Income Vulnerability of West African Farming Households to Losses in Pollination Services: A Case Study from Ouagadougou, Burkina Faso
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Farmers’ Inputs, Cost, Revenue and Household Status
2.3. Insect Pollinator Dependency of Produce
2.4. Household Vulnerability Index (HVI) for Total Loss in Pollination Service
2.5. Calculation of HVI and Statistical Analysis
3. Results
3.1. Agricultural Systems and Household Characteristics
3.2. Changes in Cultivation of Pollinator-Dependent Crops along the Rural–Urban Gradient
3.3. Effects on Household Revenue and Vulnerability
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Timberlake, T.; Morgan, V. Pollination and International Development: What Do We Know, What Are the Challenges and What More Can We Do? Technical Report; UK Collaborative on Development Sciences: London, UK, 2018. [Google Scholar]
- Smith, B.M.; Basu, P.C.; Chatterjee, A.; Chatterjee, S.; Dey, U.K.; Dicks, L.V.; Giri, B.; Laha, S.; Majhi, R.K.; Basu, P. Collating and validating indigenous and local knowledge to apply multiple knowledge systems to an environmental challenge: A case-study of pollinators in India. Biol. Conserv. 2017, 211, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Novais, S.M.A.; Nunes, C.A.; Santos, N.B.; DAmico, A.R.; Fernandes, G.W.; Quesada, M.; Braga, R.F.; Neves, A.C.O. Effects of a possible pollinator crisis on food crop production in Brazil. PLoS ONE 2016, 11, e0167292. [Google Scholar] [CrossRef] [PubMed]
- Garibaldi, L.A.; Carvalheiro, L.G.; Vaissière, B.E.; Gemmill-Herren, B.; Hipólito, J.; Freitas, B.M.; Ngo, H.T.; Azzu, N.; Sáez, A.; Åström, J.; et al. Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms. Science 2016, 351, 388–391. [Google Scholar] [CrossRef] [PubMed]
- Sanfo, S.; Barbier, B.; Zangre, A. Horticultural Production in Burkina Faso: A Comprehensive Socio-Economic Analysis. Irrig. Drain. 2017, 66, 828–841. [Google Scholar] [CrossRef] [Green Version]
- Tilman, D.; Clark, M.; Williams, D.R.; Kimmel, K.; Polasky, S.; Packer, C. Future threats to biodiversity and pathways to their prevention. Nature 2017, 546, 73. [Google Scholar] [CrossRef] [PubMed]
- Drechsel, P.; Graefe, S.; Sonou, M.; Cofie, O.O. Informal Irrigation in Urban West Africa: An Overview; International Water Management Institute (IWMI): Colombo, Sri Lanka, 2006; ISBN 9789290906421. [Google Scholar]
- Klein, A.M.; Vaissière, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 2007, 274, 303–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanley, N.; Breeze, T.D.; Ellis, C.; Goulson, D. Measuring the economic value of pollination services: Principles, evidence and knowledge gaps. Ecosyst. Serv. 2015, 14, 124–132. [Google Scholar] [CrossRef] [Green Version]
- Aizen, M.A.; Garibaldi, L.A.; Cunningham, S.A.; Klein, A.M. Long-Term Global Trends in Crop Yield and Production Reveal No Current Pollination Shortage but Increasing Pollinator Dependency. Curr. Biol. 2008, 18, 1572–1575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallai, N.; Salles, J.M.; Settele, J.; Vaissière, B.E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 2009, 68, 810–821. [Google Scholar] [CrossRef] [Green Version]
- FAOSTAT Statistics Database Agricultural Data/Agricultural Production/Crops Primary. Available online: http://faostat3.fao.org (accessed on 1 October 2018).
- Aizen, M.A.; Garibaldi, L.A.; Cunningham, S.A.; Klein, A.M. How much does agriculture depend on pollinators? Lessons from long-term trends in crop production. Ann. Bot. 2009, 103, 1579–1588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IPBES. Summary for Policymakers of the Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services On Pollinators, Pollination and Food Production; IPBES: Bonn, Germany, 2016; ISBN 9789280735673. [Google Scholar]
- Rader, R.; Bartomeus, I.; Garibaldi, L.A.; Garratt, M.P.D.; Howlett, B.G.; Winfree, R.; Cunningham, S.A.; Mayfield, M.M.; Arthur, A.D.; Andersson, G.K.S.; et al. Non-bee insects are important contributors to global crop pollination. Proc. Natl. Acad. Sci. USA 2016, 113, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Olschewski, R.; Tscharntke, T.; Benítez, P.C.; Schwarze, S.; Klein, A.M. Economic evaluation of pollination services comparing coffee landscapes in Ecuador and Indonesia. Ecol. Soc. 2006, 11. [Google Scholar] [CrossRef]
- Stein, K.; Coulibaly, D.; Stenchly, K.; Goetze, D.; Porembski, S.; Lindner, A.; Konaté, S.; Linsenmair, E.K. Bee pollination increases yield quantity and quality of cash crops in Burkina Faso, West Africa. Sci. Rep. 2017, 7, 17691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasina, J.M.; Mburu, J.; Kraemer, M.; Holm-Mueller, K. Economic Benefit of Crop Pollination by Bees: A Case of Kakamega Small-Holder Farming in Western Kenya. J. Econ. Entomol. 2009, 102, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Harvey, C.A.; Rakotobe, Z.L.; Rao, N.S.; Dave, R.; Razafimahatratra, H.; Rabarijohn, R.H.; Rajaofara, H.; MacKinnon, J.L. Extreme vulnerability of smallholder farmers to agricultural risks and climate change in Madagascar. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20130089. [Google Scholar] [CrossRef] [PubMed]
- Bellwood-Howard, I.; Häring, V.; Karg, H.; Roessler, R.; Schlesinger, J.; Shakya, M. Characteristics of Urban and Peri-Urban Agriculture in West Africa: Results of An Exploratory Survey Conducted in Tamale (Ghana) and Ouagadougou (Burkina Faso); International Water Management Institute (IWMI): Colombo, Sri Lanka, 2015; Volume 163, ISBN 9290908211. [Google Scholar]
- Climate Data. Available online: https://de.climate-data.org/ (accessed on 1 October 2018).
- Stenchly, K.; Lippmann, S.; Waongo, A.; Nyarko, G.; Buerkert, A. Weed species structural and functional composition of okra fields and field periphery under different management intensities along the rural-urban gradient of two West African cities. Agric. Ecosyst. Environ. 2017, 237, 213–223. [Google Scholar] [CrossRef]
- QGIS Development Team. QGIS Geographic Information System; Open Source Geospatial Foundation Project: Chicago, IL, USA, 2015. [Google Scholar]
- Robson, E. Working girls and boys: Children’s contributions to household survival in West Africa. Geogr. J. Geogr. Assoc. 1996, 81, 403. [Google Scholar]
- StataCorp. Statistical Software: Release 15; StataCorp LLC: College Station, TX, USA, 2017. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing; The R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 33992. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 2017, 82, 9070. [Google Scholar] [CrossRef]
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous inference in general parametric models. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef] [PubMed]
- Paré, S.; Söderberg, U.; Sandewall, M.; Ouadba, J.M. Land use analysis from spatial and field data capture in southern Burkina Faso, West Africa. Agric. Ecosyst. Environ. 2008, 127, 277–285. [Google Scholar] [CrossRef]
- FAOSTAT Statistics Database. Available online: http://data.un.org/CountryProfile.aspx?crName=burkina faso (accessed on 1 October 2018).
- Kouamé, C.; Temple, L.; Levasseur, V.; Pasquini, M.W. A review of urban and peri-urban vegetable production in West Africa. In XXVII International Horticultural Congress-IHC2006: International Symposium on Horticultural Plants in Urban and Peri-Urban 762; ISHS: Korbeek-Lo, Belgium, 2006; pp. 245–252. [Google Scholar]
- Schlesinger, J.; Drescher, A.; Shackleton, C.M. Socio-spatial dynamics in the use of wild natural resources: Evidence from six rapidly growing medium-sized cities in Africa. Appl. Geogr. 2015, 56, 107–115. [Google Scholar] [CrossRef]
- Chagomoka, T.; Drescher, A.; Glaser, R.; Marschner, B.; Schlesinger, J.; Nyandoro, G. Contribution of urban and periurban agriculture to household food and nutrition security along the urban–rural continuum in Ouagadougou, Burkina Faso. Renew. Agric. Food Syst. 2015, 32, 5–20. [Google Scholar] [CrossRef]
- Bates, A.J.; Sadler, J.P.; Fairbrass, A.J.; Falk, S.J.; Hale, J.D.; Matthews, T.J. Changing bee and hoverfly pollinator assemblages along an urban-rural gradient. PLoS ONE 2011, 6, e23459. [Google Scholar] [CrossRef] [PubMed]
- Radford, K.G.; James, P. Changes in the value of ecosystem services along a rural-urban gradient: A case study of Greater Manchester, UK. Landsc. Urban Plan. 2013, 109, 117–127. [Google Scholar] [CrossRef]
- Deguines, N.; Julliard, R.; de Flores, M.; Fontaine, C. Functional homogenization of flower visitor communities with urbanization. Ecol. Evol. 2016, 6, 1967–1976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luder, K.; Knop, E.; Menz, M.H.M. Contrasting responses in community structure and phenology of migratory and non-migratory pollinators to urbanization. Divers. Distrib. 2018, 24, 919–927. [Google Scholar] [CrossRef]
- Langellotto, G.A.; Melathopoulos, A.; Messer, I.; Anderson, A.; McClintock, N.; Costner, L. Garden pollinators and the potential for ecosystem service flow to urban and peri-urban agriculture. Sustainability 2018, 10, 2047. [Google Scholar] [CrossRef]
- Wortmann, C.S. Atlas of Common Bean (Phaseolus vulgaris L.) Production in Africa; No. 297; CIAT: Cali, Colombia, 1998. [Google Scholar]
- Mueller, N.D.; Gerber, J.S.; Johnston, M.; Ray, D.K.; Ramankutty, N.; Foley, J.A. Closing yield gaps through nutrient and water management. Nature 2012, 490, 254. [Google Scholar] [CrossRef] [PubMed]
- Steward, P.R.; Shackelford, G.; Carvalheiro, L.G.; Benton, T.G.; Garibaldi, L.A.; Sait, S.M. Pollination and biological control research: Are we neglecting two billion smallholders. Agric. Food Secur. 2014, 3, 5. [Google Scholar] [CrossRef]
- Benjamin, F.E.; Winfree, R. Lack of Pollinators Limits Fruit Production in Commercial Blueberry (Vaccinium corymbosum). Environ. Entomol. 2014, 43, 1574–1583. [Google Scholar] [CrossRef] [PubMed]
- Hudewenz, A.; Pufal, G.; Bögeholz, A.L.; Klein, A.M. Cross-pollination benefits differ among oilseed rape varieties. J. Agric. Sci. 2014, 152, 770–778. [Google Scholar] [CrossRef]
- De Neergaard, A.; Drescher, A.W.; Kouamé, C. Urban and peri-urban agriculture in African cities. In African Indigenous Vegetables in Urban Agriculture; Routledge: Abingdon-on-Thames, UK, 2009; pp. 67–96. [Google Scholar]
Crop Species | Average Field Size [in ha] | Average Yield [in t/ha] | Market Production [in %] | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R | P | UB | UO | R | P | UB | UO | R | P | UB | UO | |
Black-eyed peas | 0.395 | 0.314 | 0.9 | 0.7 | 5 | 0 | ||||||
Cucumber | 0.253 | 0.134 | 5 | 1.8 | 90 | 100 | ||||||
Green bean | 0.531 | 0.268 | 0.374 | 4.5 | 2.2 | 0.5 | 15 | 10 | 15 | |||
Okra | 0.041 | 0.053 | 0.082 | 0.160 | 15 | 9 | 2.7 | 3 | 10 | 10 | 25 | 90 |
Pepper | 0.030 | 0.101 | 0.188 | 7.5 | 13 | 3.2 | 95 | 100 | 100 | |||
Sesame | 0.340 | 0.270 | 2 | 4.5 | 85 | 45 | ||||||
Strawberry | 0.105 | 8 | 100 | |||||||||
Tomato | 0.002 | 0.003 | 0.048 | 40 | 90 | 8 | 100 | 95 | 95 | |||
Watermelon | 0.114 | 9 | 90 |
Rural | Peri-urban | Urban | ||
---|---|---|---|---|
n = 32 | n = 61 | Backyard n = 43 | Open-Space n = 87 | |
Mean HVIMin | −0.01 ± 0.02 | −0.01 ± 0.02 | −0.03 ± 0.08 | −0.03 ± 0.06 |
Mean HVIMax | −0.04 ± 0.04 | −0.02 ± 0.04 | −0.07 ± 0.12 | −0.10 ± 0.15 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stenchly, K.; Hansen, M.V.; Stein, K.; Buerkert, A.; Loewenstein, W. Income Vulnerability of West African Farming Households to Losses in Pollination Services: A Case Study from Ouagadougou, Burkina Faso. Sustainability 2018, 10, 4253. https://doi.org/10.3390/su10114253
Stenchly K, Hansen MV, Stein K, Buerkert A, Loewenstein W. Income Vulnerability of West African Farming Households to Losses in Pollination Services: A Case Study from Ouagadougou, Burkina Faso. Sustainability. 2018; 10(11):4253. https://doi.org/10.3390/su10114253
Chicago/Turabian StyleStenchly, Kathrin, Marc Victor Hansen, Katharina Stein, Andreas Buerkert, and Wilhelm Loewenstein. 2018. "Income Vulnerability of West African Farming Households to Losses in Pollination Services: A Case Study from Ouagadougou, Burkina Faso" Sustainability 10, no. 11: 4253. https://doi.org/10.3390/su10114253
APA StyleStenchly, K., Hansen, M. V., Stein, K., Buerkert, A., & Loewenstein, W. (2018). Income Vulnerability of West African Farming Households to Losses in Pollination Services: A Case Study from Ouagadougou, Burkina Faso. Sustainability, 10(11), 4253. https://doi.org/10.3390/su10114253