Spatio-Temporal Patterns and Impacts of Sediment Variations in Downstream of the Three Gorges Dam on the Yangtze River, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area and the Impoundment Stage of TGD
2.2. Estimation of Suspended Sediment Concentration
2.3. Remote Sensing Datasets Collection and Processing
2.3.1. Datasets Collection
2.3.2. MODIS Data Processing
2.3.3. Reflectance Information Extraction
2.4. Regression Model for the Estimation of Suspended Sediment Concentration
2.4.1. Data Processing and Selection of Variables
2.4.2. Modeling Process
2.5. Model Evaluations
3. Results
3.1. Spatial Variation of Suspended Sediment
3.1.1. Spatial Distribution of Annual Suspended Sediment
3.1.2. Spatial Distribution of Seasonal Suspended Sediment
3.2. Temporal Variation of Suspended Sediment Concentration
3.2.1. Seasonal Variations of Suspended Sediment Concentration
3.2.2. Annual Variations of Suspended Sediment Concentration
3.3. Impacts of Impoundment on the Suspended Sediment at the Downstream.
4. Discussions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dai, Z.; Fagherazzi, S.; Mei, X.; Gao, J. Decline in suspended sediment concentration delivered by the Changjiang (Yangtze) river into the east china sea between 1956 and 2013. Geomorphology 2016, 268, 123–132. [Google Scholar] [CrossRef]
- Chen, X.Y.; Chau, K.W. A hybrid double feedforward neural network for suspended sediment load estimation. Water Resour. Manag. 2016, 30, 2179–2194. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, Y.; Zhou, F.; Yan, H.; Deng, Y.; Li, B. Suspended sediment distribution under varied currents in the largest river-connected lake of China. Water Science and Technology. Water Supply 2018, 18, 994–1004. [Google Scholar] [CrossRef]
- Béjar, M.; Vericat, D.; Batalla, R.J.; Gibbins, C.N. Variation in flow and suspended sediment transport in a montane river affected by hydropeaking and instream mining. Geomorphology 2018, 310, 69–83. [Google Scholar] [CrossRef]
- Turunen, M.; Warsta, L.; Paasonen-Kivekäs, M.; Koivusalo, H. Computational assessment of sediment balance and suspended sediment transport pathways in subsurface drained clayey soils. Soil Tillage Res. 2017, 174, 58–69. [Google Scholar] [CrossRef]
- Chen, J.; Finlayson, B.L.; Wei, T.; Sun, Q.; Webber, M.; Li, M.; Chen, Z. Changes in monthly flows in the Yangtze River, China-with special reference to the Three Gorges Dam. J. Hydrol. 2016, 536, 293–301. [Google Scholar] [CrossRef]
- Deng, K.; Yang, S.; Lian, E.; Li, C.; Yang, C.; Wei, H. Three gorges dam alters the Changjiang (Yangtze) river water cycle in the dry seasons: Evidence from h-o isotopes. Sci. Total. Environ. 2016, 562, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.L.; Milliman, J.D.; Xu, K.H.; Deng, B.; Zhang, X.Y.; Luo, X.X. Downstream sedimentary and geomorphic impacts of the three gorges dam on the Yangtze river. Earth Sci. Rev. 2014, 138, 469–486. [Google Scholar] [CrossRef]
- Sadeghi, S.H.; Psingh, V. Dynamics of suspended sediment concentration, flow discharge and sediment particle size interdependency to identify sediment source. J. Hydrol. 2017, 554, 100–110. [Google Scholar] [CrossRef]
- Oliveira, K.S.S.; Quaresma, V.D.S. Temporal variability in the suspended sediment load and streamflow of the Doce River. J. South Am. Earth Sci. 2017, 78, 101–115. [Google Scholar] [CrossRef]
- Zounemat-Kermani, M. Assessment of several nonlinear methods in forecasting suspended sediment concentration in streams. Hydrol. Res. 2017, 48, 1240–1252. [Google Scholar] [CrossRef]
- Thanh, V.Q.; Reyns, J.; Wackerman, C.; Eidam, E.F.; Roelvink, D. Modelling suspended sediment dynamics on the subaqueous delta of the Mekong river. Cont. Shelf Res. 2017, 147, 213–230. [Google Scholar] [CrossRef]
- Wackerman, C.; Hayden, A.; Onik, J. Deriving spatial and temporal context for point measurements of suspended-sediment concentration using remote-sensing imagery in the Mekong delta. Cont. Shelf Res. 2017, 147, 231–245. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, J.; Zhang, H.; Zhou, F. Remote sensing of sub-surface suspended sediment concentration by using the range bias of green surface point of airborne lidar bathymetry. Remote Sens. 2018, 10, 681. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, J.; Zhang, H.; Zhou, F. Remote sensing of suspended sediment concentrations based on the waveform decomposition of airborne lidar bathymetry. Remote Sens. 2018, 10, 247. [Google Scholar] [CrossRef]
- Milller, R.L.; Mckee, B.A. Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters. Remote Sens. Environ. 2004, 93, 259–266. [Google Scholar] [CrossRef] [Green Version]
- Volpe, V.; Silvestri, S.; Marani, M. Remote sensing retrieval of suspended sediment concentration in shallow waters. Remote Sens. Environ. 2011, 115, 44–54. [Google Scholar] [CrossRef]
- Bowers, D.; Hill, P.; Braithwaite, K. The effect of particulate organic content on the remote sensing of marine suspended sediments. Remote Sens. Environ. 2014, 144, 172–178. [Google Scholar] [CrossRef]
- Gullou, N.; Rivier, A.; Chapalain, G. The impact of tides and waves on near-surface suspended sediment concentrations in the English Channel. Oceanologia 2017, 59, 28–36. [Google Scholar] [CrossRef]
- Yang, X.P.; Sokoletsky, L.; Wei, X.D.; Shen, F. Suspended sediment concentration mapping based on the modis satellite imagery in the east china inland, estuarine, and coastal waters. Chin. J. Oceanol. Limnol. 2017, 35, 39–60. [Google Scholar] [CrossRef]
- Zounemat-Kermani, M.; Kişi, Ö.; Adamowski, J.; Ramezani-Charmahineh, A. Evaluation of data driven models for river suspended sediment concentration modeling. J. Hydrol. 2016, 535, 457–472. [Google Scholar] [CrossRef]
- Shamaei, E.; Kaedi, M. Suspended sediment concentration estimation by stacking the genetic programming and neuro-fuzzy predictions. Appl. Soft Comput. 2016, 45, 187–196. [Google Scholar] [CrossRef]
- Kumar, D.; Pandey, A.; Sharma, N.; Flügel, W.A. Daily suspended sediment simulation using machine learning approach. Catena 2016, 138, 77–90. [Google Scholar] [CrossRef]
- Yang, C.T.; Marsooli, R.; Aalami, M.T. Evaluation of total load sediment transport formulas using ANN. Int. J. Sediment Res. 2009, 24, 274–286. [Google Scholar] [CrossRef]
- Kisi, O. Modeling discharge-suspended sediment relationship using least square support vector machine. J. Hydrol. 2012, 456, 110–120. [Google Scholar] [CrossRef]
- Adib, A.; Mahmoodi, A. Prediction of suspended sediment load using ANN GA conjunction model with Markov chain approach at flood conditions. KSCE J. Civ. Eng. 2017, 21, 447–457. [Google Scholar] [CrossRef]
- Chen, J.L.; Li, G.S.; Xiao, B.B.; Wen, Z.F.; Lv, M.Q.; Chen, C.D.; Jiang, Y.; Wang, X.X.; Wu, S.J. Assessing the transferability of support vector machine model for estimation of global solar radiation from air temperature. Energy Convers. Manag. 2015, 89, 318–329. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Gleason, C.J. Forest biomass estimation from airborne LiDAR data using machine learning approaches. Remote Sens. Environ. 2012, 125, 80–91. [Google Scholar] [CrossRef]
- Tian, X.; Yan, M.; Tol, C. Modeling forest above-ground biomass dynamics using multi-source data and incorporated models: A case study over the qilian mountains. Agric. For. Meteorol. 2017, 246, 1–14. [Google Scholar] [CrossRef]
- Wang, C.H.; Xiao, S.B.; Li, Y.C.; Zhong, H.Y.; Li, X.C.; Peng, F. Methane formation and consumption processes in Xiangxi Bay of the Three Gorges Reservoir. Sci. Rep. 2014, 4, 4449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, B.J.; Wu, B.F.; Lu, Y.H.; Xu, Z.H.; Cao, J.H.; Niu, D.; Yang, G.S.; Zhou, Y.M. Three Gorges Project: Efforts and challenges for the environment. Prog. Phys. Geogr. 2010, 34, 741–754. [Google Scholar] [CrossRef]
- Ministry of Water Resources of China. Code for River Suspended Sediment Measurement; China Planning Press: Beijing, China, 1992; GB 50159–50192.
- OriginLab. Origin; OriginLab: Nothampton, MA, USA, 2015. [Google Scholar]
- Pringle, M.J.; Denham, R.J.; Devadas, S. Identification of cropping activity in central and southern Queensland, Australia, with the aid of MODIS MOD13Q1 imagery. Int. J. Appl. Earth Obs. Géoinf. 2012, 19, 276–285. [Google Scholar] [CrossRef]
- MODIS Reprojection Tool (MRT); Users Guide; Release 3.2a; South Dakota School of Mines and Technology, USGS EROS Data Center: Rapid City, SD, USA, 2004; p. 58.
- Robert, B.; Dean, W.; Dixon, J. Simplified Statistics for Small Numbers of Observations. Anal. Chem. 1951, 23, 636–638. [Google Scholar]
- Smith, C.; Croke, B. Sources of uncertainty in estimating suspended sediment load. IAHS AISH Publ. 2005, 292, 136–143. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Ismail, R.; Mutanga, O.; Kumar, L. Modeling the Potential Distribution of Pine Forests Susceptible to Sirex Noctilio Infestations in Mpumalanga, South Africa. Trans. GIS 2010, 14, 709–726. [Google Scholar] [CrossRef]
- Süli, E.; Mayers, D. An Introduction to Numerical Analysis; Cambridge University Press: Cambridge, UK, 2003; ISBN 0-521-00794-00791. [Google Scholar]
- Bian, M.; Skidmore, A.K.; Schlerf, M.; Wang, T.; Liu, Y.; Zeng, R.; Fei, T. Predicting foliar biochemistry of tea (Camellia sinensis) using reflectance spectra measured at powder, leaf and canopy levels. J. Photogramm. Remote Sens. 2013, 78, 148–156. [Google Scholar] [CrossRef]
- Jiang, H.C.; Qiang, M.S.; Fan, Q.X.; Zhang, M.Q. Scientific research driven by large-scale infrastructure projects: A case study of the Three Gorges Project in China. Technol. Forecast. Soc. Chang. 2018, 134, 61–71. [Google Scholar] [CrossRef]
- Guo, L.; Su, N.; Zhu, C.; He, Q. How have the river discharges and sediment loads changed in the changjiang river basin downstream of the three gorges dam? J. Hydrol. 2018, 560, 259–274. [Google Scholar] [CrossRef]
- Xu, X.B.; Yan, T.; Yang, G.S. Environmental impact assessments of the Three Gorges Project in China: Issues and interventions. Earth Sci. Rev. 2013, 124, 115–125. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.H.; Jia, J.J.; Kettner, A.J.; Xing, F.; Wang, Y.P.; Xu, X.N. Changes in water and sediment exchange between the Changjiang river and Poyang lake under natural and anthropogenic conditions, China. Sci. Total. Environ. 2014, 481, 542–553. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.Y.; Yan, D.C.; Wen, A.B.; Chen, J.C. Influencing factors of sediment deposition and their spatial variability in riparian zone of the three gorges reservoir, China. J. Mt. Sci. 2016, 13, 1387–1396. [Google Scholar] [CrossRef]
- Li, W.; Yang, S.; Hu, J.; Fu, X.; Zhang, P. Field measurements of settling velocities of fine sediments in three gorges reservoir using adv. Int. J. Sediment Res. 2016, 31, 237–243. [Google Scholar] [CrossRef]
- Zhou, Y.J.; Sun, J.; Zhang, Y.Q.; Yan, X. Analysis on the law of sediments deposition in the three gorges reservoir. IOP Conf. Ser. Earth Environ. Sci. 2017, 81, 012050. [Google Scholar] [Green Version]
- Yang, S.L.; Xu, K.H.; Milliman, J.D.; Yang, H.F.; Wu, C.S. Decline of Yangtze river water and sediment discharge: Impact from natural and anthropogenic changes. Sci. Rep. 2015, 5, 12581. [Google Scholar] [CrossRef] [PubMed]
- He, L. Quantifying the Effects of Near-Bed Concentration on the Sediment Flux after the Operation of the Three Gorges Dam, Yangtze River. Water 2017, 9, 986. [Google Scholar] [CrossRef]
- Zhou, Y.Q.; Li, J.B.; Zhang, Y.L.; Zhang, X.P.; Li, X.C. Enhanced lakebed sediment erosion in Dongting lake induced by the operation of the three gorges reservoir. J. Geogr. Sci. 2015, 25, 917–929. [Google Scholar] [CrossRef]
- Gao, B.; Gao, L.; Zhou, Y.; Xu, D.; Zhao, X. Evaluation of the dynamic mobilization of vanadium in tributary sediments of the three gorges reservoir after water impoundment. J. Hydrol. 2017, 551, 92–99. [Google Scholar] [CrossRef]
- Bing, H.J.; Zhou, J.; Wu, Y.H.; Wang, X.X.; Sun, H.Y.; Li, R. Current state, sources, and potential risk of heavy metals in sediments of three gorges reservoir, china. Environ. Pollut. 2016, 214, 485–496. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Gao, B.; Xu, D.; Gao, L.; Yin, S. Heavy metal pollution in sediments of the largest reservoir (three gorges reservoir) in China: A review. Environ. Sci. Pollut. Res. 2017, 24, 20844–20858. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.L.; Wang, Y.Y.; Wen, A.B.; Yan, D.C.; Chen, J.C. Tempo-spatial variations of sediment-associated nutrients and contaminants in the Ruxi tributary of the Three Gorges Reservoir, China. J. Mt. Sci. 2018, 15, 319–326. [Google Scholar] [CrossRef]
- Škrbića, B.D.; Kadokami, K.; Antića, I. Survey on the micro-pollutants presence in surface water system of northern Serbia and environmental and health risk assessment. Environ. Res. 2018, 166, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Szewrański, S.; Chruściński, J.; van Hoof, J.; Kazak, J.K.; Świąder, M.; Tokarczyk-Dorociak, K.; Żmuda, R. A Location Intelligence System for the Assessment of Pluvial Flooding Risk and the Identification of Storm Water Pollutant Sources from Roads in Suburbanized Areas. Water 2018, 10, 746. [Google Scholar] [CrossRef]
- Wang, T.; Pan, J.; Liu, X. Characterization of heavy metal contamination in the soil and sediment of the three gorges reservoir, China. J. Environ. Sci. Heal. Part A 2018, 52, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.L.; Milliman, J.D.; Li, P.; Xu, K. 50,000 dams later: Erosion of the Yangtze River and its delta. Glob. Planet. Chang. 2011, 75, 14–20. [Google Scholar] [CrossRef]
- Li, N.; Wang, L.C.; Zeng, C.F.; Wang, D.; Liu, D.F.; Wu, X.T. Variations of runoff and sediment load in the middle and lower reaches of the Yangtze River, China (1950–2013). PLoS ONE 2016, 11, e0160154. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.F.; Yang, S.L.; Xu, K.H.; Milliman, J.D.; Wang, H.J.; Yang, Z.S.; Chen, Z.Y.; Zhang, C.Y. Human impacts on sediment in the Yangtze River: A review and new perspectives. Glob. Planet Chang. 2018, 162, 8–17. [Google Scholar] [CrossRef]
- Changjiang Water Resources Commission. Analysis and Research Report on Riverbed Scouring in the Middle Reach of Yangtze River; Changjiang Water Resources Commission: Beijing, China, 2015.
Variables Group | Equations | Variables Number |
---|---|---|
Band(i) | Bi | 4 |
EVI | 2.5 × (B4 − B2)/(B4 + 2.4 × B2 + 1) | 1 |
NDVI(i,j) | (Bi − Bj)/(Bi + Bj) | 6 |
DVI(i,j) | Bi − Bj | 6 |
RVI(i,j) | Bi/Bj | 12 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Fang, X.; Wen, Z.; Chen, Q.; Ma, M.; Huang, Y.; Wu, S.; Yang, L.E. Spatio-Temporal Patterns and Impacts of Sediment Variations in Downstream of the Three Gorges Dam on the Yangtze River, China. Sustainability 2018, 10, 4093. https://doi.org/10.3390/su10114093
Chen J, Fang X, Wen Z, Chen Q, Ma M, Huang Y, Wu S, Yang LE. Spatio-Temporal Patterns and Impacts of Sediment Variations in Downstream of the Three Gorges Dam on the Yangtze River, China. Sustainability. 2018; 10(11):4093. https://doi.org/10.3390/su10114093
Chicago/Turabian StyleChen, Jilong, Xinrui Fang, Zhaofei Wen, Qiao Chen, Maohua Ma, Yuanyang Huang, Shengjun Wu, and Liang Emlyn Yang. 2018. "Spatio-Temporal Patterns and Impacts of Sediment Variations in Downstream of the Three Gorges Dam on the Yangtze River, China" Sustainability 10, no. 11: 4093. https://doi.org/10.3390/su10114093
APA StyleChen, J., Fang, X., Wen, Z., Chen, Q., Ma, M., Huang, Y., Wu, S., & Yang, L. E. (2018). Spatio-Temporal Patterns and Impacts of Sediment Variations in Downstream of the Three Gorges Dam on the Yangtze River, China. Sustainability, 10(11), 4093. https://doi.org/10.3390/su10114093