The Panama Canal Expansion and Its Impact on East–West Liner Shipping Route Selection
Abstract
:1. Introduction
2. Literature Review
2.1. Route Selection
2.2. The Expansion of the Panama Canal
3. Methodology
3.1. Fuzzy Method
3.2. Fuzzy-TOPSIS Method
4. Empirical Analysis
4.1. Alternative Routes from Hong Kong to New York
4.2. Selection and Weight of Determinants and Alternatives
4.3. Assessment of the Criteria
4.4. Assessment of the Alternatives
4.5. Sensitivity Analysis
5. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Martinez, C.; Steven, A.B.; Dresner, M. East Coast vs. West Coast: The impact of the Panama Canal’s expansion on the routing of Asian imports into the United States. Transp. Res. Part E Logist. Transp. Rev. 2016, 91, 274–289. [Google Scholar] [CrossRef]
- Yahalom, S.; Guan, C. Containership port time: The bay time factor. Marit. Econ. Logist. 2018, 20, 211–227. [Google Scholar] [CrossRef]
- Rodrigue, J.P.; Notteboom, T.E. Containerization, box logistics and global supply chains: The integration of ports and liner shipping networks. Marit. Econ. Logist. 2008, 10, 152–174. [Google Scholar]
- Bhadury, J. Panama Canal expansion and its impact on East and Gulf coast ports of U.S.A. Marit. Policy Manag. 2016, 43, 928–944. [Google Scholar] [CrossRef]
- Justice, V.; Bhaskar, P.; Pateman, H.; Cain, P.; Cahoon, S. US container port resilience in a complex and dynamic world. Marit. Policy Manag. 2016, 43, 179–191. [Google Scholar] [CrossRef]
- Pagano, A.; Wang, G.; Sánchez, O.; Ungo, R.; Tapiero, E. The impact of the Panama Canal expansion on Panama’s maritime cluster. Marit. Policy Manag. 2016, 43, 164–178. [Google Scholar] [CrossRef]
- Leachman, R.C. Port and modal allocation of waterborne containerized imports from Asia to the United States. Transp. Res. Part E Logist. Transp. Rev. 2008, 44, 313–331. [Google Scholar] [CrossRef]
- Fan, L.; Wilson, W.W.; Tolliver, D. Logistical rivalries and port competition for container flows to US markets: Impacts of changes in Canada’s logistics system and expansion of the Panama. Marit. Econ. Logist. 2009, 11, 327–357. [Google Scholar] [CrossRef]
- Haralambides, H.E. Structure and operations in the liner shipping industry. In Handbook of Transport Modeling; Hensher, D.A., Button, K.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; Volume 1, pp. 761–775. Available online: https://www.researchgate.net/publication/255587307_STRUCTURE_AND_OPERATIONS_IN_THE_LINER_SHIPPING_INDUSTRY (accessed on 21 November 2018).
- Danielis, R.; Marcucci, E.; Rotaris, L. Logistics managers’ stated preferences for freight service attribute. Transp. Res. Part E Logist. Transp. Rev. 2005, 41, 201–215. [Google Scholar] [CrossRef]
- Samimi, A.; Kawamura, K.; Mohammadian, A. A behavioral analysis of freight mode choice decisions. Transp. Plan. Technol. 2011, 34, 857–869. [Google Scholar] [CrossRef]
- Wang, Y.; Yeo, G.T. Intermodal route selection for cargo transportation from Korea to Central Asia by adopting Fuzzy Delphi and Fuzzy ELECTRE I methods. Marit. Policy Manag. 2018, 45, 3–18. [Google Scholar] [CrossRef]
- Cullinane, K.; Toy, N. Identifying influential attributes in freight route/mode choice decisions: A content analysis. Transp. Res. Part E Logist. Transp. Rev. 2000, 36, 41–53. [Google Scholar] [CrossRef]
- Tsai, H.Y.; Chang, C.W.; Lin, H.L. Fuzzy hierarchy sensitive with Delphi method to evaluate hospital organization performance. Expert Syst. Appl. 2010, 37, 5533–5541. [Google Scholar] [CrossRef]
- Belosevic, I.; Kosijer, M.; Ivic, M.; Pavlovic, N. Group decision making process for early stage evaluations of infrastructure projects using extended VIKOR method under fuzzy environment. Eur. Transp. Res. Rev. 2018, 10, 43. [Google Scholar] [CrossRef]
- Moon, D.S.; Kim, D.; Lee, E.K. A study on competitiveness of sea transport by comparing international transport routes between Korea and EU. Asian J. Shipping Logist. 2015, 31, 1–20. [Google Scholar] [CrossRef]
- Roorda, M.J.; Cavalcante, R.; McCabe, S.; Kwan, H. A conceptual framework for agent-based modelling of logistics services. Transp. Res. Part E Logist. Transp. Rev. 2010, 46, 18–31. [Google Scholar] [CrossRef]
- Shintani, K.; Imai, A.; Nishimura, E.; Papadimitriou, S. The container shipping network design problem with empty container repositioning. Transp. Res. Part E Logist. Transp. Rev. 2007, 43, 39–59. [Google Scholar] [CrossRef]
- Chang, T.S. Best routes selection in international intermodal networks. Comput. Oper. Res. 2008, 35, 2877–2891. [Google Scholar] [CrossRef]
- Rich, J.; Holmblad, P.M.; Hansen, C.O. A weighted logit freight mode-choice model. Transp. Res. Part E Logist. Transp. Rev. 2009, 45, 1006–1019. [Google Scholar] [CrossRef]
- Yang, X.; Low, X.J.M.W.; Tang, L.C. Analysis of intermodal freight from China to Indian Ocean: A goal programming approach. J. Transp. Geogr. 2011, 19, 515–527. [Google Scholar] [CrossRef]
- Xie, Y.C.; Lu, W.; Wang, W.; Quadrifoglio, L. A multimodal location and routing model for hazardous materials transportation. J. Hazard. Mater. 2012, 227–228, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Ayar, B.; Yaman, H. An intermodal multicommodity routing problem with scheduled service. Comput. Optim. Appl. 2012, 53, 131–153. [Google Scholar] [CrossRef]
- Cho, J.H.; Kim, H.S.; Choi, H.R. An intermodal transport network-planning algorithm using dynamic programming intermodal tray: From Busan to Rotterdam in intermodal freight routing. Appl. Intell. 2012, 36, 529–541. [Google Scholar] [CrossRef]
- Tian, W.L.; Cao, C.X. A generalized interval fuzzy mixed integer programming model for a multimodal transportation problem under uncertainty. Eng. Optim. 2017, 49, 481–498. [Google Scholar] [CrossRef]
- Woo, S.H.; Kim, S.N.; Kwak, D.W.; Pettet, S.; Bereford, A. Multimodal route choice in maritime transportation: The case of Korean auto-part exporter. Marit. Policy Manag. 2018, 45, 19–33. [Google Scholar] [CrossRef]
- Fagerholt, K.; Gausel, N.T.; Rakke, J.G.; Psaraftis, H.N. Maritime routing and speed optimization with emission control areas. Transp.Res. Part C Emerg. Technol. 2015, 52, 57–73. [Google Scholar] [CrossRef] [Green Version]
- Zis, T.; Psaraftis, H.N. The implications of the new sulphur limits on the European Ro-Ro sector. Transp. Res. Part D Transp. Environ. 2017, 52, 185–201. [Google Scholar] [CrossRef]
- Shinghal, N.; Fowkes, T. Freight mode choice and adaptive stated preferences. Transp. Res. Part E Logist. Transp. Rev. 2002, 38, 367–378. [Google Scholar] [CrossRef] [Green Version]
- Danielis, R.; Marcucci, E. Attribute cut-offs in freight service selection. Transp. Res. Part E Logist. Transp. Rev. 2007, 43, 506–515. [Google Scholar] [CrossRef]
- Norojono, O.; Young, W. A stated preference freight mode choice model. Transp. Plan. Technol. 2003, 26, 195–212. [Google Scholar] [CrossRef]
- Huang, T.H. A comparative study on pollutant emission and hub port selection in Panama Canal expansion. Marit. Econ. Logist. 2015, 17, 163–178. [Google Scholar] [CrossRef]
- Wang, G.W.Y.; Talley, W.; Brooks, M.R. Maritime economics in a Post-Expansion Panama Canal Era. Marit. Policy Manag. 2016, 43, 161–163. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Wilson, W.W.; Luo, M. The impact of Panama Canal expansion on the container-shipping market: A cooperative game theory approach. Marit. Policy Manag. 2016, 43, 209–221. [Google Scholar] [CrossRef]
- Chen, C.T. Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets Syst. 2000, 114, 1–9. [Google Scholar] [CrossRef]
- Yeo, G.T.; Wang, Y.; Chou, C.C. Evaluating the competitiveness of the aerotropolises in East Asia. J. Air Transp. Manag. 2013, 32, 24–31. [Google Scholar] [CrossRef]
- Deng, X.; Wang, Y.; Yeo, G.T. Enterprise perspective-based evaluation of free trade port areas in China. Marit. Econ. Logist. 2017, 19, 451–473. [Google Scholar] [CrossRef]
- Akkaya, G.; Turanoglu, B.; Oztas, S. An integrated fuzzy AHP and fuzzy MOORA approach to the problem of industry engineering sector choosing. Expert Syst. Appl. 2015, 42, 9565–9573. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Mardani, A.; Turskis, Z.; Jusoh, A.; Nor, K.M.D. Development of TOPSIS method to solve complicated decision-making problems – an overview on developments from 2000 to 2015. Int. J. Inf. Technol. Decis. Mak. 2016, 15, 645–682. [Google Scholar] [CrossRef]
- Saaty, T.L.; Ergu, D. When is a decision-making method trustworthy? Criteria for evaluating multi-criteria decision-making methods. Int. J. Inf. Technol. Decis. Mak. 2015, 2015. 14, 1171–1187. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Turskis, Z.; Kildiene, S. State of art surveys of overviews on MCDM/MADM methods. Technol. Econ. Dev. Econ. 2014, 20, 165–179. [Google Scholar] [CrossRef]
- Wang, Y.; Yeo, G.-T.; Ng, A.K.Y. Choosing optimal bunkering ports for liner shipping companies: A hybrid Fuzzy-Delphi–TOPSIS approach. Transp. Policy 2014, 35, 358–365. [Google Scholar] [CrossRef]
- Kim, Y.J.; Chung, E.S.; Jun, S.M.; Kim, S.U. Prioritizing the best sites for treated wastewater instream use in an urban watershed using fuzzy TOPSIS. Resour. Conserv. Recycl. 2013, 73, 23–32. [Google Scholar] [CrossRef]
- Sremac, S.; Stevic, Z.; Pamucar, D.; Arsic, M.; Matic, B. Evaluation of a Third-Party Logistics (3PL) Provider Using a Rough SWARA–WASPAS Model Based on a New Rough Dombi Aggregator. Symmetry 2018, 10, 305. [Google Scholar] [CrossRef]
- Watrobski, J.; Malecki, K.; Kijewska, K.; Iwan, S.; Karczmarczyk, A.; Thompson, R.G. Multi-Criteria Analysis of Electric Vans for City Logistics. Sustainability 2017, 9, 1453. [Google Scholar] [CrossRef]
- Seyed, H.R.H.; Shide, S.H.; Yousef, M.; Edmundas, K.Z. Fuzzy belief structure based VIKOR method: An application for ranking delay causes of Tehran metro system by FMEA criteria. Transport 2016, 31, 108–118. [Google Scholar]
- Deveci, M.; Canitez, F.; Gokasar, U. WASPAS and TOPSIS based interval type-2 fuzzy MCDM method for a selection of a car sharing station. Sustain. Cities Soc. 2018, 41, 777–791. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Turskis, Z.; Bagocius, V. Multi-criteria selection of a deep-water port in the Eastern Baltic Sea. Appl. Soft Comput. 2015, 26, 180–192. [Google Scholar] [CrossRef]
- Stevic, Z.; Pamucar, D.; Kazimieras Zavadskas, E.; Cirovic, G.; Prentkovskis, O. The Selection of Wagons for the Internal Transport of a Logistics Company: A Novel Approach Based on Rough BWM and Rough SAW Methods. Symmetry 2017, 9, 264. [Google Scholar] [CrossRef]
- Song, X.; Zhong, L.; Zhang, Z.; Xu, J.; Shen, C.; Pena-Mora, F. Multi-stakeholder conflict minimization-based layout planning of construction temporary facilities. J. Comput. Civ. Eng. 2017, 32, 04017080. [Google Scholar] [CrossRef]
- Zadeh, A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Jeon, J.W.; Yeo, G.T.; Thai, V.V.; Yip, T.L. An evaluation factors for ship management companies using fuzzy evaluation of the success factors for ship management companies using fuzzy evaluation method. Int. J. Shipping Transp. Logist. 2016, 8, 389–405. [Google Scholar] [CrossRef]
- Hwang, C.L.; Yoon, K. Multiple Attributes Decision Making Methods and Applications; Springer: Berlin/Heidelberg, Germany; New York, NY, USA.
- Buyukozkan, G.; Cifci, G. A combined fuzzy AHP and fuzzy TOPSIS based strategic analysis of electronic service quality in healthcare industry. Expert Syst. Appl. 2012, 39, 2341–2354. [Google Scholar] [CrossRef]
- Chou, C.C. An integrated quantitative and qualitative FMCDM model for location choices. Soft Comput. 2010, 14, 757–771. [Google Scholar] [CrossRef]
- Simanaviciene, R.; Ustinovichius, L. Sensitivity Analysis for Multiple Criteria Decision Making Methods: TOPSIS and SAW. Procedia. Soc. Behav. Sci. 2010, 2, 7743–7744. [Google Scholar] [CrossRef]
- Triantaphyllou, E.; Shu, B.; Sanchez, N.; Ray, T. Multi-criteria Decision Making: An operation Research Approach. Encycl. Electr. Electron. Eng. 1998, 15, 175–186. [Google Scholar]
Before Expansion (1914) | After Expansion (2016) | |
---|---|---|
Capacity (Container vessel, TEUs) | 4400 | 12,600 |
Length (m) | 304.8 | 427 |
Width (m) | 33.5 | 55 |
Depth (m) | 12.8 | 18.3 |
Draft (m) | 12.4 | 15.2 |
Linguistic Scale | Fuzzy Number |
---|---|
Very Low (VL) | (0.0, 0.0, 0.1) |
Low (L) | (0.0, 0.1, 0.3) |
Medium Low (ML) | (0.1, 0.3, 0.5) |
Medium (M) | (0.3, 0.5, 0.7) |
Medium High (MH) | (0.5, 0.7, 0.9) |
High (H) | (0.7, 0.9, 1.0) |
Very High (VH) | (0.9, 1.0, 1.0) |
Linguistic Scale | Fuzzy Number |
---|---|
Very Poor (VP) | (0, 0, 1) |
Poor (P) | (0, 1, 3) |
Medium Poor (MP) | (1, 3, 5) |
Medium (M) | (3, 5, 7) |
Medium Good (MG) | (5, 7, 9) |
Good (G) | (7, 9, 10) |
Very Good (VG) | (9, 10, 10) |
Route | Vessel Size (TEU) | Port Cost (USD $) | Bunker Cost (USD $) | Capital Cost (USD $) | Operation Cost/TEU (USD $) |
---|---|---|---|---|---|
Via the Panama Canal | 8600 | 1,643,892 | 1,814,349 | 2,380,000 | 743.72 |
10,000 | 1,726,087 | 1,922,352 | 2,660,000 | 708.81 | |
13,000 | 1,985,000 | 2,253,001 | 3,150,000 | 642.43 | |
Via the Suez Canal | 8600 | 1,302,752 | 2,040,078 | 2,618,000 | 759.34 |
10,000 | 1,367,890 | 2,139,004 | 2,926,000 | 722.80 | |
13,000 | 1,573,073 | 2,458,035 | 3,465,000 | 651.84 | |
Using U.S. intermodal system | 8600 | 162,366 | 1,367,225 | 1,666,000 | 407.08 |
10,000 | 170,485 | 1,465,557 | 1,862,000 | 393.04 | |
13,000 | 196,057 | 1,732,917 | 2,205,000 | 359.48 |
Factor | Definition |
---|---|
Transportation time | Time from the Departure Port to Arrival Port |
Transportation cost | Operation cost per unit for shipping from the Departure Port to Arrival Port including port cost, bunker cost, and capital cost |
Reliability | Reliability of the transportation method and node’s facilities |
Route characteristics | Characteristics of the port and links included in the route, such as terminals, waterways, air drafts, and political environments, which impact the operation of facilities |
Factors | Fuzzy Score | Defuzzification | Rank |
---|---|---|---|
Transportation time | (0.66; 0.82; 0.91) | 0.79 | 2 |
Transportation cost | (0.73; 0.86; 0.92) | 0.83 | 1 |
Reliability | (0.48; 0.68; 0.87) | 0.68 | 3 |
Route characteristics | (0.36; 0.55; 0.74) | 0.55 | 4 |
Subjective Criteria | Fuzzy Scores |
---|---|
1. Reliability | |
Via the Panama Canal | (5.50; 7.42; 8.92) |
Via the Suez Canal | (3.67; 5.42; 7.25) |
Using U.S. inland system | (4.75; 6.42; 8.00) |
2. Route characteristics | |
Via the Panama Canal | (4.17; 6.17; 8.00) |
Via the Suez Canal | (3.75; 5.58; 7.42) |
Using U.S. inland system | (5.25; 6.83; 8.08) |
Objective Criteria | Quantity | Fuzzy Scores |
---|---|---|
1. Transportation time (hours) | ||
Via the Panama Canal | 623 | (8.22; 8.22; 8.22) |
Via the Suez Canal | 644 | (7.95; 7.95; 7.95) |
Using U.S. intermodal system | 512 | (10.00; 10.00; 10.00) |
2. Transportation cost (USD/TEU) | ||
a. Vessel size: 8600 TEU; Load: 7850 TEU | ||
Via the Panama Canal | 743.72 | (10.00; 10.00; 10.00) |
Via the Suez Canal | 759.34 | (9.79; 9.79; 9.79) |
Using U.S. intermodal system | 2027.08 | (3.67; 3.67; 3.67) |
b. Vessel size: 10,000 TEU; Load: 8900 TEU | ||
Via the Panama Canal | 708.81 | (10.00; 10.00; 10.00) |
Via the Suez Canal | 722.80 | (9.81; 9.81; 9.81) |
Using U.S. intermodal system | 2013.04 | (3.52; 3.52; 3.52) |
c. Vessel size: 13,000 TEU; Load: 11,500 TEU | ||
Via the Panama Canal | 642.43 | (10.00; 10.00; 10.00) |
Via the Suez Canal | 651.84 | (9.86; 9.86; 9.86) |
Using U.S. intermodal system | 1979.48 | (3.25; 3.25; 3.25) |
Alternatives | A* | A− | FCi | Ranking |
---|---|---|---|---|
Scenario 1: Vessel size: 8600 TEU; Load: 7850 TEU | ||||
Via the Panama Canal | 1.74 | 7.09 | 0.80 | 1 |
Via the Suez Canal | 3.65 | 5.13 | 0.58 | 2 |
Using U.S. intermodal system | 5.94 | 2.84 | 0.32 | 3 |
Scenario 2: Vessel size: 10,000 TEU; Load: 8900 TEU | ||||
Via the Panama Canal | 1.74 | 7.22 | 0.81 | 1 |
Via the Suez Canal | 3.64 | 5.14 | 0.59 | 2 |
Using U.S. intermodal system | 6.06 | 2.97 | 0.33 | 3 |
Scenario 3: Vessel size: 13,000 TEU; Load: 11,500 TEU | ||||
Via the Panama Canal | 1.74 | 7.45 | 0.81 | 1 |
Via the Suez Canal | 3.60 | 5.18 | 0.59 | 2 |
Using U.S. intermodal system | 6.29 | 3.20 | 0.34 | 3 |
Alternative | Factor That Increases by 10% | Factors That Decreases by 10% | ||
---|---|---|---|---|
Changed Factor | Changed Result | Changed Factor | Changed Result | |
Vessel size: 8600 TEU; Load: 7850 TEU | ||||
Via the Panama Canal (0.8033) | Transportation time | 0.8160 (0.0127) | ||
Via the Suez Canal (0.5842) | Transportation cost | 0.6060 (0.0218) | ||
Using the U.S. intermodal system (0.3237) | Transportation cost | 0.3445 (0.0208) | ||
Vessel size: 10,000 TEU; Load: 8900 TEU | ||||
Via the Panama Canal (0.8060) | Transportation time | 0.8186 (0.0126) | ||
Via the Suez Canal (0.5853) | Transportation cost | 0.6072 (0.0219) | ||
Using the U.S. intermodal system (0.3286) | Transportation cost | 0.3486 (0.0200) | ||
Vessel size: 13,000 TEU; Load: 11,500 TEU | ||||
Via the Panama Canal (0.8108) | Transportation time | 0.8232 (0.0124) | ||
Via the Suez Canal (0.5900) | Transportation cost | 0.6121 (0.0220) | ||
Using the U.S. intermodal system (0.3369) | Transportation cost | 0.3557 (0.0188) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pham, T.Y.; Kim, K.Y.; YEO, G.-T. The Panama Canal Expansion and Its Impact on East–West Liner Shipping Route Selection. Sustainability 2018, 10, 4353. https://doi.org/10.3390/su10124353
Pham TY, Kim KY, YEO G-T. The Panama Canal Expansion and Its Impact on East–West Liner Shipping Route Selection. Sustainability. 2018; 10(12):4353. https://doi.org/10.3390/su10124353
Chicago/Turabian StylePham, Thi Yen, Ki Young Kim, and Gi-Tae YEO. 2018. "The Panama Canal Expansion and Its Impact on East–West Liner Shipping Route Selection" Sustainability 10, no. 12: 4353. https://doi.org/10.3390/su10124353
APA StylePham, T. Y., Kim, K. Y., & YEO, G.-T. (2018). The Panama Canal Expansion and Its Impact on East–West Liner Shipping Route Selection. Sustainability, 10(12), 4353. https://doi.org/10.3390/su10124353