Performic Acid Controls Better Clostridium tyrobutyricum Related Bacteria than Peracetic Acid
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wen, A.Y.; Yuan, X.Y.; Wang, J.; Deast, S.T.; Shao, T. Effects of four short-chain fatty acids or salts on dynamics of fermentation and microbial characteristics of alfalfa silage. Anim. Feed Sci. Technol. 2017, 223, 141–148. [Google Scholar] [CrossRef]
- Jonsson, A.; Lindberg, H.; Sundås, S.; Lingvall, P.; Lindgren, S. Effect of additives on the quality of big-bale silage. Anim. Feed Sci. Technol. 1990, 31, 139–155. [Google Scholar] [CrossRef]
- Dunière, L.; Sindou, J.; Chaucheyras-Durand, F.; Chevallier, I.; Thévenot-Sergentet, D. Silage processing and strategies to prevent persistence of undesirable microorganisms. Anim. Feed Sci. Technol. 2013, 182, 1–15. [Google Scholar] [CrossRef]
- Magnusson, M.; Christiansson, A.; Svensson, B.; Kolstrup, C. Effect of different premilking manual teat-cleaning methods on bacterial spores in milk. J. Dairy Sci. 2006, 89, 3866–3875. [Google Scholar] [CrossRef]
- Arias, C.; Oliete, B.; Seseña, S.; Jiménez, L.; Palop, L.; Pérez-Guzmán, M.D.; Arias, R. Importance of on-farm management practices on lactate-fermenting Clostridium spp. spore contamination of total mixed ration of Manchega ewe feeding. Determination of risk factors and characterization of Clostridium population. Small Ruminant Res. 2016, 139, 39–45. [Google Scholar] [CrossRef]
- Ruusunen, M.; Surakka, A.; Korkeala, H.; Lindström, M. Clostridium tyrobutyricum Strains Show Wide Variation in Growth at Different NaCl, pH, and Temperature Conditions. J. Food Protect. 2012, 75, 1791–1795. [Google Scholar] [CrossRef] [PubMed]
- Brändle, J.; Domig, K.J.; Kneifel, W. Relevance and analysis of butyric acid producing Clostridia in milk and cheese. Food Control 2016, 67, 96–113. [Google Scholar] [CrossRef]
- Berlin, J. Environmental life cycle assessment (LCA) of Swedish semi-hard cheese. Int. Dairy J. 2002, 12, 939–953. [Google Scholar] [CrossRef]
- Klaenhammer, T. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 1993, 12, 39–85. [Google Scholar] [CrossRef] [PubMed]
- Rilla, N.; Martínez, B.; Delgado, T.; Rodríguez, A. Inhibition of Clostridium tyrobutyricum in Vidiano cheese by Lactococcus lactis ssp. lactis IPLA 729, a nisin Z producer. Int. J. Food Microbiol. 2003, 85, 23–33. [Google Scholar] [CrossRef]
- Ávila, M.; Gomez-Torres, N.; Hernandez, M.; Garde, S. Inhibitory activity of reuterin, nisin, lysozyme and nitrite against vegetative cells and spores of dairy-related Clostridium species. Int. J. Food Microbiol. 2012, 172, 70–75. [Google Scholar] [CrossRef] [PubMed]
- D’Incecco, P.; Gatti, M.; Hogenboom, J.A.; Bottari, B.; Rosi, V.; Neviani, E.; Pellegrino, L. Lysozyme affects the microbial catabolism of free arginine in raw-milk hard cheeses. Food Microbiol. 2016, 57, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, R.B.A.; Margalho, L.P.; Nascimento, J.; Costa, L.E.O.; Portela, J.B.; Cruz, A.G.; Sant’Ana, Anderson, S. Processed cheese contamination by spore-forming bacteria: A review of sources, routes, fate during processing and control. Trends Food Sci. Technol. 2016, 57, 11–19. [Google Scholar]
- Song, P.; Wu, L.; Guan, W. Dietary Nitrates, Nitrites, and Nitrosamines Intake and the Risk of Gastric Cancer: A Meta-Analysis. Nutrients 2015, 7, 9872–9895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bisig, W.; Fröhlich-Wyder, M.-T.; Jakob, E.; Wechsler, D. Comparison between Emmentaler PDO and generic emmental cheese production in Europe. Aust. J. Dairy Technol. 2010, 65, 206–213. [Google Scholar]
- Kitis, M. Disinfection of wastewater with peracetic acid: A review. Environ. Int. 2004, 30, 47–55. [Google Scholar] [CrossRef]
- Heinonen-Tanski, H.; Miettinen, H. Performic acid as a potential disinfectant at low temperatures. J. Food Process Eng. 2010, 33, 1159–1172. [Google Scholar] [CrossRef]
- Karpova, T.; Pekonen, P.; Gramstad, R.; Öjstedt, U.; Laborda, S.; Heinonen-Tanski, H.; Chávez, A.; Jiménez, B. Performic acid for advanced wastewater disinfection. Water Sci. Technol. 2013, 68, 2090–2096. [Google Scholar] [CrossRef] [PubMed]
- Rutala, W.A.; Weber, D.J. New Disinfection and Sterilization Methods. Emerg. Infect. Dis. 2001, 7, 348–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broda, D.M. The effect of peroxyacetic acid-based sanitizer, heat and ultrasonic waves on the survival of Clostridium estertheticum spores in vitro. Lett. Appl. Microbiol. 2007, 45, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Eramo, A.; Morales Medina, W.R.; Fahrenfeld, N.L. Peracetic acid disinfection kinetics for combined sewer overflows: Indicator organisms, antibiotic resistance genes, and microbial community. Environ. Sci. Water Res. Technol. 2017, 3, 1061–1072. [Google Scholar] [CrossRef] [PubMed]
- Heinonen-Tanski, H.; Niskanen, E.M.; Mielonen, M.M.; Räsänen, H.; Valta, T.; Leinonen, P.; Rinne, K.; Joki-Tokola, E. Aeration improves the hygiene of cattle slurry and the hygiene of grass forage and silage. Acta Agric. Scand. Soil Plant 1998, 48, 212–221. [Google Scholar] [CrossRef]
- Langó, Z.; Heinonen-Tanski, H. Occurrence of Clostridium tyrobutyricum in cattle slurry and fresh forage grasses. Bioresour. Technol. 1995, 53, 189–191. [Google Scholar] [CrossRef]
- Chhetri, R.K.; Thornberg, D.; Berner, J.; Gramstad, R.; Öjstedt, U.; Sharma, A.K.; Andersen, H.R. Chemical disinfection of combined sewer overflow waters using performic acid or peracetic acid. Sci. Total Environ. 2014, 490, 1065–1072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luukkonen, T.; Heyninck, T.; Rämö, J.; Lassi, U. Comparison of organic peracids in wastewater treatment: Disinfection, oxidation and corrosion. Water Res. 2015, 85, 275–285. [Google Scholar] [CrossRef] [PubMed]
- Domínguez Henao, L.; Delli Compagni, R.; Turolla, A.; Antonelli, M. Influence of inorganic and organic compounds on the decay of peracetic acid in wastewater disinfection. Chem. Eng. J. 2018, 337, 133–142. [Google Scholar] [CrossRef]
- Pedersen, L.-F.; Meinelt, T.; Straus, D.L. Peracetic acid degradation in freshwater aquaculture systems and possible practical implications. Aqua. Eng. 2013, 53, 65–71. [Google Scholar] [CrossRef]
- Li, H.; Zhu, X.; Ni, J. Comparison of electrochemical method with ozonation, chlorination and monochlorammination in drinking water disinfection. Electrochim. Acta 2011, 56, 9789–9796. [Google Scholar] [CrossRef]
- Luukkonen, T.; Pehkonen, S. Peracids in water treatment: A critical review. Crit. Rev. Environ. Sci. Technol. 2017, 47, 1–39. [Google Scholar] [CrossRef]
Clostridium Types | Strains | Peracetic Acid (PAA) mg L−1 | Performic Acid (PFA) mg L−1 | |||||
---|---|---|---|---|---|---|---|---|
30 | 60 | 110 | 220 | 30 | 60 | 120 | ||
Cl. tyrobutyricum | a | a | a | a | b | b | c | |
DSM-663 | 0 | 0 | 0 | 0 | 3 | 3 | 3 | |
DSM-1460 | nt 1 | 0 | 0 | 0 | 0 | 2 | 4 | |
DSM-2637 | nt | 0 | 0 | 0 | 4 | 3 | 4 | |
NICMB-701790 | 0 | 0 | 0 | 0 | 2 | 4 | 3 | |
NICMB-701715 | nt | 0 | 0 | 0 | 2 | 0 | 4 | |
NICMB-701753 | 0 | 0 | 0 | 0 | 1 | 4 | 3 | |
NICMB-701754 | nt | 0 | 0 | 0 | 1 | 1 | 4 | |
NICMB-701755 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | |
NICMB-701756 | 0 | 0 | 0 | 0 | 2 | 3 | 4 | |
NICMB-701757 | 0 | 0 | 0 | 0 | 4 | 3 | 4 | |
HA-56 | 0 | 0 | 0 | 0 | 4 | 4 | nt | |
Cl. propionicumlike | a | a | a | a | ab | b | b | |
PP-1 | nt | 0 | 0 | 0 | 2 | 4 | 4 | |
HL-17 | nt | 0 | 0 | 0 | 1 | 2 | 3 | |
KI-12 | 0 | 0 | 0 | 0 | 0 | 2 | 3 | |
KA-4 | nt | 0 | 0 | 0 | 3 | 4 | 4 | |
HA-13 | 0 | 0 | 0 | 0 | 2 | 3 | 3 | |
HA-18 2 | nt | nt | 0 | 0 | 3 | 3 | 4 | |
HA-19 | nt | 4 | 4 | 4 | 4 | 4 | 4 | |
Cl. malenominatum | a | a | ab | abc | bc | c | c | |
222-IIIa | 0 | 0 | 0 | 3 | 4 | 4 | 4 | |
222-IIIb | 0 | 0 | 2 | 4 | 4 | 4 | 4 | |
HL-54 | 0 | 0 | 0 | 0 | 2 | 4 | 4 | |
HL-55 | nt | 0 | 3 | 2 | 3 | 4 | 4 | |
Unidentified clostridia | a | a | a | a | ab | bc | c | |
HL-27 | nt | 0 | 0 | 0 | 0 | 0 (2) 3 | 4 | |
HL-22 | 0 | 0 | 0 | 0 | 0 | 4 | 4 | |
HL-56 | nt | 0 | 0 | 0 | 2 | 3 | 4 | |
NU-7 | 0 | 0 | 0 | 0 | 0 | 1 (2) 3 | 4 | |
PP-51 | 0 | 0 | 0 | 0 | 3 | 3 (2) 3 | 4 | |
Pt-25 | nt | 0 | 0 | 0 | 3 | 3 | 4 | |
HA-14 | nt | nt | 1 | 4 | 3 | 3 | 4 | |
PP-24 | nt | 3 | 4 | 4 | 4 | 4 | 4 |
Peracid | Clostridium Type | Strains | Concentration mg L−1 | Exposure Time | |
---|---|---|---|---|---|
5 min | 10 min | ||||
PAA | Cl. tyrobutyricum | DSM-1460, NCIMB-701715, -701754 and -701755 | 60, 110 and 220 | 0 | 0 |
Cl. propionicumlike | PP-1, HL-17 and KA-4 | 60, 110 and 220 | 0 | 0 | |
Cl. malenominatum | 222-IIIa | 60 | 0 | 2 | |
110 | 0 | 4 | |||
220 | 3 | 4 | |||
Unidentified clostridia | HL-27 and HL-22 | 60, 110 and 220 | 0 | 0 | |
PFA | Cl. tyrobutyricum | DSM-1460 | 60 | 2 | 3 |
120 | 4 | 4 | |||
NCIMB-701715 | 60 | 0 | 3 | ||
120 | 4 | 4 | |||
NCIMB-701754 | 30 | 1 | 4 | ||
60 | 1 | 4 | |||
120 | 4 | 4 | |||
NCIMB-701755 | 30 | 0 | 2 | ||
60 | 0 | 4 | |||
120 | 4 | 4 | |||
Cl. propionicumlike | PP-1 | 30 | 2 | 3 | |
60 and 120 | 4 | 4 | |||
HL-17 | 30 | 1 | 4 | ||
60 | 2 | 4 | |||
120 | 3 | 4 | |||
KA-4 | 60 and 120 | 4 | 4 | ||
Cl. malenominatum | 222-IIIa | 30, 60 and 120 | 4 | 4 | |
Unidentified clostridia | HL-27 | 30 | 0 | 4 | |
60 | 0 (2) 1 | 4 | |||
120 | 4 | 4 | |||
HL-22 | 60 | 2 | 4 | ||
120 | 4 | 4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mora, M.; Veijalainen, A.-M.; Heinonen-Tanski, H. Performic Acid Controls Better Clostridium tyrobutyricum Related Bacteria than Peracetic Acid. Sustainability 2018, 10, 4116. https://doi.org/10.3390/su10114116
Mora M, Veijalainen A-M, Heinonen-Tanski H. Performic Acid Controls Better Clostridium tyrobutyricum Related Bacteria than Peracetic Acid. Sustainability. 2018; 10(11):4116. https://doi.org/10.3390/su10114116
Chicago/Turabian StyleMora, Maximilian, Anna-Maria Veijalainen, and Helvi Heinonen-Tanski. 2018. "Performic Acid Controls Better Clostridium tyrobutyricum Related Bacteria than Peracetic Acid" Sustainability 10, no. 11: 4116. https://doi.org/10.3390/su10114116