Seasonal Urban Carbon Emission Estimation Using Spatial Micro Big Data
Abstract
:1. Introduction
2. Approach to Carbon Mapping
2.1. Model
2.2. The Total Emissions ( and )
2.3. The Unit Emissions ()
2.4. The Micro Intensities ( and )
2.5. Mapping Method
3. Results
4. Concluding Remarks
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Gurney, K.R.; Romero-Lankao, P.; Seto, K.C.; Hutyra, L.R.; Duren, R.; Kennedy, C.; Grimm, N.B.; Ehleringer, J.R.; Marcotullio, P.; Hughes, S.; et al. Climate change: Track urban emissions on a human scale. Nature 2015, 525, 179–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gately, C.K.; Hutyra, L.R.; Wing, I.S.; Brondfield, M.N. A bottom up approach to on-road CO2 emissions estimates: Improved spatial accuracy and applications for regional planning. Environ. Sci. Technol. 2013, 47, 2423–2430. [Google Scholar] [CrossRef] [PubMed]
- Geertman, S.; Stillwell, J. Planning Support Systems in Practice; Springer: New York, NY, USA, 2003. [Google Scholar]
- Akiyama, Y. Applications of micro geodata for urban monitoring. In Proceedings of the 16th International Conference on Geographic Information Systems: Spatial Big Data Technologies and Applications for Future Society, Soul, Korea, 16 August 2014; pp. 103–116. [Google Scholar]
- Akiyama, Y.; Nishimoto, Y.; Shibasaki, R. Projecting future distributions of facility deserts for smart regional planning: A micro geodata approach in Japan. In Proceedings of the 15th International Conference on Computers in Urban Planning and Urban Management, Adelaide, Australia, 11–14 July 2017; p. 35081. [Google Scholar]
- Li, M.; Li, Z.; Vasilakos, A.V. A survey on topology control in wireless sensor networks: Taxonomy, comparative study, and open issues. Proc. IEEE 2013, 101, 2538–2557. [Google Scholar] [CrossRef]
- Rashid, B.; Rehmani, M.H. Applications of wireless sensor networks for urban areas: A survey. J. Netw. Comput. Appl. 2016, 60, 192–219. [Google Scholar] [CrossRef]
- Batty, M.; Axhausen, K.W.; Giannotti, F.; Pozdnoukhov, A.; Bazzani, A.; Wachowicz, M.; Portugali, Y. Smart cities of the future. Eur. Phys. J. Spec. Top. 2012, 214, 481–518. [Google Scholar] [CrossRef] [Green Version]
- Batty, M. Big data, smart cities and city planning. Dialogues Hum. Geogr. 2013, 3, 274–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batty, M. Big data and the city. Built Environ. 2016, 42, 321–337. [Google Scholar] [CrossRef]
- Yamagata, Y.; Murakami, D.; Yoshida, T. Dynamic urban carbon mapping with spatial big data. Energy Procedia 2017, 142, 2461–2466. [Google Scholar] [CrossRef]
- Sharifi, A.; Yihan Wu, Y.; Khamchiangta, D.; Yoshida, T.; Yamagata, Y. Urban carbon mapping: Towards a standardized framework. Energy Procedia 2018, 152, 799–808. [Google Scholar] [CrossRef]
- Goodchild, M.F. Citizens as sensors: The world of volunteered geography. GeoJournal 2007, 69, 211–221. [Google Scholar] [CrossRef]
- Li, W.; Li, L.; Goodchild, M.F.; Anselin, L. A geospatial cyberinfrastructure for urban economic analysis and spatial decision-making. ISPRS Int. J. Geo-Inf. 2013, 2, 413–431. [Google Scholar] [CrossRef]
- Miller, H.J.; Shaw, S.L. Geographic information systems for transportation in the 21st century. Geogr. Compass 2015, 9, 180–189. [Google Scholar] [CrossRef]
- Kraak, M.J. Computer-Assisted Cartographical Three-Dimensional Imaging Techniques; Delft University Press: Delft, The Netherlands, 1988. [Google Scholar]
- Zhou, Y.; Dao, T.; Thill, J.C.; Delmelle, E. Enhanced 3D Visualization Techniques in Support of Indoor Location Planning. Comput. Environ. Urban Syst. 2015, 50, 15–29. [Google Scholar] [CrossRef]
- Shepherd, I.D.H. Travails in the third dimension: A critical evaluation of three-dimensional geographical visualization. In Geographic Visualization: Concepts, Tools and Applications; Dodge, M., McDerby, M., Turner, M., Eds.; John Wiley: Chichester, UK, 2008; pp. 199–222. [Google Scholar]
- Lovett, A.; Appleton, K.; Warren-Kretzschmar, B.; Haaren, C. Using 3D Visualization Methods in Landscape Planning: An Evaluation of Options and Practical Issues. Landsc. Urban Plan. 2015, 142, 85–94. [Google Scholar] [CrossRef]
- Lange, E. 99 volumes later: We can visualise. Now what? Landsc. Urban Plan. 2011, 100, 403–406. [Google Scholar] [CrossRef] [Green Version]
- Blaschke, T.; Donert, K.; Gossette, F. Virtual Globes: Serving Science and Society. Information 2012, 3, 372–390. [Google Scholar] [CrossRef] [Green Version]
- Bleisch, S.; Dykes, J.; Nebiker, S. Evaluating the Effectiveness of Representing Numeric Information Through Abstract Graphics in 3D Desktop Virtual Environments. Cartogr. J. 2008, 45, 216–226. [Google Scholar] [CrossRef] [Green Version]
- Kwan, M.P.; Lee, J. Geovisualization of human activity patterns using 3D GIS: A time-geographic approach. In Spatially Integrated Social Science; Goodchild, M.F., Janelle, D.G., Eds.; Oxford University Press: New York, NY, USA, 2004; pp. 48–66. [Google Scholar]
- Nakamichi, K.; Yamagata, Y.; Seya, H. An integrated model for assessing carbon dioxide emissions considering climate change mitigation and flood risk adaptation interaction. In Monitoring and Modeling of Global Changes: A Geomatics Perspective; Li, J., Yang, X., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 241–262. [Google Scholar]
- The Greenhouse Gas Inventory Office of Japan. Available online: http://www-gio.nies.go.jp/ (accessed on 14 October 2018).
- Statistics Bureau, Ministry of Internal Affairs and Communications, Japan. Available online: http://www.stat.go.jp/english/index.html (accessed on 14 October 2018).
- Japan Institute of Energy. Cogeneration Plan and Design Manual; Japan Industrial Publishing: Tokyo, Japan, 2008.
- Zenrin, Co. Ltd. Available online: http://www.zenrin.co.jp/english/ (accessed on 14 October 2018).
- Agoop, Coop. Available online: https://www.agoop.co.jp/en/ (accessed on 14 October 2018).
- Environmental Systems Research Institute, Inc. Available online: https://www.esri.com/ (accessed on 14 October 2018).
- Carbon Dioxide Information Analysis Center. Available online: http://cdiac.ornl.gov/ (accessed on 14 October 2018).
- Yokota, T.; Yoshida, Y.; Eguchi, N.; Ota, Y.; Tanaka, T.; Watanabe, H.; Maksyutov, S. Global concentrations of CO2 and CH4 retrieved from GOSAT: First preliminary results. Sola 2009, 5, 160–163. [Google Scholar] [CrossRef]
- Mao, X.; Miao, X.; He, Y.; Li, X.Y.; Liu, Y. CitySee: Urban CO2 monitoring with sensors. In Proceedings of the IEEE INFOCOM, Orlando, FL, USA, 25–30 March 2012; pp. 1611–1619. [Google Scholar] [CrossRef]
Emission Type | Residential | Non-residential | Transport |
---|---|---|---|
Direct | 113 | 167 | 421 |
Indirect | 250 | 277 | 17 |
Residence | Office | Retail | Hospital | Hotel | Sport facility |
---|---|---|---|---|---|
21 | 156 | 226 | 170 | 200 | 210 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamagata, Y.; Yoshida, T.; Murakami, D.; Matsui, T.; Akiyama, Y. Seasonal Urban Carbon Emission Estimation Using Spatial Micro Big Data. Sustainability 2018, 10, 4472. https://doi.org/10.3390/su10124472
Yamagata Y, Yoshida T, Murakami D, Matsui T, Akiyama Y. Seasonal Urban Carbon Emission Estimation Using Spatial Micro Big Data. Sustainability. 2018; 10(12):4472. https://doi.org/10.3390/su10124472
Chicago/Turabian StyleYamagata, Yoshiki, Takahiro Yoshida, Daisuke Murakami, Tomoko Matsui, and Yuki Akiyama. 2018. "Seasonal Urban Carbon Emission Estimation Using Spatial Micro Big Data" Sustainability 10, no. 12: 4472. https://doi.org/10.3390/su10124472
APA StyleYamagata, Y., Yoshida, T., Murakami, D., Matsui, T., & Akiyama, Y. (2018). Seasonal Urban Carbon Emission Estimation Using Spatial Micro Big Data. Sustainability, 10(12), 4472. https://doi.org/10.3390/su10124472