Kazakhstan: A critical evaluation. Agric. Syst. 2017, 151, 106–113. [Google Scholar] [CrossRef]
- Bolch, T. Climate change and glacier retreat in northern Tien Shan (Kazakhstan/Kyrgyzstan) using remote sensing data. Glob. Planet. Chang. 2007, 56, 1–12. [Google Scholar] [CrossRef]
- Kerimray, A.; Baigarin, K.; De Miglio, R.; Tosato, G. Climate change mitigation scenarios and policies and measures: The case of Kazakhstan. Clim. Policy 2016, 16, 332–352. [Google Scholar] [CrossRef]
- Aigarinova, G.T.; Akshatayeva, Z.; Alimzhanova, M.G. Ensuring food security of the Republic of Kazakhstan as a fundamental of modern agricultural policy. Procedia-Soc. Behav. Sci. 2014, 143, 884–891. [Google Scholar] [CrossRef]
- OECD. OECD Studies on Water Reforming Economic Instruments for Water Resources Management in Kyrgyzstan; OECD Publishing: Paris, France, 2016. [Google Scholar]
- Karatayev, M.; Kapsalyamova, Z.; Spankulova, L.; Skakova, A.; Movkebayeva, G.; Kongyrbay, A. Priorities and challenges for a sustainable management of water resources in Kazakhstan. Sustain. Water Qual. Ecol. 2017, 9, 115–135. [Google Scholar]
- Bradley, C. Kazakhstan; Millbrook Press: Brookfield, CT, USA, 1993. [Google Scholar]
- Lydolph, P. Geography of the USSR; Wiley: New York, NY, USA, 1965. [Google Scholar]
- Thomas, P. The Central Asian States: Tajikstan, Uzbekistan, Kyrgyzstan, Turkmenistan; Millbrook Press: Brookfield, CT, USA, 1992. [Google Scholar]
- Pang, G.C. Kazakhstan; Marshall Cavendish: New York, NY, USA, 2001. [Google Scholar]
- Meng, E.; Longmire, J.; Moldashev, A. Kazakhstan’s wheat system: Priorities, constraints, and future prospects. Food Policy 2000, 25, 701–717. [Google Scholar] [CrossRef]
- Li, W.; Ciais, P.; MacBean, N.; Peng, S.; Defourny, P.; Bontemps, S. Major forest changes and land cover transitions based on plant functional types derived from the ESA CCI Land Cover product. Int. J. Appl. Earth Obs. 2016, 47, 30–39. [Google Scholar] [CrossRef]
- Li, W.; MacBean, N.; Ciais, P.; Defourny, P.; Lamarche, C.; Bontemps, S.; Houghton, R.A.; Peng, S. Gross and net land cover changes in the main plant functional types derived from the annual ESA CCI land cover maps (1992–2015). Earth Syst. Sci. Data 2018, 10, 219–234. [Google Scholar] [CrossRef] [Green Version]
- Matton, N.; Canto, G.S.; Waldner, F.; Valero, S.; Morin, D.; Inglada, J.; Arias, M.; Bontemps, S.; Koetz, B.; Defourny, P. An automated method for annual cropland mapping along the season for various globally-distributed agrosystems using high spatial and temporal resolution time series. Remote Sens. 2015, 7, 13208–13232. [Google Scholar] [CrossRef]
- Behnke, R.H. The Socio-economic Causes and Consequences of Desertification in Central Asia; Springer: New York, NY, USA, 2008. [Google Scholar]
- Spivak, L.; Arkhipkin, O.; Vitkovskaya, I.; Batyrbaeva, M.; Sagatdinova, G. Space monitoring of desertification processes in Kazakhstan with use of long-term raws of remote sensing data. In Proceedings of the IEEE International Conference on Geoscience and Remote Sensing Symposium, Denver, CO, USA, 31 July–4 August 2006; pp. 1157–1159. [Google Scholar]
- Ahmad, M.; Rodríguez, A.; Braslavskaya, A. Food and water insecurity: Re-assessing the value of rainfed agriculture. Water Sci. Technol. Water Sup. 2005, 5, 109–116. [Google Scholar] [CrossRef]
- Zhupankhan, A.; Tussupova, K.; Berndtsson, R. Water in Kazakhstan, a key in Central Asian water management. Hydrol. Sci. J. 2018, 63, 752–762. [Google Scholar] [CrossRef]
- Mehan, S.; Guo, T.; Gitau, M.W.; Flanagan, D.C. Comparative study of different stochastic weather generators for long-term climate data simulation. Climate 2017, 5, 26. [Google Scholar] [CrossRef]
- Guo, T.; Mehan, S.; Gitau, M.W.; Wang, Q.; Kuczek, T.; Flanagan, D.C. Impact of number of realizations on the suitability of simulated weather data for hydrologic and environmental applications. Stoch. Environ. Res. Risk Assess. 2018, 32, 2405–2421. [Google Scholar] [CrossRef]
- Jiang, F.Q.; Hu, R.J.; Wang, S.P.; Zhang, Y.W.; Tong, L. Trends of precipitation extremes during 1960–2008 in Xinjiang, the Northwest China. Theor. Appl. Climatol. 2013, 111, 133–148. [Google Scholar] [CrossRef]
- Wei, W.; Shi, Z.; Yang, X.; Wei, Z.; Liu, Y.; Zhang, Z.; Ge, G.; Zhang, X.; Guo, H.; Zhang, K.; et al. Recent trends of extreme precipitation and their teleconnection with atmospheric circulation in the Beijing-Tianjin Sand Source Region, China, 1960–2014. Atmosphere 2017, 8, 83. [Google Scholar] [CrossRef]
- Caesar, J.; Alexander, L.V.; Trewin, B.; Tse-Ring, K.; Sorany, L.; Vuniyayawa, V.; Keosavang, N.; Shimana, A.; Htay, M.M.; Karmacharya, J.; et al. Changes in temperature and precipitation extremes over the Indo-Pacific region from 1971 to 2005. Int. J. Climatol. 2011, 31, 791–801. [Google Scholar] [CrossRef] [Green Version]
- Shan, N.; Shi, Z.; Yang, X.; Gao, J.; Cai, D. Spatiotemporal trends of reference evapotranspiration and its driving factors in the Beijing–Tianjin Sand Source Control Project Region, China. Agric. For. Meteorol. 2015, 200, 322–333. [Google Scholar] [CrossRef]
- Von Storch, H. Misuses of statistical analysis in climate research. In Analysis of Climate Variability: Applications of Statistical Techniques; Storch, H.V., Navarra, A., Eds.; Springer: Berlin, Germany, 1999; pp. 11–26. [Google Scholar]
- Yue, S.; Pilon, P.; Cavadias, G. Power of the Mann–Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J. Hydrol. 2002, 259, 254–271. [Google Scholar] [CrossRef]
- Sun, S.; Fang, C. Water use trend analysis: A non-parametric method for the environmental Kuznets curve detection. J. Clean. Prod. 2018, 172, 497–507. [Google Scholar] [CrossRef]
- Xu, Z.X.; Takeuchi, K.; Ishidaira, H.; Li, J.Y. Long-term trend analysis for precipitation in Asian Pacific FRIEND river basins. Hydrol. Process. 2005, 19, 3517–3532. [Google Scholar] [CrossRef]
- Modarres, R.; da Silva, V.D.P.R. Rainfall trends in arid and semi-arid regions of Iran. J. Arid Environ. 2007, 70, 344–355. [Google Scholar] [CrossRef]
- Marchetto, A. Package rkt. Available online: http://cran.r-project.org/web/packages/rkt/rkt.pdf (accessed on 7 March 2017).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-project.org/ (accessed on 2 July 2018).
- Rodionov, S.; Overland, J.E. Application of a sequential regime shift detection method to the Bering Sea ecosystem. ICES J. Mar. Sci. 2005, 62, 328–332. [Google Scholar] [CrossRef] [Green Version]
- Rodionov, S. A sequential algorithm for testing climateregime shifts. Geophys. Res. Lett. 2004, 31, L09204. [Google Scholar] [CrossRef]
- Doyle, M.J.; Picquelle, S.J.; Mier, K.L.; Spillane, M.C.; Bond, N.A. Larval fish abundance and physical forcing in the Gulf of Alaska, 1981–2003. Prog.Oceanogr. 2009, 80, 163–187. [Google Scholar] [CrossRef]
- Moellmann, C.; Diekmann, R.; Muller-Karulis, B.Ä.R.B.E.L.; Kornilovs, G.; Plikshs, M.; Axe, P. Reorganization of a large marine ecosystem due to atmospheric and anthropogenic pressure: A discontinuous regime shift in the Central Baltic Sea. Glob. Chang. Biol. 2009, 15, 1377–1393. [Google Scholar] [CrossRef]
- Vert-pre, K.A.; Amoroso, R.O.; Jensen, O.P.; Hilborn, R. Frequency and intensity of productivity regime shifts in marine fish stocks. PNAS 2013, 110, 1779–1784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Litzow, M.A.; Urban, J.D.; Laurel, B.J. Increased spatial variance accompanies reorganization of two continental shelf ecosystems. Ecol. Appl. 2008, 18, 1331–1337. [Google Scholar] [CrossRef] [PubMed]
- Elliott, G.P. Influences of 20th century warming at the upper tree line contingent on local-scale interactions: Evidence from a latitudinal gradient in the Rocky Mountains, USA. Glob. Ecol. Biogeogr. 2011, 20, 46–57. [Google Scholar] [CrossRef]
- Peng, X.; Xiao, S.; Cheng, G.; Xiao, H.; Tian, Q.; Zhang, Q. Human activity impacts on the stem radial growth of Populuseuphratica riparian forests in China’s Ejina Oasis, using tree-ring analysis. Trees 2017, 31, 379–392. [Google Scholar] [CrossRef]
- Ceccarelli, T.; Bajocco, S.; Salvati, L.; Perini, L. Investigating syndromes of agricultural land degradation through past trajectories and future scenarios. Soil Sci. Plant Nutr. 2014, 60, 60–70. [Google Scholar] [CrossRef] [Green Version]
- Václavík, T.; Rogan, J. Identifying trends in land use/land cover changes in the context of post-socialist transformation in central Europe: A case study of the greater Olomouc region, Czech Republic. GISci. Remote Sens. 2009, 46, 54–76. [Google Scholar] [CrossRef]
- Eastman, J.R. TerrSet: Geospatial Monitoring and Modeling System Manual; Clark Labs, Clark University: Worcester, MA, USA, 2016. [Google Scholar]
- Chorley, R.J.; Haggett, P. Trend-surface mapping in geographical research. Trans. Inst. Br. Geogr. 1965, 37, 47–67. [Google Scholar] [CrossRef]
- Gustafson, E.J. Quantifying landscape spatial pattern: What is the state of the art? Ecosystems 1998, 1, 143–156. [Google Scholar] [CrossRef]
- Bayekenova, M.K.; Bazarbayev, A.T. Ecology and modern socio-economic conditions in Kazakhstan. In Environmental Problems of Central Asia and their Economic, Social and Security Impacts; Qi, J., Evered, K.T., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 209–214. [Google Scholar]
- Akiyanova, F.Z.; Abitbayeva, A.D.; Baratovna Yegemberdiyeva, K.; Temirbayeva, R.K. Problems of desertification of the territory of Kazakhstan: Status and forecast. Life Sci. J. 2014, 11, 341–345. [Google Scholar]
- Akiyanova, F.Z.; Temirbayeva, R.K.; Bekkuliyeva, A.A. Functional zoning of the Kazakhstan’s part of the Caspian Sea shore for optimization of nature management. Life Sci. J. 2014, 11, 465–470. [Google Scholar]
- Kononova, N.K.; Pimankina, N.V.; Yeriskovskaya, L.A.; Li, J.; Bao, W.; Liu, S. Effects of atmospheric circulation on summertime precipitation variability and glacier mass balance over the Tuyuksu Glacier in Tianshan Mountains, Kazakhstan. J. Arid Land 2015, 7, 687–695. [Google Scholar] [CrossRef]
- Ismaiylov, G.K.; Fedorov, V.M.; Nezhad, S.S. Assessment of possible anthropogenic changes in the runoff of the Syr Darya River on the basis of a mathematical model. Water Resour. 2007, 34, 359–371. [Google Scholar] [CrossRef]
- Sorg, A.; Mosello, B.; Shalpykova, G.; Allan, A.; Clarvis, M.H.; Stoffel, M. Coping with changing water resources: The case of the Syr Darya river basin in Central Asia. Environ. Sci. Policy 2014, 43, 68–77. [Google Scholar] [CrossRef]
- Anzai, T.; Kitamura, Y.; Shimizu, K. The influence of seepage from canals and paddy fields on the groundwater level of neighboring rotation cropping fields: A case study from the lower Ili River Basin, Kazakhstan. Paddy Water Environ. 2014, 12, 387–392. [Google Scholar] [CrossRef]
- Guo, L.; Xia, Z.; Zhou, H.; Huang, F.; Yan, B. Hydrological Changes of the Ili River in Kazakhstan and the Possible Causes. J. Hydrol. Eng. 2015, 20, 5015006. [Google Scholar] [CrossRef]
- Thevs, N.; Nurtazin, S.; Beckmann, V.; Salmyrzauli, R.; Khalil, A. Water consumption of agriculture and natural ecosystems along the Ili River in China and Kazakhstan. Water 2017, 9, 207. [Google Scholar] [CrossRef]
- Glantz, M.H. Aral Sea basin: A sea dies, a sea also rises. AMBIO 2007, 36, 323–327. [Google Scholar]
- Medeu, A.R. The methodology of natural hazards management in Kazakhstan. Geogr. Environ. Sustain. 2015, 8, 69–91. [Google Scholar] [CrossRef]
- Knox, C. Kazakhstan: Modernizing government in the context of political inertia. Int. Rev. Adm. Sci. 2008, 74, 477–496. [Google Scholar] [CrossRef]
- Rywkin, M. Stability in Central Asia: Engaging Kazakhstan. Am. Foreign Policy Interests 2005, 27, 439–449. [Google Scholar] [CrossRef]
- Ziegler, C.E. Civil society, political stability, and state power in Central Asia: Cooperation and contestation. Democratization 2010, 17, 795–825. [Google Scholar] [CrossRef]
- Griffiths, P.; Müller, D.; Kuemmerle, T.; Hostert, P. Agricultural land change in the Carpathian ecoregion after the breakdown of socialism and expansion of the European Union. Environ. Res. Lett. 2013, 8, 045024. [Google Scholar] [CrossRef] [Green Version]
- Prishchepov, A.V.; Radeloff, V.C.; Dubinin, M.; Alcantara, C. The effect of Landsat ETM/ETM+ image acquisition dates on the detection of agricultural land abandonment in Eastern Europe. Remote Sens. Environ. 2012, 126, 195–209. [Google Scholar] [CrossRef]
- Zimina, R.P.; Polevaya, Z.A.; Yelkin, K.F. The plowing up of the virgin lands and the bobacmarmot resources of central Kazakhstan. Sov. Geogr. 1972, 13, 246–256. [Google Scholar] [CrossRef]
- Brezhnev, L.I. Virgin Lands: Two Years in Kazakhstan, 1954–5; Pergamon Press: Oxford, UK, 2014. [Google Scholar]
- Volin, L. A Century of Russian Agriculture. From Alexander II to Khrushchev; Harvard University Press: Cambridge, MA, USA, 1970. [Google Scholar]
- Ercilasun, K. Soviet agricultural policy and cultivating “Virgin Lands” in Kazakhstan. In Kazakhstan, Kyrgyzstan, and Uzbekistan: Politics and History in Central Asia; Dadabaev, T., Komatsu, H., Eds.; Palgrave Macmillan: New York, NY, USA, 2017; pp. 53–65. [Google Scholar]
- Kaiser, M.J.; Pulsipher, A.G. A review of the oil and gas sector in Kazakhstan. Energy Policy 2007, 35, 1300–1314. [Google Scholar] [CrossRef]
- OECD Development Pathways Multi-Dimensional Review of Kazakhstan: Volume 2. In-Depth Analysis and Recommendations; OECD Publishing: Paris, France, 2017.
- Schmitz, A.; Meyers, W.H. Transition to Agricultural Market Economies: The Future of Kazakhstan, Russia and Ukraine; CAB International: London, UK, 2015. [Google Scholar]
- Wädekin, K.E. Communist Agriculture: Farming in the Soviet Union and Eastern Europe; Routledge: London, UK, 1990. [Google Scholar]
- Wegerich, K. Blueprints for water user associations’ accountability versus local reality: Evidence from South Kazakhstan. Water Int. 2008, 33, 43–54. [Google Scholar] [CrossRef]
- Stone, R. For China and Kazakhstan, no meeting of the minds on water. Science 2012, 337, 405–407. [Google Scholar] [CrossRef] [PubMed]
- Sagin, J.; Adenova, D.; Tolepbayeva, A.; Poryadin, V. Underground water resources in Kazakhstan. Int. J. Environ. Stud. 2017, 74, 386–398. [Google Scholar] [CrossRef]
- Stewart raf, D.I. Water conflict in Central Asia–Is there potential for the desiccation of the Aral Sea or competition for the waters of Kazakhstan’s cross-border Ili and Irtysh Rivers to bring about conflict; and should the UK be concerned? Defence Stud. 2014, 14, 76–109. [Google Scholar] [CrossRef]
- Salnikov, V.; Turulina, G.; Polyakova, S.; Petrova, Y.; Skakova, A. Climate change in Kazakhstan during the past 70 years. Quat. Int. 2015, 358, 77–82. [Google Scholar] [CrossRef]
- Kosdauletova, R. Methodology and business background of the urban agglomerations development in the real life of Kazakhstan. Public Policy Adm. 2014, 13, 232–242. [Google Scholar] [CrossRef]
- Wuzhati, Y.; Hui, L.; Liu, W. Evaluation of Kazakhstan’s urbanization during 1992–2011 and its influencing factors. Prog. Geogr. 2014, 33, 181–193. (In Chinese) [Google Scholar]
- Rykov, P.V.; Li, Z. Development of urban agglomerations of the Republic of Kazakhstan in conditions of the formation of the New Silk Road. J. Resour. Ecol. 2015, 6, 101–105. [Google Scholar] [CrossRef]
- Seitz, W.H. Urbanization in Kazakhstan: Desirable Cities, Unaffordable Housing, and the Missing Rental Market (No. 8530); The World Bank: New York, NY, USA, 2018. [Google Scholar]
- Lal, R.; Suleimenov, M.; Stewart, B.A.; Hansen, D.O.; Doraiswamy, P. Climate Change and Terrestrial Carbon Sequestration in Central Asia; Taylor & Francis Group: London, UK, 2007. [Google Scholar]
- Wertebach, T.M.; Hölzel, N.; Kämpf, I.; Yurtaev, A.; Tupitsin, S.; Kiehl, K.; Kamp, J.; Kleinebecker, T. Soil carbon sequestration due to post-Soviet cropland abandonment: Estimates from a large-scale soil organic carbon field inventory. Glob. Chang. Biol. 2017, 23, 3729–3741. [Google Scholar] [CrossRef] [PubMed]
- Ogino, Y.; Hatcho, N.; Tsutsui, H. World irrigation (VIII): Salinization and water management in arid regions with emphasis on Kazakhstan. Rural Environ. Eng. 1998, 34, 5–24. [Google Scholar]
- Kitamura, Y.; Yano, T.; Honna, T.; Yamamoto, S.; Inosako, K. Causes of farmland salinization and remedial measures in the Aral Sea basin: Research on water management to prevent secondary salinization in rice-based cropping system in arid land. Agric. Water Manag. 2006, 85, 1–14. [Google Scholar] [CrossRef]
- Thomas, R.J. Opportunities to reduce the vulnerability of dryland farmers in Central and West Asia and North Africa to climate change. Agric.Ecosyst. Environ. 2008, 126, 36–45. [Google Scholar] [CrossRef]
- Kienzler, K.M.; Lamers, J.P.A.; McDonald, A.; Mirzabaev, A.; Ibragimov, N.; Egamberdiev, O.; Ruzibaev, E.; Akramkhanov, A. Conservation agriculture in Central Asia—What do we know and where do we go from here? Field Crop. Res. 2012, 132, 95–105. [Google Scholar] [CrossRef]
- Squires, V.R.; Lu, Q. Sustainable Land Management in Greater Central Asia: An Integrated and Regional Perspective; Rougtledge: New York, NY, USA, 2018. [Google Scholar]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ. 2010, 114, 106–115. [Google Scholar] [CrossRef]
- Fang, X.; Zhu, Q.; Ren, L.; Chen, H.; Wang, K.; Peng, C. Large-scale detection of vegetation dynamics and their potential drivers using MODIS images and BFAST: A case study in Quebec, Canada. Remote Sens. Environ. 2018, 206, 391–402. [Google Scholar] [CrossRef]
Land Cover Class | ESA Land Cover Class Components | Code |
---|---|---|
Rainfed cropland | Cropland, rainfed (10); Mosaic cropland (>50%)/natural vegetation (tree, shrub, herbaceous cover) (<50%)(30) | 10 |
Irrigated cropland | Croplands, irrigated or post-flooding (20) | 20 |
Forest | Tree cover, broadleaved, evergreen, closed to open (>15%) (50); Tree cover, broadleaved, deciduous, closed to open (>15%) (60); Tree cover, needleleaved, evergreen, closed to open (>15%) (70); Tree cover, needleleaved, deciduous, closed to open (>15%) (80); Tree cover, mixed leaf type (broadleaved and needleleaved) (90); Mosaic tree and shrub (>50%)/herbaceous cover (<50%) (100) | 30 |
Steppe | Mosaic cropland (<50%)/natural vegetation (tree, shrub, herbaceous cover) (>50%)(40); Mosaic herbaceous cover (>50%)/tree and shrub (<50%) (110); Shrubland (120); Grassland (130); Lichens and mosses (140); Sparse vegetation (tree, shrub, herbaceous cover) (<15%) (150); | 40 |
Wetland | Tree cover, flooded, fresh or brackish water (160); Tree cover, flooded, saline water (170); Shrub or herbaceous cover, flooded, fresh/saline/brackish water (180) | 50 |
Artificial area | Urban areas (190) | 60 |
Bareland | Bare areas (200); Permanent snow and ice (220) | 70 |
Water body | Water bodies (210) | 80 |
Region | Rainfed Cropland | Irrigated Cropland | ||
---|---|---|---|---|
Sen’s Slope | p-Value | Sen’s Slope | p-Value | |
National level | ||||
ESA-CCI dataset | 2815.136 | 0.00 | 308.667 | 0.00 |
FAO statistics * | −2497.80 | 0.02 | ||
Regional level | ||||
Almaty | 302.4222 | 0.01 | 86.3667 | 0.00 |
Aqmola | 338.125 | 0.00 | - | - |
Aqtobe | 21.29167 | 0.40 | - | - |
Atyrau | 15.3333 | 0.00 | - | - |
East Kazakhstan | 314.9911 | 0.00 | 25.9 | 0.00 |
Mangystau | - | - | - | - |
North Kazakhstan | 37.2905 | 0.00 | - | - |
Pavlodar | 822.8686 | 0.00 | 0 | 0.78 |
Qaraghandy | 507.9412 | 0.00 | - | - |
Qostanay | 69.5333 | 0.00 | - | - |
Qyzylorda | −4.1548 | 0.00 | 41.0333 | 0.00 |
South Kazakhstan | 6.2829 | 0.12 | 47.3 | 0.00 |
West Kazakhstan | 240.6618 | 0.00 | - | - |
Zhambyl | 84.2857 | 0.04 | 94.9452 | 0.01 |
No. | Area (A) * | Area (C) | SP-IV | SP-V | ||||
---|---|---|---|---|---|---|---|---|
Area (RC) | % of RC/A | % of RC/C | Area (RC) | % of RC/A | % of RC/C | |||
SP-I | 120 | 4 | 3.11 | 0.054 | 1 | 0.96 | 0.071 | |
SP-II | 435 | 15 | 3.45 | 0.218 | 12 | 2.86 | 0.767 | |
SP-III | 838 | 8 | 0.93 | 0.113 | 4 | 0.43 | 0.224 | |
SP-IV | 6898 | 27 ** | 0.385 | |||||
SP-V | 1623 | 17 | 1.063 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, W.; Zhu, Y.; Li, H.; Zhang, K.; Wang, B.; Yang, X.; Shi, Z. Spatio-Temporal Reorganization of Cropland Development in Central Asia during the Post-Soviet Era: A Sustainable Implication in Kazakhstan. Sustainability 2018, 10, 4042. https://doi.org/10.3390/su10114042
Wei W, Zhu Y, Li H, Zhang K, Wang B, Yang X, Shi Z. Spatio-Temporal Reorganization of Cropland Development in Central Asia during the Post-Soviet Era: A Sustainable Implication in Kazakhstan. Sustainability. 2018; 10(11):4042. https://doi.org/10.3390/su10114042
Chicago/Turabian StyleWei, Wei, Yuanjun Zhu, Hao Li, Kebin Zhang, Baitian Wang, Xiaohui Yang, and Zhongjie Shi. 2018. "Spatio-Temporal Reorganization of Cropland Development in Central Asia during the Post-Soviet Era: A Sustainable Implication in Kazakhstan" Sustainability 10, no. 11: 4042. https://doi.org/10.3390/su10114042
APA StyleWei, W., Zhu, Y., Li, H., Zhang, K., Wang, B., Yang, X., & Shi, Z. (2018). Spatio-Temporal Reorganization of Cropland Development in Central Asia during the Post-Soviet Era: A Sustainable Implication in Kazakhstan. Sustainability, 10(11), 4042. https://doi.org/10.3390/su10114042