Indoor/Outdoor Relationships of Airborne Particles under Controlled Pressure Difference across the Building Envelope in Korean Multifamily Apartments
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Description of Test Housing Units
2.3. Particle Infiltration Test Method Using the Blower-Door Depressurization Procedure
2.4. Indoor-Outdoor Target Differential Pressure
2.5. Air Leakage Testing of Housing Units
3. Results and Discussion
3.1. Outdoor Particle Concentration
3.2. Air Leakage Characteristics
3.3. The I/O Ratios at a Typical I-O Pressure Difference of 10 Pa
3.4. The I/O Ratios at Increased I-O Pressure Differences of 30 Pa and 50 Pa
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pope, C.A.; Bates, D.V.; Raizenne, M.E. Health effects of particulate air pollution: Time for reassessment? Environ. Health Perspect. 1995, 103, 1390–1406. [Google Scholar] [CrossRef] [PubMed]
- Peters, A.; Liu, E.; Verrier, R.L.; Schwartz, J.; Gold, D.R.; Mittleman, M.; Baliff, J.; Oh, J.A.; Allen, G.; Monahan, K.; et al. Air pollution and incidence of cardiac arrhythmia. Epidemiology 2000, 11, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Brunekreef, B.; Holgate, S. Air pollution and health. Lancet 2002, 360, 1233–1242. [Google Scholar] [CrossRef]
- Du, X.; Kong, Q.; Ge1, W.H.; Zhang, S.J.; Fu, L.X. Characterization of personal exposure concentration of fine particles for adults and children exposed to high ambient concentrations in Beijing, China. J. Environ. Sci. 2010, 22, 1757–1764. [Google Scholar] [CrossRef]
- Ji, W.; Zhao, B. Contribution of outdoor-originating particles, indoor-emitted particles and indoor secondary organic aerosol (SOA) to residential indoor PM2.5 concentration: A model-based estimation. Build. Environ. 2015, 90, 196–205. [Google Scholar] [CrossRef]
- Fujitani, Y.; Kumar, P.; Tamura, K.; Fushimi, A.; Hasegawa, S.; Takahashi, K.; Tanabe, K.; Kobayashi, S.; Hirano, S. Seasonal differences of the atmospheric particle size distribution in a metropolitan area in Japan. Sci. Total Environ. 2012, 437, 339–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.C.; Chang, S.H.; Lu, R.; Liou, D.M. The effect of particulate matter size on cardiovascular health in Taipei Basin, Taiwan. Comput. Method. Progr. Biomed. 2016, 137, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.P.; Kim, K.H.; Ahn, J.W.; Shon, Z.H.; Sohn, J.R.; Lee, J.H.; Ma, C.J.; Brown, R.J.C. Ambient particulate matter (PM10) concentrations in major urban areas of Korea during 1996–2010. Atmos. Pollut. Res. 2014, 5, 161–169. [Google Scholar] [CrossRef]
- Peterson, J.T.; Junge, C.E. Sources of particulate matter in the atmosphere. In Man’s Impact on the Climate; Matthews, W.H., Kellogg, W.H., Robinson, G.D., Eds.; MIT Press: Boston, MA, USA, 1971. [Google Scholar]
- Mage, D.; Ozolins, G.; Peterson, P.; Webster, A.; Orthofer, R.; Vandeweerd, V.; Gwynne, M. Urban air pollution in megacities of the world. Atmos. Environ. 1996, 30, 681–686. [Google Scholar]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; Wiley: New York, NY, USA, 1998. [Google Scholar]
- Nazaroff, W.W. Indoor particle dynamics. Indoor Air 2004, 14, 175–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuo, H.W.; Shen, H.Y. Indoor and outdoor PM2.5 and PM10 concentrations in the air during a dust storm. Build. Environ. 2010, 45, 610–614. [Google Scholar] [CrossRef]
- Kashima, S.; Yorifuji, T.; Bae, S.; Honda, Y.; Lim, Y.H.; Hong, Y.C. Asian dust effect on cause-specific mortality in five cities across South Korea and Japan. Atmos. Environ. 2016, 128, 20–27. [Google Scholar] [CrossRef]
- Kim, J. Transport routes and source regions of Asian dust observed in Korea during the past 40 years (1965–2004). Atmos. Environ. 2008, 42, 4778–4789. [Google Scholar] [CrossRef]
- Korean Ministry of Environment. Available online: http://www.me.go.kr (accessed on 2 November 2018).
- Liu, D.L.; Nazaroff, W.W. Modeling pollutant penetration across building envelopes. Build. Environ. 2001, 35, 4451–4462. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Zhao, B. Review of relationship between indoor and outdoor particles: I/O ratio, infiltration factor and penetration factor. Atmos. Environ. 2011, 45, 275–288. [Google Scholar] [CrossRef]
- Thatcher, T.L.; Layton, D.W. Deposition, resuspension, and penetration of particles within a residence. Atmos. Environ. 1995, 29, 1487–1497. [Google Scholar] [CrossRef]
- Hussein, T.; Hämeri, K.; Heikkinen, M.S.A.; Kulmala, M. Indoor and outdoor particle size characterization at a family house in Espoo-Finland. Atmos. Environ. 2005, 39, 3697–3709. [Google Scholar] [CrossRef]
- Sarnat, S.E.; Coull, B.A.; Ruiz, P.A.; Koutrakis, P.; Suh, H.H. The Influences of ambient particle composition and size on particle infiltration in Los Angeles, CA, Residences. Air Waste Manag. Assoc. 2006, 45, 186–196. [Google Scholar] [CrossRef]
- Stephens, B.; Siegel, J.A. Penetration of ambient submicron particles into single-family residences and associations with building characteristics. Indoor Air 2012, 22, 501–513. [Google Scholar] [CrossRef] [PubMed]
- Chao, C.Y.H.; Wan, M.P.; Cheng, E.C.K. Penetration coefficient and deposition rate as a function of particle size in non-smoking naturally ventilated residences. Atmos. Environ. 2003, 37, 4233–4241. [Google Scholar] [CrossRef]
- Mullen, N.A.; Liu, C.; Zhang, Y.; Wang, S.; Nazaroff, W.W. Ultrafine particle concentrations and exposures in four high-rise Beijing apartments. Atmos. Envion. 2011, 45, 7574–7582. [Google Scholar] [CrossRef]
- Mosley, R.B.; Greenwell, D.J.; Sparks, L.E.; Guo, Z.; Tucker, W.G.; Fortmann, R.; Whitfield, C. Penetration of ambient fine particles into the indoor environment. Aerosol Sci. Technol. 2001, 34, 127–136. [Google Scholar] [CrossRef]
- Liu, D.L.; Nazaroff, W.W. Particle penetration through building cracks. Aerosol Sci. Technol. 2003, 37, 565–573. [Google Scholar] [CrossRef]
- ISO/TC 163. ISO 9972: 2015 Thermal Performance of Buildings—Determination of Air Permeability of Buildings—Fan Pressurization Method; International Organization for Standardization: Geneva, Switzerland, 2015. [Google Scholar]
- Hong, W.K.; Kim, J.M.; Park, S.C.; Lee, S.G.; Kim, S.I.; Yoon, K.J.; Kim, H.C.; Kim, J.T. A new apartment construction technology with effective CO2 emission reduction capabilities. Energy 2010, 35, 2639–2646. [Google Scholar] [CrossRef]
- WHO. WHO Guidelines for Indoor Air Quality: Dampness and Mould; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Kurnitski, J. Ventilation and Airtightness in Houses; Builders’ Yearbook: Helsinki, Finland, 2006. [Google Scholar]
- Kalamees, T.; Kurnitski, J.; Jokisalo, J.; Eskola, L.; Jokiranta, K.; Vinha, J. Air pressure conditions in Finnish residences. In Proceedings of the Clima 2007 WellBeing Indoors, Helsinki, Finland, 10–14 June 2007. [Google Scholar]
- Jo, J.H.; Lim, J.H.; Song, S.Y.; Yeo, M.S.; Kim, K.W. Characteristics of pressure distribution and solution to the problems caused by stack effect in high-rise residential buildings. Build. Environ. 2007, 42, 263–277. [Google Scholar] [CrossRef]
- ASTM E779-10. Standard Test Method for Determining Air Leakage Rate by Fan Pressurization; ASTM International: West Conshohocken, PA, USA, 2010. [Google Scholar]
- ASHRAE. ANSI/ASHRAE Standard 119: Air Leakage Performance for Detached Single-Family Residential Buildings; American Society of Heating, Refrigerating & Air Conditioning Engineers: Atlanta, GA, USA, 1988. [Google Scholar]
- AirKorea. Available online: http://airkorea.or.kr (accessed on 2 November 2018).
- WHO. Health Effects of Particulate Matter; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- PHI. Passive House Planning Package 2007; Passive House Institute: Darmstadt, Germany, 2007. [Google Scholar]
- Wallace, L.; Howard-Reed, C. Continuous monitoring of ultrafine, fine, and coarse particles in a residence for 18 months in 1999–2000. J. Air Waste Manag. Assoc. 2002, 52, 828–844. [Google Scholar] [CrossRef] [PubMed]
- Orch, Z.E.; Stephens, B.; Waring, M.S. Predictions and determinants of size-resolved particle infiltration factors in single-family homes in the U.S. Build. Environ. 2014, 74, 106–118. [Google Scholar] [CrossRef]
Housing Unit | Construction Year (years) | Floor Area (m2) | Ceiling Height (m) | Volume (m3) | Envelope Area (m2) |
---|---|---|---|---|---|
1 | 1979 | 57 | 2.15 | 123 | 40 |
2 | 1982 | 36 | 2.30 | 83 | 18 |
3 | 1996 | 143 | 2.30 | 329 | 61 |
4 | 1996 | 50 | 2.30 | 115 | 28 |
5 | 1997 | 212 | 2.30 | 488 | 69 |
6 | 2002 | 36 | 2.30 | 83 | 18 |
7 | 2002 | 65 | 2.25 | 146 | 50 |
8 | 2004 | 85 | 2.30 | 196 | 45 |
9 | 2006 | 85 | 2.30 | 196 | 50 |
10 | 2006 | 130 | 2.30 | 299 | 55 |
11 | 2010 | 20 | 2.15 | 43 | 19 |
12 | 2012 | 18 | 2.30 | 41 | 13 |
13 | 2015 | 36 | 2.30 | 83 | 32 |
14 | 2015 | 36 | 2.30 | 83 | 32 |
Housing Unit | C (m3·h−1·Pa−n) | n (-) | ELA (cm2) | NL (-) | ACH50 (h−1) | Leakage Class |
---|---|---|---|---|---|---|
1 | 136.0 | 0.69 | 381.4 | 0.64 | 12.4 | G |
2 | 58.3 | 0.60 | 144.3 | 0.39 | 7.5 | E |
3 | 149.9 | 0.62 | 378.8 | 0.26 | 4.9 | D |
4 | 144.1 | 0.57 | 342.7 | 0.67 | 11.7 | G |
5 | 159.6 | 0.67 | 435.4 | 0.20 | 4.0 | C |
6 | 81.9 | 0.59 | 199.7 | 0.54 | 9.8 | F |
7 | 89.2 | 0.57 | 212.1 | 0.32 | 5.5 | E |
8 | 70.8 | 0.66 | 191.0 | 0.22 | 4.2 | D |
9 | 49.1 | 0.65 | 130.7 | 0.15 | 3.1 | C |
10 | 99.3 | 0.60 | 246.8 | 0.19 | 3.4 | C |
11 | 38.2 | 0.63 | 97.9 | 0.47 | 10.3 | F |
12 | 2.5 | 0.82 | 8.4 | 0.05 | 1.4 | A |
13 | 14.6 | 0.74 | 43.7 | 0.12 | 3.1 | B |
14 | 13.8 | 0.77 | 43.0 | 0.12 | 3.4 | B |
Housing Unit Code | Particle I/O Ratios (Average ± Standard Deviation) | Time Constant, τ (h) | |||||
---|---|---|---|---|---|---|---|
0.3–0.5 μm | 0.5–1.0 μm | 1.0–3.0 μm | 3.0–5.0 μm | 5.0–10.0 μm | >10.0 μm | ||
1 | 0.80 ± 0.05 | 0.66 ± 0.11 | 0.65 ± 0.02 | 0.65 ± 0.06 | 0.43 ± 0.07 | 0.32 ± 0.13 | 0.19 |
2 | 0.72 ± 0.05 | 0.80 ± 0.03 | 0.66 ± 0.07 | 0.67 ± 0.13 | 0.40 ± 0.08 | 0.27 ± 0.05 | 0.35 |
3 | 0.94 ± 0.02 | 0.75 ± 0.03 | 0.75 ± 0.03 | 0.41 ± 0.05 | 0.33 ± 0.02 | 0.17 ± 0.03 | 0.81 |
4 | 1.09 ± 0.13 | 1.04 ± 0.14 | 1.05 ± 0.02 | 0.89 ± 0.05 | 0.83 ± 0.07 | 0.81 ± 0.12 | 0.20 |
5 | 0.62 ± 0.02 | 0.45 ± 0.05 | 0.33 ± 0.02 | 0.45 ± 0.05 | 0.32 ± 0.12 | 0.40 ± 0.14 | 0.69 |
6 | 0.75 ± 0.03 | 0.78 ± 0.01 | 0.52 ± 0.02 | 0.45 ± 0.05 | 0.29 ± 0.03 | 0.24 ± 0.07 | 0.27 |
7 | 0.73 ± 0.13 | 0.70 ± 0.22 | 0.62 ± 0.02 | 0.65 ± 0.03 | 0.41 ± 0.05 | 0.28 ± 0.08 | 0.45 |
8 | 0.73 ± 0.02 | 0.51 ± 0.09 | 0.52 ± 0.02 | 0.44 ± 0.06 | 0.28 ± 0.04 | 0.20 ± 0.18 | 1.00 |
9 | 0.34 ± 0.02 | 0.17 ± 0.01 | 0.18 ± 0.01 | 0.17 ± 0.03 | 0.09 ± 0.03 | 0.09 ± 0.05 | 0.88 |
10 | 0.71 ± 0.06 | 0.70 ± 0.02 | 0.79 ± 0.04 | 0.41 ± 0.06 | 0.46 ± 0.11 | 0.26 ± 0.12 | 0.72 |
11 | 0.92 ± 0.06 | 0.86 ± 0.14 | 0.68 ± 0.05 | 0.80 ± 0.17 | 0.55 ± 0.15 | 0.44 ± 0.18 | 0.25 |
12 | 0.43 ± 0.03 | 0.48 ± 0.01 | 0.43 ± 0.03 | 0.49 ± 0.07 | 0.35 ± 0.10 | 0.49 ± 0.16 | 2.79 |
13 | 0.73 ± 0.05 | 0.63 ± 0.07 | 0.58 ± 0.02 | 0.29 ± 0.04 | 0.25 ± 0.04 | 0.21 ± 0.05 | 1.03 |
14 | 0.78 ± 0.10 | 0.65 ± 0.08 | 0.58 ± 0.02 | 0.30 ± 0.02 | 0.31 ± 0.04 | 0.27 ± 0.10 | 0.93 |
Average | 0.73 ± 0.19 | 0.66 ± 0.21 | 0.60 ± 0.21 | 0.51 ± 0.20 | 0.38 ± 0.17 | 0.32 ± 0.18 | - |
Housing Unit Code | Particle I/O Ratios (Average ± Standard Deviation) | Time Constant, τ (h) | |||||
0.3–0.5 μm | 0.5–1.0 μm | 1.0–3.0 μm | 3.0–5.0 μm | 5.0–10.0 μm | >10.0 μm | ||
1 | 0.95 ± 0.07 | 0.92 ± 0.06 | 0.70 ± 0.01 | 0.68 ± 0.04 | 0.48 ± 0.05 | 0.35 ± 0.09 | 0.11 |
2 | 0.74 ± 0.08 | 0.89 ± 0.09 | 0.65 ± 0.02 | 0.78 ± 0.04 | 0.56 ± 0.08 | 0.46 ± 0.10 | 0.18 |
3 | 0.88 ± 0.11 | 0.98 ± 0.08 | 0.77 ± 0.06 | 0.48 ± 0.11 | 0.38 ± 0.08 | 0.22 ± 0.07 | 0.41 |
4 | 1.04 ± 0.04 | 0.91 ± 0.07 | 0.73 ± 0.03 | 0.72 ± 0.02 | 0.53 ± 0.07 | 0.63 ± 0.17 | 0.11 |
5 | 0.69 ± 0.04 | 0.52 ± 0.07 | 0.42 ± 0.01 | 0.57 ± 0.07 | 0.48 ± 0.13 | 0.29 ± 0.07 | 0.34 |
6 | 1.04 ± 0.07 | 0.91 ± 0.15 | 0.73 ± 0.02 | 0.72 ± 0.08 | 0.53 ± 0.08 | 0.63 ± 0.16 | 0.14 |
7 | 1.00 ± 0.18 | 0.69 ± 0.07 | 0.63 ± 0.04 | 0.70 ± 0.11 | 0.47 ± 0.07 | 0.34 ± 0.06 | 0.24 |
8 | 0.91 ± 0.05 | 0.71 ± 0.15 | 0.62 ± 0.04 | 0.47 ± 0.05 | 0.27 ± 0.04 | 0.13 ± 0.04 | 0.34 |
9 | 0.45 ± 0.03 | 0.34 ± 0.06 | 0.29 ± 0.01 | 0.26 ± 0.03 | 0.14 ± 0.03 | 0.07 ± 0.03 | 0.45 |
10 | 0.74 ± 0.01 | 0.69 ± 0.03 | 0.70 ± 0.04 | 0.34 ± 0.04 | 0.31 ± 0.04 | 0.15 ± 0.04 | 0.39 |
11 | 0.84 ± 0.04 | 0.79 ± 0.06 | 0.60 ± 0.15 | 0.68 ± 0.29 | 0.47 ± 0.25 | 0.34 ± 0.15 | 0.13 |
12 | 0.49 ± 0.01 | 0.47 ± 0.01 | 0.33 ± 0.00 | 0.32 ± 0.03 | 0.24 ± 0.03 | 0.37 ± 0.11 | 1.05 |
13 | 0.89 ± 0.19 | 0.81 ± 0.16 | 0.73 ± 0.10 | 0.37 ± 0.05 | 0.30 ± 0.08 | 0.29 ± 0.20 | 0.47 |
14 | 0.87 ± 0.03 | 0.69 ± 0.03 | 0.73 ± 0.10 | 0.37 ± 0.03 | 0.34 ± 0.07 | 0.28 ± 0.15 | 0.44 |
Average | 0.82 ± 0.19 | 0.74 ± 0.19 | 0.62 ± 0.16 | 0.53 ± 0.18 | 0.39 ± 0.13 | 0.32 ± 0.17 | - |
(a) | |||||||
Housing Unit Code | Particle I/O Ratios (Average ± Standard Deviation) | Time Constant, τ (h) | |||||
0.3–0.5 μm | 0.5–1.0 μm | 1.0–3.0 μm | 3.0–5.0 μm | 5.0–10.0 μm | >10.0 μm | ||
1 | 0.92 ± 0.03 | 0.89 ± 0.04 | 0.66 ± 0.03 | 0.64 ± 0.07 | 0.45 ± 0.08 | 0.40 ± 0.06 | 0.08 |
2 | 0.82 ± 0.05 | 0.61 ± 0.17 | 0.63 ± 0.02 | 0.66 ± 0.05 | 0.42 ± 0.05 | 0.34 ± 0.09 | 0.13 |
3 | 0.95 ± 0.01 | 1.04 ± 0.03 | 0.78 ± 0.02 | 0.50 ± 0.08 | 0.43 ± 0.06 | 0.32 ± 0.04 | 0.20 |
4 | 1.01 ± 0.03 | 0.99 ± 0.05 | 1.00 ± 0.01 | 0.83 ± 0.04 | 0.80 ± 0.05 | 0.64 ± 0.04 | 0.09 |
5 | 0.66 ± 0.06 | 0.49 ± 0.05 | 0.37 ± 0.02 | 0.48 ± 0.05 | 0.42 ± 0.08 | 0.59 ± 0.16 | 0.25 |
6 | 0.98 ± 0.07 | 1.02 ± 0.04 | 0.74 ± 0.02 | 0.77 ± 0.08 | 0.61 ± 0.14 | 0.66 ± 0.22 | 0.10 |
7 | 0.93 ± 0.06 | 0.81 ± 0.10 | 0.63 ± 0.02 | 0.68 ± 0.06 | 0.47 ± 0.07 | 0.43 ± 0.12 | 0.18 |
8 | 0.78 ± 0.11 | 0.53 ± 0.05 | 0.51 ± 0.01 | 0.40 ± 0.03 | 0.22 ± 0.03 | 0.10 ± 0.02 | 0.24 |
9 | 0.46 ± 0.02 | 0.33 ± 0.05 | 0.28 ± 0.01 | 0.31 ± 0.02 | 0.15 ± 0.03 | 0.13 ± 0.07 | 0.32 |
10 | 0.77 ± 0.06 | 0.68 ± 0.02 | 0.68 ± 0.03 | 0.39 ± 0.06 | 0.41 ± 0.13 | 0.26 ± 0.11 | 0.30 |
11 | 0.76 ± 0.30 | 0.83 ± 0.09 | 0.65 ± 0.04 | 0.77 ± 0.12 | 0.50 ± 0.06 | 0.48 ± 0.19 | 0.10 |
12 | 0.55 ± 0.16 | 0.55 ± 0.10 | 0.32 ± 0.02 | 0.22 ± 0.06 | 0.13 ± 0.03 | 0.22 ± 0.06 | 0.69 |
13 | 1.04 ± 0.08 | 0.98 ± 0.31 | 0.85 ± 0.06 | 0.41 ± 0.03 | 0.38 ± 0.07 | 0.59 ± 0.19 | 0.32 |
14 | 1.01 ± 0.04 | 0.65 ± 0.04 | 0.72 ± 0.01 | 0.36 ± 0.04 | 0.35 ± 0.06 | 0.30 ± 0.11 | 0.29 |
Average | 0.83 ± 0.18 | 0.74 ± 0.23 | 0.67 ± 0.19 | 0.57 ± 0.18 | 0.45 ± 0.16 | 0.44 ± 0.23 | - |
(b) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, D.H.; Kang, D.H. Indoor/Outdoor Relationships of Airborne Particles under Controlled Pressure Difference across the Building Envelope in Korean Multifamily Apartments. Sustainability 2018, 10, 4074. https://doi.org/10.3390/su10114074
Choi DH, Kang DH. Indoor/Outdoor Relationships of Airborne Particles under Controlled Pressure Difference across the Building Envelope in Korean Multifamily Apartments. Sustainability. 2018; 10(11):4074. https://doi.org/10.3390/su10114074
Chicago/Turabian StyleChoi, Dong Hee, and Dong Hwa Kang. 2018. "Indoor/Outdoor Relationships of Airborne Particles under Controlled Pressure Difference across the Building Envelope in Korean Multifamily Apartments" Sustainability 10, no. 11: 4074. https://doi.org/10.3390/su10114074
APA StyleChoi, D. H., & Kang, D. H. (2018). Indoor/Outdoor Relationships of Airborne Particles under Controlled Pressure Difference across the Building Envelope in Korean Multifamily Apartments. Sustainability, 10(11), 4074. https://doi.org/10.3390/su10114074