An Evaluation of Local Comprehensive Plans Toward Sustainable Green Infrastructure in US
Abstract
:1. Introduction
2. Literature Review
2.1. Key Principles of Sustainable Green Infrastructure in the USEPA Guideline
2.2. Plan Quality Evaluation
2.3. Factors influencing Plan Quality
3. Methods
3.1. Sample Selection
3.2. Concept Measurement
3.3. Data Analysis
4. Results
4.1. Descriptive Statistics of Plan Quality Evaluation
4.2. Regression Analysis
5. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Plan Component (Number of Indicators) | Scoring Method | Scale (Ordinal) |
---|---|---|
Factual basis (18) | 0 point = Indicator is never mentioned within a plan 1 point = Indicator is mentioned within a plan, but not detailed 2 points = Indicator is fully identified and demonstrated within a plan | 0–2 |
Goals and objectives (17) | 0 point = Indicator is not mentioned within a plan 1 point = Indicator is mentioned within a plan | 0–1 |
Inter-organizational coordination (10) | 0 point = Indicator is never mentioned within a plan 1 point = Indicator is mentioned within a plan, but not detailed 2 points = Indicator is concretely mentioned and described within a plan | 0–2 |
Policies, tools and strategies (40) | 0 point = Indicator is never mentioned within a plan 1 point = Indicator is stated with limited information and vague commitment words within a plan (e.g., “consider”, “encourage”, “promote”, “may”, “can”) 2 points = Indicator is clearly mentioned with a firm commitment words within a plan (e.g., “shall”, “require”, “will”, “must”, “necessitate”) | 0–2 |
Implementation (8) | 0 point = Indicator is never mentioned within a plan 1 point = Indicator is mentioned within a plan, but not detailed 2 points = Indicator is clearly mentioned within a plan | 0–2 |
Appendix B
Place | Name | Factual Basis | Goals and Objectives | Policies and Strategies | Implementation | Coordination | Total Score |
---|---|---|---|---|---|---|---|
County or independent city | Williams, ND | 2.64 | 2.35 | 1.88 | 5.63 | 6.00 | 18.50 |
Sumter, FL | 6.11 | 5.88 | 3.88 | 8.13 | 8.00 | 32.00 | |
Long, GA | 2.22 | 1.18 | 0.63 | 5.63 | 5.50 | 15.16 | |
Forsyth, GA | 6.53 | 3.53 | 2.00 | 8.75 | 8.00 | 28.81 | |
Loudoun, VA | 4.72 | 7.06 | 5.38 | 2.5 | 7.50 | 27.16 | |
St. Johns, FL | 2.22 | 5.29 | 2.63 | 4.38 | 5.50 | 20.02 | |
Lincoln, SD | 3.89 | 1.76 | 0.75 | 0.63 | 4.50 | 11.53 | |
Fredericksburg, VA | 6.81 | 5.88 | 3.13 | 5.00 | 6.50 | 27.32 | |
Broomfield, CO | 2.22 | 4.71 | 2.88 | 1.88 | 4.00 | 15.69 | |
Uintah, UT | 2.36 | 2.94 | 2.38 | 0.63 | 4.5 | 12.81 | |
Columbia, GA | 4.86 | 2.94 | 2.50 | 7.50 | 7.50 | 25.30 | |
Travis, TX | 6.81 | 5.29 | 5.13 | 4.38 | 8.50 | 30.11 | |
Horry, SC | 5.69 | 5.88 | 4.00 | 3.13 | 6.00 | 24.70 | |
Cass, ND | 5.28 | 1.76 | 0.38 | 0.63 | 2.00 | 10.05 | |
Berkeley, SC | 5.56 | 4.12 | 2.13 | 5.00 | 7.00 | 23.81 | |
Rutherford, TN | 4.72 | 2.94 | 3.50 | 6.25 | 7.50 | 24.91 | |
Franklin, WA | 3.89 | 5.29 | 3.88 | 2.50 | 5.00 | 20.56 | |
Matanuska Susitna, AK | 3.19 | 2.35 | 2.00 | 0.63 | 2.50 | 10.67 | |
Lee, FL | 1.81 | 4.71 | 4.13 | 3.75 | 5.50 | 19.90 | |
Falls Church, VA | 5.00 | 6.47 | 3.38 | 6.25 | 6.50 | 27.60 | |
Douglas, CO | 4.17 | 4.12 | 4.00 | 1.88 | 6.50 | 20.67 | |
Russell, AL | 2.92 | 2.35 | 1.13 | 3.13 | 6.00 | 15.53 | |
Manatee, FL | 2.78 | 7.06 | 3.50 | 1.88 | 6.50 | 21.72 | |
Prince William, VA | 3.19 | 5.29 | 3.25 | 2.50 | 6.00 | 20.23 | |
Jasper, SC | 3.89 | 2.94 | 3.00 | 1.88 | 3.50 | 15.21 | |
Lafayette, MS | 2.36 | 2.94 | 0.50 | 0.63 | 2.00 | 8.43 | |
Hoke, NC | 3.89 | 2.35 | 0.63 | 0.63 | 1.00 | 8.50 | |
Lancaster, SC | 4.58 | 1.18 | 0.75 | 5.63 | 5.00 | 17.14 | |
Lee, AL | 3.47 | 3.53 | 1.50 | 4.38 | 6.50 | 19.38 | |
Gwinnett, GA | 3.89 | 3.53 | 2.25 | 6.25 | 4.50 | 20.42 | |
City | Kent, WA | 4.17 | 6.47 | 4 | 1.88 | 6.00 | 22.51 |
Cedar Park, TX | 3.33 | 2.94 | 1.38 | 3.75 | 5.00 | 16.40 | |
Frisco, TX | 5.55 | 3.53 | 2.88 | 3.13 | 5.00 | 20.08 | |
Kokomo, IN | 1.94 | 3.53 | 0.63 | 1.25 | 3.50 | 10.85 | |
Dublin, CA | 2.5 | 7.06 | 3.38 | 3.13 | 4.50 | 20.56 | |
Doral, FL | 3.61 | 8.23 | 4.25 | 5 | 6.50 | 27.60 | |
Goodyear, AZ | 2.5 | 2.94 | 2.38 | 4.38 | 5.50 | 17.69 | |
Irvine, CA | 2.36 | 3.53 | 1.13 | 1.88 | 4.50 | 13.39 | |
Meridian, ID | 2.36 | 4.12 | 1.88 | 3.75 | 6.00 | 18.10 | |
Leesburg, VA | 1.81 | 6.47 | 1.63 | 5.63 | 4.00 | 19.53 | |
Mount Pleasant, SC | 3.47 | 5.29 | 3.13 | 5.63 | 3.5 | 21.02 | |
Odessa, TX | 1.94 | 2.35 | 1.13 | 1.88 | 3.50 | 10.80 | |
Fort Myers, FL | 2.36 | 3.53 | 1.25 | 1.88 | 5.00 | 14.02 | |
Austin, TX | 6.11 | 6.47 | 4.50 | 5.00 | 6.00 | 28.08 | |
League, TX | 4.03 | 6.47 | 3.63 | 2.50 | 4.50 | 21.12 | |
Auburn, AL | 4.58 | 7.06 | 3.13 | 3.75 | 7.00 | 25.52 | |
Kissimmee, FL | 4.17 | 5.88 | 3.88 | 1.88 | 4.50 | 20.30 | |
Fisher, IN | 3.33 | 4.71 | 2.75 | 4.37 | 5.50 | 20.66 | |
Bellevue, WA | 5.83 | 5.88 | 3.50 | 1.88 | 5.50 | 22.59 | |
Denver, CO | 1.94 | 4.71 | 1.25 | 5.63 | 4.50 | 18.03 | |
West Des Moines, IA | 2.78 | 2.35 | 0.75 | 3.13 | 4.50 | 13.51 | |
Charlotte, NC | 1.39 | 5.88 | 3.25 | 5.00 | 7.50 | 23.02 | |
Seattle, WA | 3.19 | 7.06 | 3.38 | 2.50 | 5.50 | 21.63 | |
Manteca, CA | 1.94 | 4.12 | 2.00 | 1.88 | 6.50 | 16.44 | |
Miramar, FL | 1.25 | 3.53 | 2.88 | 3.13 | 4.50 | 15.28 | |
Fargo, ND | 4.03 | 5.88 | 2.50 | 2.50 | 5.00 | 19.91 | |
Sandy Spring, GA | 4.03 | 6.47 | 4.50 | 5.63 | 7.00 | 27.62 | |
Fort Collins, CO | 1.39 | 6.47 | 3.00 | 6.88 | 6.00 | 23.73 | |
Richardson, TX | 2.36 | 1.76 | 1.88 | 1.25 | 5.00 | 12.25 | |
Bossier, LA | 4.17 | 3.53 | 2.13 | 6.25 | 6.00 | 22.07 |
Appendix C
References
- United Nations (UN), Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2014 Revision, CD-ROM Edition. 2014. Available online: https://esa.un.org/unpd/wup/CD-ROM/ (accessed on 2 January 2018).
- McMahon, E.T. Green infrastructure. Plan. Commi. J. 2000, 37, 4–7. [Google Scholar]
- Farrugia, S.; Hudson, M.D.; McCulloch, L. An evaluation of flood control and urban cooling ecosystem services delivered by urban green infrastructure. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2013, 9, 136–145. [Google Scholar] [CrossRef]
- Saunders, D.A.; Hobbs, R.J.; Margules, C.R. Biological consequences of ecosystem fragmentation: A review. Conserv. Biol. 1991, 5, 18–32. [Google Scholar] [CrossRef]
- Weber, T.; Sloan, A.; Wolf, J. Maryland’s green infrastructure assessment: Development of a comprehensive approach to land conservation. Landsc. Urban Plan. 2006, 77, 94–110. [Google Scholar] [CrossRef]
- Benedict, M.; McMahon, E.T. Green infrastructure: Smart conservation for the 21st century. Renew. Resour. J. 2002, 20, 12–17. [Google Scholar]
- Pelorosso, R.; Gobattoni, F.; Geri, F.; Leone, A. PANDORA 3.0 plugin: A new biodiversity ecosystem service assessment tool for urban green infrastructure connectivity planning. Ecosyst. Serv. 2017, 26, 476–482. [Google Scholar] [CrossRef]
- Garmendia, E.; Apostolopoulou, E.; Adams, W.; Bormpoudakis, D. Biodiversity and green infrastructure in Europe: Boundary object or ecological trap? Land Use Policy 2016, 56, 315–319. [Google Scholar] [CrossRef]
- European Commission. Green infrastructure (GI)—Enhancing Europe’s Natural Capital. 2013. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:d41348f2-01d5-4abe-b817-4c73e6f1b2df.0014.04/ DOC_1&format=PDF (accessed on 20 October 2018).
- Lennon, M. Green infrastructure and planning policy: A critical assessment. Local Environ. 2014, 20, 957–980. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (USEPA). Green Infrastructure Opportunities That Arise During Municipal Operations. EPA 842-R-15-002. 2015. Available online: https://www.epa.gov/sites/production/files/2015-09/documents/green_infrastructure_roadshow.pdf (accessed on 20 October 2018).
- Pelorosso, R.; Gobattoni, F.; Leone, A. The low-entropy city: A thermodynamic approach to reconnect urban systems with nature. Landsc. Urban Plan. 2017, 168, 22–30. [Google Scholar] [CrossRef]
- Pelorosso, R.; Gobattoni, F.; Leone, A. Green courtyards as urban cool islands: Towards nature-based climate adaptation plans of compact cities. CSE-City Saf. Energy 2017, 1, 27–36. [Google Scholar]
- Pappalardo, V.; La Rosa, D.; Campisano, A.; La Greca, P. The potential of green infrastructure application in urban runoff control for land use planning: A preliminary evaluation from a southern Italy case study. Ecosyst. Serv. 2017, 26, 345–354. [Google Scholar] [CrossRef]
- European Commission (EC). Towards an EU Research and Innovation Policy Agenda for Nature-Based Solutions & Re-Naturing Cities; Final Report of the Horizon 2020 expert group on nature-based solutions and re-naturing cities; Publications Office of the European Union: Luxembourg, 2015. [Google Scholar]
- Keeley, M.; Koburger, A.; Dolowitz, D.P.; Medearis, D.; Nickel, D.; Shuster, W. Perspectives on the use of green infrastructure for stormwater management in Cleveland and Milwaukee. Environ. Manag. 2013, 51, 1093–1108. [Google Scholar] [CrossRef] [PubMed]
- Tzoulas, K.; Korpela, K.; Venn, S.; Yli-Pelkonen, V.; Kaźmierczak, A.; Niemela, J.; James, P. Promoting ecosystem and human health in urban areas using Green infrastructure: A literature review. Landsc. Urban Plan. 2007, 81, 167–178. [Google Scholar] [CrossRef]
- Girardet, H. Creating Sustainable Cities; Green Books: Devon, UK, 1999. [Google Scholar]
- Schrijnen, P.M. Infrastructure networks and red–green patterns in city regions. Landsc. Urban Plan. 2000, 48, 191–204. [Google Scholar] [CrossRef]
- Turner, T. City as Landscape: A Post Post-Modern View of Design and Planning; E &FN Spon: London, UK, 2014. [Google Scholar]
- Van der Ryn, S.; Cowan, S. Ecological Design; Island Press: Washington, DC, USA, 2013. [Google Scholar]
- Walmsley, A. Greenways: Multiplying and diversifying in the 21st century. Landsc. Urban Plan. 2006, 76, 252–290. [Google Scholar] [CrossRef]
- Lindholm, G. The implementation of green infrastructure: Relating a general concept to context and site. Sustainability 2017, 9, 610. [Google Scholar] [CrossRef]
- Hansen, R.; Rall, E.; Chapman, E.; Rolf, W.; Pauleit, S. Urban Green Infrastructure Planning: A Guide for Practitioners. Green Surge. 2017. Available online: http://greensurge.eu/working-packages/wp5/ (accessed on 10 June 2017).
- McDonald, L.; Allen, W.; Benedict, M.; O’Connor, K. Green infrastructure plan evaluation frameworks. J. Conser. Plann. 2005, 1, 12–43. [Google Scholar]
- Youngquist, T.D. What Is Green Infrastructure? An Evaluation of Green Infrastructure Plans from across the United States. Master’s. Thesis, Community and Regional Planning, Iowa State University, Ames, IA, USA, 2009. [Google Scholar]
- U.S. Environmental Protection Agency (USEPA). Water Quality Scorecard: Incorporating Green Infrastructure Practices at the Municipal, Neighborhood, and Site Scales. EPA 231B09001. 2009. Available online: https://www.epa.gov/smartgrowth/water-quality-scorecard (accessed on 5 June 2017).
- Kim, H.; Li, M.-H. Sustainable stormwater management: Examining the role of local planning capacity in mitigating peak surface runoff. Sustainability 2016, 8, 763. [Google Scholar] [CrossRef]
- Davies, C.; Macfarlane, R.; Mcgloin, C.; Roe, M. Green Infrastructure Planning Guide. Version 1.1. 2015. Available online: http://www.greeninfrastructurenw.co.uk/resources/North_East_Green_Infrastructure_Planning_Guide.pdf (accessed on 5 June 2017).
- Baer, W.C. General plan evaluation criteria: An approach to making better plans. J. Am. Plan. Assoc. 1997, 63, 329–344. [Google Scholar] [CrossRef]
- Bunnell, G.; Jepson, E.J., Jr. The effect of mandated planning on plan quality: A fresh look at what makes “a good plan”. J. Am. Plan. Assoc. 2011, 77, 338–353. [Google Scholar] [CrossRef]
- Susskind, L. Should state government mandate local planning? Planning 1978, 44, 17–20. [Google Scholar]
- Wiewel, W.; Knaap, G. Partnerships for Smart Growth: University-Community Collaboration for Better Public Places; M.E. Sharpe, Inc., in Cooperation with Lincoln Institute of Land Policy: Armonk, NY, USA, 2005. [Google Scholar]
- Evenson, K.R.; Satinsky, S.B.; Rodriguez, D.A.; Aytur, S.A. Exploring a public health perspective on pedestrian planning. Health Promot. Pract. 2012, 13, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Cortinovis, C.; Geneletti, D. Ecosystem services in urban plans: What is there, and what is still needed for better decision. Land Use Policy 2018, 70, 298–312. [Google Scholar] [CrossRef]
- Berke, P.; Backhurst, M.; Day, M.; Ericksen, N.; Laurian, L.; Crawford, J.; Dixon, J. What makes plan implementation successful? An evaluation of local plans and implementation practices in New Zealand. Environ. Plan. B Plan. Des. 2006, 33, 581–600. [Google Scholar] [CrossRef]
- Berke, P.; Godschalk, D. Searching for the good plan A meta-analysis of plan quality studies. J. Plan. Lit. 2009, 23, 227–240. [Google Scholar] [CrossRef]
- Berke, P.; Smith, G.; Lyles, W. Planning for resiliency: Evaluation of state hazard mitigation plans under the disaster mitigation act. Nat. Hazards Rev. 2012, 13, 139–149. [Google Scholar] [CrossRef]
- Arlikatti, S.; Lindell, M.K.; Prater, C.S. Risk area accuracy and hurricane evacuation expectations of coastal residents. Environ. Behav. 2006, 38, 226–247. [Google Scholar] [CrossRef]
- Brody, S.D. Examining the role of resource-based industries in ecosystem approaches to management: An evaluation of comprehensive plans in Florida. Soc. Nat. Resour. 2003, 16, 625–641. [Google Scholar] [CrossRef]
- Brody, S.D. Ecosystem Planning in Florida: Solving Regional Problems through Local Decision-Making; Ashgate Press: Aldershot, UK, 2008. [Google Scholar]
- Fu, X.; Tang, Z. Planning for drought-resilient communities: An evaluation of local comprehensive plans in the fastest growing counties in the US. Cities 2013, 32, 60–69. [Google Scholar] [CrossRef]
- Kang, J.E.; Peacock, W.G.; Husein, R. An assessment of coastal zone hazard mitigation plans in Texas. J. Disaster Res. 2010, 5, 520–528. [Google Scholar] [CrossRef]
- Nelson, A.C.; French, S.P. Plan quality and mitigating damage from natural disasters: A case study of the Northridge earthquake with planning policy considerations. J. Am. Plan. Assoc. 2002, 68, 194–207. [Google Scholar] [CrossRef]
- Tang, Z.; Lindell, M.K.; Prater, C.S.; Brody, S.D. Measuring tsunami planning capacity on US Pacific coast. Nat. Hazards Rev. 2008, 9, 91–100. [Google Scholar] [CrossRef]
- Brody, S.D. Are we learning to make better plans? A longitudinal analysis of plan quality associated with natural hazards. J. Plan. Educ. Res. 2003, 23, 191–201. [Google Scholar] [CrossRef]
- Dalton, L.C.; Burby, R.J. Mandates, plans, and planners: Building local commitment to development management. J. Am. Plan. Assoc. 1994, 60, 444–461. [Google Scholar] [CrossRef]
- Tang, Z.; Brody, S.D. Linking planning theories with factors influencing local environmental-plan quality. Environ. Plan. B Plan. Des. 2009, 36, 522–537. [Google Scholar] [CrossRef] [Green Version]
- Tang, Z.; Lindell, M.K.; Prater, C.; Wei, T.; Hussey, C.M. Examining local coastal zone management capacity in US Pacific coastal counties. Coast. Manag. 2011, 39, 105–132. [Google Scholar] [CrossRef]
- Tang, Z.; Bright, E.; Brody, S. Evaluating California local land use plan’s environmental impact reports. Environ. Impact Assess. Rev. 2009, 29, 96–106. [Google Scholar] [CrossRef]
- Berke, P.R.; French, S.P. The influence of state planning mandates on local plan quality. J. Plan. Educ. Res. 1994, 13, 237–250. [Google Scholar] [CrossRef]
- Berke, P.R. Enhancing plan quality: Evaluating the role of state planning mandates for natural hazard mitigation. J. Environ. Plan. Manag. 1996, 39, 79–96. [Google Scholar] [CrossRef]
- Lubell, M.; Feiock, R.; Handy, S. City adoption of environmentally sustainable policies in California’s Central Valley. J. Am. Plan. Assoc. 2009, 75, 293–308. [Google Scholar] [CrossRef]
- Norton, R.K. More and better local planning: State-mandated local planning in coastal North Carolina. J. Am. Plan. Assoc. 2005, 71, 55–71. [Google Scholar] [CrossRef]
- Brody, S.D.; Godschalk, D.R.; Burby, R.J. Mandating citizen participation in plan making: Six strategic planning choices. J. Am. Plan. Assoc. 2003, 69, 245–264. [Google Scholar] [CrossRef]
- Scott, D.; Willits, F.K. Environmental attitudes and behavior: A Pennsylvania survey. Environ. Behav. 1994, 26, 239–260. [Google Scholar] [CrossRef]
- Van Liere, K.D.; Dunlap, R.E. Environmental concern: Does it make a difference how it’s measured? Environ. Behav. 1981, 13, 651–676. [Google Scholar] [CrossRef]
- Burby, R.J.; May, P.J. Making Governments Plan: State Experiments in Managing Land Use; JHU Press: Baltimore, MD, USA, 1997. [Google Scholar]
- Guagnano, G.A.; Markee, N. Regional differences in the sociodemographic determinants of environmental concern. Popul. Environ. 1995, 17, 135–149. [Google Scholar] [CrossRef]
- Hauer, M.E.; Evans, J.M.; Mishra, D.R. Millions projected to be at risk from sea-level rise in the continental United States. Nat. Clim. Chang. 2016, 6, 691. [Google Scholar] [CrossRef]
- Dahl, K.A.; Spanger-Siegfried, E.; Caldas, A.; Udvardy, S. Effective inundation of continental United States communities with 21st century sea level rise. Elem. Sci. Anth. 2017, 5, 37. [Google Scholar] [CrossRef] [Green Version]
- Tang, Z.; Brody, S.D.; Quinn, C.; Chang, L.; Wei, T. Moving from agenda to action: Evaluating local climate change action plans. J. Environ. Plan. Manag. 2010, 53, 41–62. [Google Scholar] [CrossRef]
- U.S. Census Bureau. American factfinder. 2005. Available online: https://factfinder.census.gov/faces/nav/jsf/pages/searchresults.xhtml?refresh. (accessed on 12 March 2017).
- Berke, P.R.; Conroy, M.M. Are we planning for sustainable development? J. Am. Plan. Assoc. 2000, 66, 21–33. [Google Scholar] [CrossRef]
- Kim, H.; Li, M.-H. Managing stormwater for urban sustainability: An evaluation of local comprehensive plans in the Chesapeake Bay watershed region. J. Environ. Plan. Manag. 2017, 60, 1702–1725. [Google Scholar] [CrossRef]
- Stevens, M.R. Evaluating the quality of official community plans in Southern British Columbia. J. Plan. Educ. Res. 2013, 33, 471–490. [Google Scholar] [CrossRef]
- Miles, M.B.; Huberman, A.M. Qualitative Data Analysis: A Sourcebook of New Methods; Sage Publications: Beverly Hills, CA, USA, 1984. [Google Scholar]
- Nunnally, J.C.; Bernstein, I.H. Psychometric Theory, 2nd ed.; McGraw-Hill: New York, NY, USA, 1978. [Google Scholar]
- Godschalk, D. Natural Hazard Mitigation: Recasting Disaster Policy and Planning; Island Press: Washington, DC, USA, 1999. [Google Scholar]
- Hutcheson, G.D.; Mueller, C.W. The Multivariate Social Scientist: Introductory Statistics Using Generalized Linear Models; Sage Publications: London, UK, 1999. [Google Scholar]
- Brody, S.D.; Highfield, W.; Carrasco, V. Measuring the collective planning capabilities of local jurisdictions to manage ecological systems in southern Florida. Landsc. Urban Plan. 2004, 69, 33–50. [Google Scholar] [CrossRef]
- Matthews, T.; Lo, A.; Bryne, J. Reconceptualizing green infrastructure for climate change adaptation: Barriers to adoption and drivers for uptake by spatial planners. Landsc. Urban Plan. 2015, 138, 155–163. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (USEPA). Addressing Green Infrastructure Design Challenges in the Pittsburgh Region. EPA 800-R-14-001. 2014. Available online: https://www.epa.gov/sites/production/files/2015-10/documents/pittsburgh-united-space-constraints-508.pdf (accessed on 23 October 2018).
- U.S. Department of Agriculture (USDA). Federal Agency Support for the Green Infrastructure Collaborative. 2014. Available online: https://www.epa.gov/sites/production/files/2015-10/documents/federal-support-for-green-infrastructure-collaborative_508.pdf (accessed on 22 February 2018).
- Brody, S.D.; Highfield, W.E. Does planning work: Testing the implementation of local environmental planning in Florida. J. Am. Plan. Assoc. 2005, 71, 159–175. [Google Scholar] [CrossRef]
- Burby, R.J.; May, P.J. Intergovernmental environmental planning: Addressing the commitment conundrum. J. Environ. Plan. Manag. 1998, 41, 95–110. [Google Scholar] [CrossRef]
- Brody, S.D.; Carrasco, V.; Highfield, W. Measuring the adoption of local sprawl: Reduction planning policies in Florida. J. Plan. Educ. Res. 2006, 25, 294–310. [Google Scholar] [CrossRef]
Variable | Description | Data Source | Mean | S.D. | Range |
---|---|---|---|---|---|
Dependent variable | |||||
Plan score | Sum of five plan components | Plan coding protocol | 19.64 | 5.69 | 8.43–32.00 |
Independent variables | |||||
Plan adopted year | Plan adopted year minus 2017 | Each municipality’s plan | −5.47 | 3.85 | −17.00–0.00 |
Number of planners | Sum of officials in the Planning Department | Each municipality’s plan or website | 5.72 | 3.31 | 1.00–16.00 |
Consultants | Consultants participation while adopting the plan (yes = 1; no = 0) | Each municipality’s plan or website | 0.58 | 0.50 | 0–1.00 |
Population (1/10,000) | Population in year 2010 | US Census (2010) | 19.60 | 24.43 | 1.39–117.66 |
Population change (1/10,000) | Population change between year 2010 and 2015 | US Census (2010) American Community Survey (2015) | 10.95 | 19.00 | 0.16–93.18 |
Income (1/10,000) | Median income in year 2010 | US Census (2010) | 6.17 | 2.15 | 3.25–11.56 |
Education | Percentage of population that have higher degree than bachelor in year 2010 | US Census (2010) | 35.72 | 16.44 | 9.10–71.00 |
Impervious surface | Percentage of impervious surface (NLCD classes 22–24) | USGS (2011) | 0.45 | 0.29 | 0.01–0.95 |
Floodplain | Percentage of 100-year floodplain in the sample municipality | FEMA (2014) | 0.16 | 0.14 | 0–0.56 |
Coastal area | Municipalities that are close to the coastal side (yes = 1; no = 0) | US Census (2010) | 0.23 | 0.43 | 0–1.00 |
City | Municipalities that are classified as city (yes = 1; no = 0) | US Census (2010) | 0.50 | 0.50 | 0–1.00 |
Plan Components | Number of Indicators | Median | Mean | S.D. | Range |
---|---|---|---|---|---|
Factual basis | 18 | 3.47 | 3.60 | 1.46 | 1.25–6.81 |
Goals and objectives | 17 | 4.12 | 4.43 | 1.79 | 1.18–8.23 |
Policies and strategies | 40 | 2.69 | 2.58 | 1.26 | 0.38–5.38 |
Inter-organizational cooperation | 10 | 5.5 | 5.38 | 1.53 | 1.00–8.50 |
Implementation | 8 | 3.13 | 3.64 | 2.05 | 0.63–8.75 |
Total score | 93 | 20.16 | 19.64 | 5.69 | 8.43–32.00 |
Variable | β | Beta | Standard Error |
---|---|---|---|
Planning capacity (Model 1) | |||
Plan adopted year | 0.4585 *** | 0.4605 | 0.1637 |
Number of planners | 0.7478 *** | 0.7480 | 0.1901 |
Consultants | 0.9255 | 0.7439 | 1.2514 |
Constant | 17.3274 *** | 1.8120 | |
R2 | 0.3321 | ||
Adjusted R2 | 0.2964 | ||
Root MSE | 4.7743 | ||
Socioeconomic characteristic (Model 2) | |||
Population (1/10,000) | 0.0843 ** | 0.0826 | 0.0344 |
Population change (1/10,000) | −0.0319 | −0.0342 | 0.0467 |
Income (1/10,000) | −0.0052 | −0.1082 | 0.4377 |
Education | 0.1072 * | 0.1309 | 0.0591 |
Constant | 14.5362 *** | 2.1673 | |
R2 | 0.2063 | ||
Adjusted R2 | 0.1486 | ||
Root MSE | 5.2517 | ||
Risk (Model 3) | |||
Impervious surface | 3.4314 | 3.3979 | 2.5145 |
Floodplain | 11.8115 ** | 11.1600 | 6.0270 |
Coastal area | −2.7345 | −2.6722 | 1.9922 |
Constant | 16.8108 *** | ||
R2 | 0.0914 | ||
Adjusted R2 | 0.0428 | ||
Root MSE | 5.5686 | ||
Fully specified model (Model 4) | |||
Plan adopted year | 0.3410 ** | 0.3378 | 0.1663 |
Number of planners | 0.6888 *** | 0.6643 | 0.2451 |
Population | 0.0168 | 0.0190 | 0.0312 |
Education | 0.0798 * | 0.0802 | 0.0441 |
Floodplain | 4.4941 | 4.1218 | 4.6863 |
City | −2.6954 * | −2.5798 | 1.4227 |
Constant | 15.0059 | ||
R2 | 0.4065 | ||
Adjusted R2 | 0.3393 | ||
Root MSE | 4.6265 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.W.; Tran, T. An Evaluation of Local Comprehensive Plans Toward Sustainable Green Infrastructure in US. Sustainability 2018, 10, 4143. https://doi.org/10.3390/su10114143
Kim HW, Tran T. An Evaluation of Local Comprehensive Plans Toward Sustainable Green Infrastructure in US. Sustainability. 2018; 10(11):4143. https://doi.org/10.3390/su10114143
Chicago/Turabian StyleKim, Hyun Woo, and Tho Tran. 2018. "An Evaluation of Local Comprehensive Plans Toward Sustainable Green Infrastructure in US" Sustainability 10, no. 11: 4143. https://doi.org/10.3390/su10114143
APA StyleKim, H. W., & Tran, T. (2018). An Evaluation of Local Comprehensive Plans Toward Sustainable Green Infrastructure in US. Sustainability, 10(11), 4143. https://doi.org/10.3390/su10114143