Soil Quality Change after Reclaiming Subsidence Land with Yellow River Sediments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Filling Reclamation Process
2.3. Experimental Field Management
2.4. Soil Sampling and Analysis
2.5. Data Analysis
3. Results and Discussion
3.1. Soil Water Content
3.2. Acidity/Alkalinity (pH) and Electrical Conductivity (EC) of Soil Solutions
3.2.1. pH Value
3.2.2. Electrical Conductivity (EC)
3.3. Soil Status of Major Nutrients
3.3.1. Organic Matter
3.3.2. Total Nitrogen
3.3.3. Available Phosphorus
3.3.4. Available Potassium
3.4. Crop Yields
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hu, Q.; Wu, W.B.; Xiang, M.T.; Chen, D.; Long, Y.Q.; Song, Q.; Liu, Y.Z.; Lu, M.; Yu, Q.Y. Spatio-Temporal changes in global cultivated land over 2000–2010. Sci. Agric. Sin. 2018, 51, 1091–1105. [Google Scholar]
- Wang, J.; Chen, Y.Q.; Shao, X.M.; Zhang, Y.U.; Cao, Y.G. Land-use changes and policy dimension driving forces in china: Present, trend and future. Land Use Policy 2012, 29, 737–749. [Google Scholar] [CrossRef]
- He, B.J.; Zhao, D.X.; Zhu, J.; Darko, A.; Gou, Z.H. Promoting and implementing urban sustainability in China: An integration of sustainable initiatives at different urban scales. Habitat Int. 2018, 82, 83–93. [Google Scholar] [CrossRef]
- He, B.J.; Zhu, J. Constructing community gardens? Residents’ attitude and behaviour towards edible landscapes in emerging urban communities of China. Urban For. Urban Green. 2018, 34, 154–165. [Google Scholar] [CrossRef]
- Hu, Z.Q.; Xiao, W.; Wang, P.J.; Zhao, Y.L. Concurrent mining and reclamation for underground coal mining. J. China Coal Soc. 2013, 38, 301–307. [Google Scholar]
- Wang, P.J.; Shao, F.; Liu, J.T.; Li, X.Y.; Hu, Z.Q.; Russell, S.Y. Simulated experiment on drainage and fine sediment retention effects of geotextiles in land reclamation with Yellow River sediments. Trans. Chin. Soc. Agric. Eng. 2015, 31, 72–80. [Google Scholar]
- Hu, B.N.; Guo, W.X. Mining subsidence area Status, syntheses governance model and governance recommendation. Coal Min. Technol. 2018, 23, 1–4. [Google Scholar]
- Hu, Z.Q.; Li, J.; Zhao, Y.L. Problems, reasons and countermeasures for environmental quality and food safety in the overlapped areas of crop and mineral production. Sci. Technol. Rev. 2006, 24, 21–24. [Google Scholar]
- Yang, G.H.; Hu, Z.Q.; Zhao, Y.L.; Yang, Y.Q.; Yu, Y. Proposals on Countermeasures of Reclamation Control in Coal Mining Subsidence Land with High Underground Water Level. Coal Eng. 2014, 46, 91–95. [Google Scholar]
- Hu, Z.Q.; Yang, G.H.; Xiao, W.; Li, J.; Yang, Y.Q.; Yu, Y. Farmland damage and its impact on the overlapped areas of cropland and coal resources in the eastern plains of China. Resour. Conserv. Recycl. 2014, 86, 1–8. [Google Scholar] [CrossRef]
- Jiang, X.; Xie, Q. Directional synthesis of zeolites with silicon and aluminum dissolved from fly ash. J. Min. Sci. Technol. 2017, 2, 395–401. [Google Scholar]
- Wang, D.M.; Cui, Y.; Li, D.L.; Shao, N.N.; Zhao, J.H.; Rui, Y.F. Microstructure and properties of coal-fly-ash-based foam geopolymer. J. Min. Sci. Technol. 2017, 2, 175–182. [Google Scholar]
- Xu, L.J.; Huang, C.; Zhang, R.Q.; Liu, H.P.; Zhang, J.P. Physical and chemical properties and distribution characteristics of heavy metals in reclaimed land filled with coal gangue. Trans. Chin. Soc. Agric. Eng. 2014, 30, 211–219. [Google Scholar]
- Hu, Z.Q.; Qi, J.Z.; Si, J.T. Contamination and assessment of heavy metals in fly ash reclaimed soil. Trans. Chin. Soc. Agric. Eng. 2013, 19, 214–218. [Google Scholar]
- Zou, C.Y.; Shi, H.C.; Sun, G.Q. Application of lake mud stowing technology in the reclamation of subsided areas caused by coal mining. China Coal 2009, 35, 105–106, 122. [Google Scholar]
- Zhang, Z.K.; Wang, S.M.; Yang, X.D.; Jiang, F.C.; Shen, J.; Li, X.S. Evidence of a geological event and environmental change in the catchment area of the yellow river at 0.15 ma. Quat. Int. 2004, 117, 35–40. [Google Scholar] [CrossRef]
- Wang, S.; Fu, B.J.; Liang, W. Developing policy for the Yellow River sediment sustainable control. Natl. Sci. Rev. 2016, 3, 162–164. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.J.; Hu, Z.Q.; Shao, F.; Jiang, Z.D.; Qiao, Z.Y.; Liu, D.W.; Chen, Y.K. Feasibility analysis of Yellow River sediment used as the filling reclamation material of mining subsidence land. J. China Coal Soc. 2014, 39, 1133–1139. [Google Scholar]
- China Standard. Soil Environment Quality Risk Control Standard for Soil Contamination of Agriculture Land (GB 15618–1995); Ministry of Ecology and Environment of People’s Republic of China: Beijing, China, 2018.
- Hu, Z.Q.; Wang, P.J.; Shao, F. Technique for filling reclamation of mining subsidence land with Yellow River sediment. Trans. Chin. Soc. Agric. Eng. 2015, 31, 288–295. [Google Scholar]
- Hu, Z.Q.; Duo, L.H.; Shao, F. Optimal Thickness of Soil Cover for Reclaiming Subsided Land with Yellow River Sediments. Sustainability 2018, 10, 3853. [Google Scholar] [CrossRef]
- Jining Municipal Bureau of Statistics. Jining Statistical Yearbook-2016; China Statistics Press: Beijing, China, 2017.
- Willits, C.O. Methods for determination of moisture-oven drying. Anal. Chem. 1951, 23, 1058–1062. [Google Scholar] [CrossRef]
- Watmough, S.A.; Eimers, M.C.; Dillon, P.J. Manganese cycling in central Ontario forests: Response to soil acidification. Appl. Geochem. 2007, 22, 1241–1247. [Google Scholar] [CrossRef]
- Zhang, R.; Wienhold, B.J. The effect of soil moisture on mineral nitrogen, soil electrical conductivity, and pH. Nutr. Cycl. Agroecosyst. 2002, 63, 251–254. [Google Scholar] [CrossRef]
- Zheng, H.; Chen, F.L.; Ouyang, Z.Y.; Tu, N.M.; Xu, W.H.; Wang, X.K.; Miao, H.; Li, X.Q.; Tian, Y.X. Impacts of reforestation approaches on runoff control in the hilly red soil region of southern china. J. Hydrol. 2008, 356, 174–184. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Bi, Y.L.; Wang, Z.G.; Qiu, L.; Sun, H.; Cai, Y. Effects of coal mining subsidence on the rhizosphere environment of Artemisia ordosica in Mu Us sandland, northwest China. J. Min. Sci. Technol. 2016, 1, 131–139. [Google Scholar]
- Bao, S.D. Soil Agricultural Chemistry Analysis, 3rd ed.; China Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Adebayo, M.K.A.; Bala, A.; Osunde, A.O.; Uzoma, A.O.; Odofin, A.J.; Lawal, B.A. Assessment of soil quality using soil organic carbon and total nitrogen and microbial properties in tropical agroecosystems. Agric. Sci. 2011, 2, 34–40. [Google Scholar] [CrossRef]
- Jiang, Y.L.; Zhou, B.B.; Shao, M.A.; Wang, Q.J. Experimental study on preferential solute transport in a loess plateau soil. Aust. J. Crop Sci. 2013, 7, 93–98. [Google Scholar]
- Ziadi, N.; Whalen, J.K.; Messiga, A.J.; Morel, C. Assessment and modeling of soil available phosphorus in sustainable cropping systems. Adv. Agron. 2013, 122, 85–126. [Google Scholar]
- Wang, Z.Y.; Wang, W.L.; Tian, S.M. Mineral composition and distribution of the sediment in the Yellow River basin. J. Sediment Res. 2007, 5, 1–8. [Google Scholar]
- Hu, G.H.; Zhao, P.L.; Xiao, X.Q. Sediment characteristics of Yellow River and their influence on water environment. Water Resour. Hydropower Eng. 2004, 35, 17–20. [Google Scholar]
- Wang, P.J.; Hu, Z.Q.; Russell, S.Y.; Shao, F.; Liu, J.T.; Li, X.Y. Assessment of chemical properties of reclaimed subsidence land by the integrated technology using yellow river sediment in Jining, China. Environ. Earth Sci. 2016, 75, 1–15. [Google Scholar] [CrossRef]
- Guo, Y.D.; Zhao, R.Y.; Zeng, Y.N.; Shi, Z.; Zhou, Q. Identifying scale-specific controls of soil organic matter distribution in mountain areas using anisotropy analysis and discrete wavelet transform. Catena 2018, 160, 1–9. [Google Scholar] [CrossRef]
- Brady, N.C. The Nature and Properties of Soils, 9th ed.; Macmillan Press: New York, NY, USA, 1984. [Google Scholar]
- Weil, R.R.; Brady, N.C. The Nature and Properties of Soils, 15th ed.; Pearson Education Press: Columbus, OH, USA, 2016. [Google Scholar]
- Buysse, P.; Roisin, C.; Aubinet, M. Fifty years of contrasted residue management of an agricultural crop: Impacts on the soil carbon budget and on soil heterotrophic respiration. Agric. Ecosyst. Environ. 2013, 167, 52–59. [Google Scholar] [CrossRef]
- Haynes, R.J.; Naidu, R. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: A review. Nutr. Cycl. Agroecosyst. 1998, 51, 123–137. [Google Scholar] [CrossRef]
- Lou, Y.; Xu, M.; Wang, W.; Sun, X.; Liang, C. Soil organic carbon fractions and management index after 20 year of manure and fertilizer application for greenhouse vegetables. Soil Use Manag. 2011, 27, 163–169. [Google Scholar] [CrossRef]
- Xu, G.C.; Cheng, S.D.; Li, P.; Li, Z.B.; Gao, H.D.; Yu, K.X.; Lu, K.X.; Shi, P.; Cheng, Y.T.; Zhao, B.H. Soil total nitrogen sources on dammed farmland under the condition of ecological construction in a small watershed on the loess plateau, china. Ecol. Eng. 2017. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, G.B.; Xu, M.X.; Zhang, J.; Wang, Y.; Tang, L. Temporal and spatial variations in soil organic carbon sequestration following revegetation in the hilly Loess Plateau, China. Catena 2012, 99, 26–33. [Google Scholar] [CrossRef]
- Liu, Z.P.; Shao, M.A.; Wang, Y.Q. Spatial patterns of soil total nitrogen and soil total phosphorus across the entire Loess Plateau region of China. Geoderma 2013, 197–198, 67–78. [Google Scholar] [CrossRef]
- Zhao, B.H.; Li, Z.B.; Li, P.; Xu, G.C.; Gao, H.D.; Cheng, Y.T.; Chang, E.H.; Yuan, S.L.; Zhang, Y.; Feng, Z.H. Spatial distribution of soil organic carbon and its influencing factors under the condition of ecological construction in a hilly-gully watershed of the Loess Plateau, China. Geoderma 2017, 296, 10–17. [Google Scholar] [CrossRef]
- He, X.R.; He, B.H.; Qin, W.; Zuo, C.Q.; Li, T.Y.; Yao, Y. Effect of Disturbance Surface on Soil Nutrient Under Different Slope length. J. Soil Water Conserv. 2013, 27, 154–158. [Google Scholar]
- Yuan, J.; Tan, X.F.; Yuan, D.Y.; Zhang, X.J.; Ye, S.C.; Zhou, J.Q. Effect of phosphates on the growth, photosynthesis, and p content of oil tea in acidic red soils. J. Sustain. For. 2013, 32, 594–604. [Google Scholar] [CrossRef]
- An, D.; Yang, L.; Wang, G.D.; Lan, R.; Wang, T.J.; Jin, Y. Mechanisms of phosphorus fixation in soils and efficient utilization of phosphate fertilizer. Chem. Ind. Eng. Prog. 2013, 32, 1967–1973. [Google Scholar]
- Zhao, H.Y.; Wang, G.P.; Liu, J.S.; Zhang, G.Z. Phosphorus sorption/desorption characteristics of wetland soils in Sanjiang Plain. Ecol. Environ. 2006, 15, 930–935. [Google Scholar]
- Turan, M.A.U.; Ataoglu, N.A.U.; Sahin, F.Y.U. Effects of bacillus FS3 on growth of tomato (Lycopersicon esculentum L.) plants and availability of phosphorus in soil. Plant Soil Environ. 2007, 53, 58–64. [Google Scholar] [CrossRef]
- Li, J.; Zhang, S.R.; Sun, B.; Zhao, Q.G.; Xiao, P.F. Temporal-spatial variability of soil available potassium in processing of restorage ecosystem in lianshui basin. J. Soil Water Conserv. 2004, 18, 88–92. [Google Scholar]
- Milford, G.F.J.; Armstrong, M.J.; Jarvis, P.J.; Houghton, B.J.; Bellett-Travers, D.M.; Jones, J.; Leigh, RA. Effect of potassium fertilizer on the yield, quality and potassium offtake of sugar beet crops grown on soils of different potassium status. J. Agric. Sci. 2000, 135, 1–10. [Google Scholar] [CrossRef]
Depth | Time | SWC (%) | pH | EC (μs·cm−1) | |||
---|---|---|---|---|---|---|---|
RF | CK | RF | CK | RF | CK | ||
0–20 cm | Feb. 2012 | 16.8 ± 1.2 cde | 23.1 ± 1.7 a | 7.61 ± 0.13 a | 7.54 ± 0.12 a | 135 ± 4 c | 152 ± 4 a |
Sept. 2012 | 14.1 ± 1.5 e | 17.4 ± 1.4 cd | 7.55 ± 0.18 a | 7.66 ± 0.14 a | 140 ± 2 bc | 146 ± 4 ab | |
Apr. 2013 | 18.8 ± 2.2 bc | 22.7 ± 2.2 a | 7.52 ± 0.11 a | 7.62 ± 0.16 a | 126 ± 3 d | 136 ± 5 c | |
Sept. 2013 | 14.8 ± 1.2 de | 20.0 ± 2.3 b | 7.66 ± 0.22 a | 7.67 ± 0.17 a | 127 ± 6 d | 140 ± 7 bc | |
Apr. 2014 | 17.1 ± 1.4 cde | 23.1 ± 2.1 a | 7.74 ± 0.11 a | 7.52 ± 0.10 a | 139 ± 6 bc | 149 ± 6 a | |
Sept. 2014 | 18.0 ± 1.4 bc | 21.0 ± 1.0 ab | 7.71 ± 0.09 a | 7.77 ± 0.07 a | 147 ± 3 ab | 145 ± 3 ab | |
20–50 cm | Feb. 2012 | 24.4 ± 1.5 e | 29.4 ± 0.8 ab | 7.72 ± 0.08 abc | 7.76 ± 0.09 abc | 165 ± 5 de | 181 ± 2 bc |
Sept. 2012 | 19.9 ± 2.4 f | 26.6 ± 1.6 cde | 7.82 ± 0.11 abc | 7.69 ± 0.10 abc | 182 ± 6 bc | 190 ± 6 b | |
Apr. 2013 | 26.4 ± 1.0 cde | 29 ± 1.4 abc | 7.68 ± 0.09 bc | 7.64 ± 0.09 c | 171 ± 8 cd | 162 ± 5 de | |
Sept. 2013 | 23.9 ± 1.2 e | 31 ± 1.7 a | 7.84 ± 0.06 ab | 7.73 ± 0.09 abc | 158 ± 8 e | 164 ± 7 de | |
Apr. 2014 | 21.2 ± 2.1 f | 27.7 ± 0.9 bcd | 7.87 ± 0.09 a | 7.7 ± 0.09 abc | 162 ± 103 de | 186 ± 10 b | |
Sept. 2014 | 21.6 ± 2.3 f | 25.8 ± 1.5 de | 7.78 ± 0.06 abc | 7.82 ± 0.07 abc | 179 ± 106 bc | 201 ± 6 a | |
50–80 cm | Feb. 2012 | 18.1 ± 0.6 cd | 29.1 ± 2.3 a | 7.91 ± 0.07 abc | 7.76 ± 0.08 c | 102 ± 8 e | 174 ± 8 b |
Sept. 2012 | 15.2 ± 0.9 d | 25.9 ± 2.0 b | 8.02 ± 0.14 a | 7.88 ± 0.13 abc | 124 ± 6 d | 192 ± 8 a | |
Apr. 2013 | 17.2 ± 0.8 cd | 27.4 ± 1.7 ab | 7.89 ± 0.07 abc | 7.79 ± 0.13 bc | 116 ± 6 d | 153 ± 7 c | |
Sept. 2013 | 16.2 ± 0.8 d | 27.4 ± 1.7 ab | 7.98 ± 0.15 ab | 7.73 ± 0.09 c | 95 ± 9 e | 168 ± 9 b | |
Apr. 2014 | 19.3 ± 1.4 c | 30.2 ± 2.0 a | 7.83 ± 0.08 abc | 7.79 ± 0.12 bc | 94 ± 6 e | 192 ± 8 a | |
Sept. 2014 | 17.4 ± 2.0 cd | 28.1 ± 2.1 ab | 7.89 ± 0.05 abc | 7.73 ± 0.09 c | 103 ± 9 e | 179 ± 9 b |
Depth | Time | OM (g kg−1) | TN (g kg−1) | AP (mg kg−1) | AK (mg kg−1) | ||||
---|---|---|---|---|---|---|---|---|---|
RF | CK | RF | CK | RF | CK | RF | CK | ||
0–20 cm | Feb. 2012 | 12.07 ± 1.48 e | 26.55 ± 1.67 b | 0.52 ± 0.06 g | 1.02 ± 0.11 bc | 8.3 ± 0.7 de | 15.4 ± 1.4 c | 122.0 ± 10.2 cd | 167.8 ± 8.3 b |
Sept. 2012 | 10.69 ± 2.66 e | 24.86 ± 1.94 bc | 0.58 ± 0.06 fg | 0.95 ± 0.11 cd | 7.6 ± 0.6 e | 17.0 ± 1.5 abc | 114.0 ± 6.8 d | 197.8 ± 11.3 a | |
Apr. 2013 | 11.85 ± 1.10 e | 30.58 ± 2.31 a | 0.64 ± 0.09 efg | 1.11 ± 0.15 abc | 8.2 ± 0.7 de | 18.2 ± 1.8 ab | 140.2 ± 10.5 c | 202.0 ± 15.4 a | |
Sept. 2013 | 14.23 ± 1.75 de | 28.01 ± 3.28 ab | 0.66 ± 0.07 efg | 1.24 ± 0.08 a | 8.5 ± 0.9 de | 16.4 ± 1.2 bc | 131.2 ± 14.8 cd | 174.0 ± 17.2 b | |
Apr. 2014 | 14.20 ± 2.49 de | 22.83 ± 2.28 c | 0.74 ± 0.06 ef | 1.19 ± 0.16 ab | 9.1 ± 0.9 de | 18.8 ± 1.9 a | 132.8 ± 12.9 cd | 197.4 ± 11.9 a | |
Sept. 2014 | 17.51 ± 2.09 d | 26.79 ± 3.74 b | 0.81 ± 0.11 de | 1.09 ± 0.19 abc | 10.0 ± 0.9 d | 17.9 ± 1.5 ab | 158.0 ± 13.6 b | 200.4 ± 11.0 a | |
20–50 cm | Feb. 2012 | 7.24 ± 1.28 e | 15.19 ± 1.19 a | 0.36 ± 0.06 d | 0.61 ± 0.10 a | 3.6 ± 0.5 cde | 4.7 ± 0.7 abc | 79.0 ± 12.4 cd | 155.4 ± 16.4 a |
Sept. 2012 | 6.10 ± 1.00 e | 12.48 ± 1.79 bc | 0.31 ± 0.08 d | 0.58 ± 0.06 ab | 4.5 ± 0.5 abc | 5.0 ± 0.6 ab | 61.2 ± 8.8 d | 136.8 ± 8.8 b | |
Apr. 2013 | 6.72 ± 1.00 e | 14.69 ± 1.53 ab | 0.36 ± 0.06 d | 0.65 ± 0.09 a | 2.7 ± 0.4 e | 3.3 ± 0.5 de | 76.2 ± 10.9 cd | 166.6 ± 14.0 a | |
Sept. 2013 | 9.28 ± 1.52 d | 12.24 ± 1.41 bc | 0.38 ± 0.11 cd | 0.53 ± 0.08 abc | 4.7 ± 0.6 abc | 3.8 ± 0.5 cde | 59.6 ± 9.3 d | 138.8 ± 11.9 b | |
Apr. 2014 | 10.40 ± 1.81 cd | 15.50 ± 1.90 a | 0.42 ± 0.07 cd | 0.60 ± 0.09 a | 5.0 ± 0.9 ab | 5.6 ± 1.0 a | 67.0 ± 9.4 d | 157.4 ± 13.9 a | |
Sept. 2014 | 10.04 ± 1.68 cd | 14.14 ± 2.08 ab | 0.44 ± 0.11 bcd | 0.58 ± 0.1 ab | 3.1 ± 0.3 de | 4.1 ± 0.6 bcd | 86.2 ± 7.7 cd | 161.6 ± 9.6 a | |
50–80 cm | Feb. 2012 | 2.61 ± 0.55 f | 10.39 ± 1.06 a | 0.09 ± 0.02 f | 0.50 ± 0.10 ab | 3.0 ± 0.3 d | 4.9 ± 0.6 ab | 61.4 ± 8.2 e | 98.2 ± 10.4 bc |
Sept. 2012 | 4.10 ± 1.22 ef | 7.69 ± 0.78 cd | 0.17 ± 0.04 ef | 0.40 ± 0.10 bc | 3.7 ± 0.5 cd | 3.3 ± 0.4 cd | 47.0 ± 6.4 ef | 80.8 ± 11.2 d | |
Apr. 2013 | 2.99 ± 0.32 f | 9.36 ± 1.28 ab | 0.16 ± 0.05 ef | 0.43 ± 0.09 ab | 3.3 ± 0.4 cd | 2.6 ± 0.4 d | 41.8 ± 7.8 f | 114.4 ± 15.9 a | |
Sept. 2013 | 4.06 ± 0.66 ef | 6.43 ± 0.86 d | 0.22 ± 0.05 def | 0.52 ± 0.10 ab | 2.8 ± 0.6 d | 5.1 ± 0.8 ab | 46.8 ± 9.0 ef | 83.6 ± 10.0 cd | |
Apr. 2014 | 2.73 ± 0.69 f | 7.16 ± 1.30 cd | 0.25 ± 0.05 de | 0.47 ± 0.10 ab | 4.4 ± 0.7 bc | 5.6 ± 1.0 a | 50.2 ± 6.8 ef | 90.2 ± 10.9 cd | |
Sept. 2014 | 4.69 ± 0.76 e | 8.22 ± 1.65 bc | 0.31 ± 0.09 cd | 0.55 ± 0.09 a | 3.6 ± 0.6 cd | 5.3 ± 0.4 ab | 55.4 ± 7.8 ef | 107.8 ± 9.1 ab |
Harvest Time | Crop | RF (kg·ha−1) | CK (kg·ha−1) | RF/CK (%) |
---|---|---|---|---|
Jun. 2012 | Wheat | 3215 | 7581 | 42.41 |
Oct. 2012 | Maize | 4629 | 9649 | 47.97 |
Jun. 2013 | Wheat | 3552 | 7366 | 48.22 |
Oct. 2013 | Maize | 5624 | 10250 | 54.87 |
Jun. 2014 | Wheat | 4532 | 7048 | 64.30 |
Oct. 2014 | Maize | 6727 | 9794 | 68.68 |
Jun. 2015 | Wheat | 5341 | 7176 | 74.43 |
Oct. 2015 | Maize | 7313 | 9487 | 77.08 |
Jun. 2016 | Wheat | 5934 | 7553 | 78.56 |
Oct. 2016 | Maize | 7776 | 9714 | 80.05 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duo, L.; Hu, Z. Soil Quality Change after Reclaiming Subsidence Land with Yellow River Sediments. Sustainability 2018, 10, 4310. https://doi.org/10.3390/su10114310
Duo L, Hu Z. Soil Quality Change after Reclaiming Subsidence Land with Yellow River Sediments. Sustainability. 2018; 10(11):4310. https://doi.org/10.3390/su10114310
Chicago/Turabian StyleDuo, Linghua, and Zhenqi Hu. 2018. "Soil Quality Change after Reclaiming Subsidence Land with Yellow River Sediments" Sustainability 10, no. 11: 4310. https://doi.org/10.3390/su10114310
APA StyleDuo, L., & Hu, Z. (2018). Soil Quality Change after Reclaiming Subsidence Land with Yellow River Sediments. Sustainability, 10(11), 4310. https://doi.org/10.3390/su10114310