An Integrated Investigation of Spatiotemporal Habitat Quality Dynamics and Driving Forces in the Upper Basin of Miyun Reservoir, North China
Abstract
:1. Introduction
2. Study Area
3. Methods
3.1. Description of the Habitat Quality Model
3.2. Improvement of Logistic Multiple Regression Model for Analyzing Driving Forces
3.2.1. Dependent Variables
3.2.2. Independent Variables
3.2.3. Sampling Design
3.2.4. Regression Model Construction
4. Results and Discussion
4.1. Analysis of Changes in Habitat Quality
4.2. Analysis of Driving Forces of Changes in Habitat Quality
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Baral, H.; Keenan, R.J.; Sharma, S.K.; Stork, N.E.; Kasel, S. Spatial assessment and mapping of biodiversity and conservation priorities in a heavily modified and fragmented production landscape in north-central Victoria, Australia. Ecol. Indic. 2014, 36, 552–562. [Google Scholar] [CrossRef]
- Gill, R.J.; Baldock, K.C.R.; Brown, M.J.F.; Cresswell, J.E.; Dicks, L.V.; Fountain, M.T.; Garratt, M.P.D.; Gough, L.A.; Heard, M.S.; Holland, J.M.; et al. Protecting an Ecosystem Service: Approaches to Understanding and Mitigating Threats to Wild Insect Pollinators. In Ecosystem Services: From Biodiversity to Society, Pt 2; Woodward, G., Bohan, D.A., Eds.; Elsevier Academic Press Inc.: San Diego, CA, USA, 2016; Volume 54, pp. 135–206. [Google Scholar]
- Newman, M.E.; McLaren, K.P.; Wilson, B.S. Long-term socio-economic and spatial pattern drivers of land cover change in a Caribbean tropical moist forest, the Cockpit Country, Jamaica. Agric. Ecosyst. Environ. 2014, 186, 185–200. [Google Scholar] [CrossRef]
- Roy, P.S.; Tomar, S. Biodiversity characterization at landscape level using geospatial modelling technique. Biol. Conserv. 2000, 95, 95–109. [Google Scholar] [CrossRef]
- Serra, P.; Pons, X.; Saurí, D. Land-cover and land-use change in a Mediterranean landscape: A spatial analysis of driving forces integrating biophysical and human factors. Appl. Geogr. 2008, 28, 189–209. [Google Scholar] [CrossRef]
- Brook, B.W.; Sodhi, N.S.; Bradshaw, C.J. Synergies among extinction drivers under global change. Trends Ecol. Evol. 2008, 23, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Torres, R.; Gasparri, N.I.; Blendinger, P.G.; Grau, H.R. Land-use and land-cover effects on regional biodiversity distribution in a subtropical dry forest: A hierarchical integrative multi-taxa study. Reg. Environ. Chang. 2014, 14, 1549–1561. [Google Scholar] [CrossRef]
- Wu, C.-F.; Lin, Y.-P.; Chiang, L.-C.; Huang, T. Assessing highway’s impacts on landscape patterns and ecosystem services: A case study in Puli Township, Taiwan. Landsc. Urban Plan. 2014, 128, 60–71. [Google Scholar] [CrossRef]
- Fu, B.; Wang, S.; Su, C.; Forsius, M. Linking ecosystem processes and ecosystem services. Curr. Opin. Environ. Sustain. 2013, 5, 4–10. [Google Scholar] [CrossRef]
- Ding, Y.; Shan, B.; Zhao, Y. Assessment of River Habitat Quality in the Hai River Basin, Northern China. Int. J. Environ. Res. Public Health 2015, 12, 11699–11717. [Google Scholar] [CrossRef] [Green Version]
- Dong, Z.; Wang, Z.; Liu, D.; Li, L.; Ren, C.; Tang, X.; Jia, M.; Liu, C. Assessment of habitat suitability for waterbirds in the West Songnen Plain, China, using remote sensing and GIS. Ecol. Eng. 2013, 55, 94–100. [Google Scholar] [CrossRef]
- Polasky, S.; Nelson, E.; Pennington, D.; Johnson, K.A. The Impact of Land-Use Change on Ecosystem Services, Biodiversity and Returns to Landowners: A Case Study in the State of Minnesota. Environ. Resour. Econ. 2011, 48, 219–242. [Google Scholar] [CrossRef]
- Seoane, J.; Justribó, J.H.; García, F.; Retamar, J.; Rabadán, C.; Atienza, J.C. Habitat-suitability modelling to assess the effects of land-use changes on Dupont’s lark Chersophilus duponti: A case study in the Layna Important Bird Area. Biol. Conserv. 2006, 128, 241–252. [Google Scholar] [CrossRef] [Green Version]
- Yan, S.; Wang, X.; Cai, Y.; Li, C.; Yang, Z.; Yi, Y. Investigation of the spatio-temporal dynamics in landscape variations in a shallow lake based on a new Tendency-Pattern-Service conceptual framework. J. Clean. Prod. 2017, 161, 1074–1084. [Google Scholar] [CrossRef]
- Terrado, M.; Sabater, S.; Chaplin-Kramer, B.; Mandle, L.; Ziv, G.; Acuna, V. Model development for the assessment of terrestrial and aquatic habitat quality in conservation planning. Sci. Total Environ. 2016, 540, 63–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tulloch, V.J.; Tulloch, A.I.; Visconti, P.; Halpern, B.S.; Watson, J.E.; Evans, M.C.; Auerbach, N.A.; Barnes, M.; Beger, M.; Chadès, I. Why do we map threats? Linking threat mapping with actions to make better conservation decisions. Front. Ecol. Environ. 2015, 13, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Schmitt-Harsh, M. Landscape change in Guatemala: Driving forces of forest and coffee agroforest expansion and contraction from 1990 to 2010. Appl. Geogr. 2013, 40, 40–50. [Google Scholar] [CrossRef]
- Teferi, E.; Bewket, W.; Uhlenbrook, S.; Wenninger, J. Understanding recent land use and land cover dynamics in the source region of the Upper Blue Nile, Ethiopia: Spatially explicit statistical modeling of systematic transitions. Agric. Ecosyst. Environ. 2013, 165, 98–117. [Google Scholar] [CrossRef]
- Verburg, P.H.; Schot, P.P.; Dijst, M.J.; Veldkamp, A. Land use change modelling: Current practice and research priorities. GeoJournal 2004, 61, 309–324. [Google Scholar] [CrossRef]
- Zhou, N.; Hubacek, K.; Roberts, M. Analysis of spatial patterns of urban growth across South Asia using DMSP-OLS nighttime lights data. Appl. Geogr. 2015, 63, 292–303. [Google Scholar] [CrossRef]
- Hersperger, A.M.; Bürgi, M. Going beyond landscape change description: Quantifying the importance of driving forces of landscape change in a Central Europe case study. Land Use Policy 2009, 26, 640–648. [Google Scholar] [CrossRef]
- Pineda Jaimes, N.B.; Bosque Sendra, J.; Gómez Delgado, M.; Franco Plata, R. Exploring the driving forces behind deforestation in the state of Mexico (Mexico) using geographically weighted regression. Appl. Geogr. 2010, 30, 576–591. [Google Scholar] [CrossRef]
- Rudel, T.K. Tree farms: Driving forces and regional patterns in the global expansion of forest plantations. Land Use Policy 2009, 26, 545–550. [Google Scholar] [CrossRef]
- Aide, T.M.; Clark, M.L.; Grau, H.R.; Lopez-Carr, D.; Levy, M.A.; Redo, D.; Bonilla-Moheno, M.; Riner, G.; Andrade-Nunez, M.J.; Muniz, M. Deforestation and Reforestation of Latin America and the Caribbean (2001–2010). Biotropica 2013, 45, 262–271. [Google Scholar] [CrossRef]
- Augustin, N.H.; Mugglestone, M.A.; Buckland, S.T. An Autologistic Model for the Spatial Distribution of Wildlife. J. Appl. Ecol. 1996, 33, 339–347. [Google Scholar] [CrossRef]
- Bo, Y.-C.; Song, C.; Wang, J.-F.; Li, X.-W. Using an autologistic regression model to identify spatial risk factors and spatial risk patterns of hand, foot and mouth disease (HFMD) in Mainland China. BMC Public Health 2014, 14, 358. [Google Scholar] [CrossRef] [PubMed]
- Echeverria, C.; Coomes, D.A.; Hall, M.; Newton, A.C. Spatially explicit models to analyze forest loss and fragmentation between 1976 and 2020 in southern Chile. Ecol. Model. 2008, 212, 439–449. [Google Scholar] [CrossRef]
- Hu, Z.; Lo, C.P. Modeling urban growth in Atlanta using logistic regression. Comput. Environ. Urban Syst. 2007, 31, 667–688. [Google Scholar] [CrossRef]
- Monteiro, A.T.; Fava, F.; Hiltbrunner, E.; Della Marianna, G.; Bocchi, S. Assessment of land cover changes and spatial drivers behind loss of permanent meadows in the lowlands of Italian Alps. Landsc. Urban Plan. 2011, 100, 287–294. [Google Scholar] [CrossRef]
- Wijaya, S.; Tsuyuki, S. GIS-based modeling of Javan Hawk-Eagle distribution using logistic and autologistic regression models. Biol. Conserv. 2008, 141, 756–769. [Google Scholar]
- Hall, L.S.; Krausman, P.R.; Morrison, M.L. The habitat concept and a plea for standard terminology. Wildl. Soc. Bull. 1997, 25, 173–182. [Google Scholar]
- Courvoisier, D.S.; Combescure, C.; Agoritsas, T.; Gayet-Ageron, A.; Perneger, T.V. Performance of logistic regression modeling: Beyond the number of events per variable, the role of data structure. J. Clin. Epidemiol. 2011, 64, 993–1000. [Google Scholar] [CrossRef] [PubMed]
- Steyerberg, E.W.; Schemper, M.; Harrell, F.E. Logistic regression modeling and the number of events per variable: Selection bias dominates. J. Clin. Epidemiol. 2011, 64, 1464–1465. [Google Scholar] [CrossRef] [PubMed]
- Olaniyi, A.O.; Abdullah, A.M.; Ramli, M.F.; Alias, M.S. Assessment of drivers of coastal land use change in Malaysia. Ocean Coast. Manag. 2012, 67, 113–123. [Google Scholar] [CrossRef]
- Li, X.; Zhou, W.; Ouyang, Z. Forty years of urban expansion in Beijing: What is the relative importance of physical, socioeconomic, and neighborhood factors? Appl. Geogr. 2013, 38, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Betts, M.G.; Diamond, A.W.; Forbes, G.J.; Villard, M.A.; Gunn, J.S. The importance of spatial autocorrelation, extent and resolution in predicting forest bird occurrence. Ecol. Model. 2006, 191, 197–224. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Qiao, F.; Jiang, L. Effects of Land Use Pattern Change on Regional Scale Habitat Quality Based on InVEST Modela Case Study in Beijing. Acta Sci. Nat. Univ. Pekin. 2016, 52, 553–562. [Google Scholar]
- Wu, J.; Cao, Q.; Shi, S.; Huang, X.; Lu, Z. Spatio-temporal variability of habitat quality in beijing-tianjin-hebei area based on land use change. Ying Yong Sheng Tai Xue Bao (J. Appl. Ecol.) 2015, 26, 3457–3466. [Google Scholar]
- Liu, J.; Li, S.; Ouyang, Z.; Tam, C.; Chen, X. Ecological and socioeconomic effects of China’s policies for ecosystem services. Proc. Natl. Acad. Sci. USA 2008, 105, 9477–9482. [Google Scholar] [CrossRef]
- Martinuzzi, S.; Januchowski-Hartley, S.R.; Pracheil, B.M.; McIntyre, P.B.; Plantinga, A.J.; Lewis, D.J.; Radeloff, V.C. Threats and opportunities for freshwater conservation under future land use change scenarios in the United States. Glob. Chang. Biol. 2014, 20, 113–124. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Jolly, I.; Sophocleous, M.; Zhang, L. Global impacts of conversions from natural to agricultural ecosystems on water resources: Quantity versus quality. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef] [Green Version]
- King, R.S.; Baker, M.E.; Kazyak, P.F.; Weller, D.E. How novel is too novel? Stream community thresholds at exceptionally low levels of catchment urbanization. Ecol. Appl. 2011, 21, 1659–1678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Max.dis (km) | Weight | Sensitivity of Habitat to Threats | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
FL | SL | OF | OW | RP | RB | HG | MG | LG | |||
Dryland | 4 | 0.8 | 0.7 | 0.6 | 0.5 | 0.4 | 0.7 | 0.8 | 0.6 | 0.5 | 0.4 |
Rural urbanized land | 5 | 1 | 0.8 | 0.7 | 0.6 | 0.5 | 0.8 | 0.7 | 0.7 | 0.6 | 0.5 |
Other urbanized land | 5 | 0.8 | 0.7 | 0.6 | 0.5 | 0.5 | 0.8 | 0.7 | 0.6 | 0.5 | 0.4 |
National road | 3 | 1 | 0.8 | 0.7 | 0.6 | 0.4 | 0.3 | 0.6 | 0.5 | 0.4 | 0.3 |
Provincial road | 2 | 0.7 | 0.7 | 0.6 | 0.5 | 0.3 | 0.2 | 0.5 | 0.4 | 0.3 | 0.2 |
Country road | 1 | 0.5 | 0.6 | 0.5 | 0.4 | 0.2 | 0.1 | 0.4 | 0.3 | 0.2 | 0.1 |
Variable | Description | Type | Unit |
---|---|---|---|
Spatial lag | Spatial lag variable | Continuous | - |
Biophysical variables | |||
PreC | Annual precipitation change (between 2005 and 2015) | Continuous | 1 × 10−1 mm |
TepC | Average temperature change (between 2005 and 2015) | Continuous | 1 × 10−1 °C |
Slope | Slope of surface | Continuous | Degree |
Soil | Soil type | Categorical | 1–4 |
Landforms | Topography and landforms | Categorical | 1–4 |
Socio-economic variables | |||
FisC | Change in fiscal revenue | Continuous | 1 × 104 CNY |
AgrC | Change in agricultural population | Continuous | Person |
HouPC | Change in household registration population | Continuous | Person |
GraAC | Change in grain production area | Continuous | Ha |
AgrOVC | Change in total agricultural output value | Continuous | 1 × 104 CNY |
Spatial variables | |||
DisR | Distance to the reservoir | Continuous | m |
DisRCL | Distance to rural urbanized land | Continuous | m |
DisNR | Distance to nearest national road | Continuous | m |
DisPR | Distance to nearest provincial road | Continuous | m |
DisCR | Distance to nearest country road | Continuous | m |
Habitat Quality | 2005 | 2015 | Variation | |||
---|---|---|---|---|---|---|
Area (km2) | Percent | Area (km2) | Percent | Area (km2) | Percent | |
High | 2010.15 | 58.22% | 2081.61 | 60.29% | 71.46 | 2.07% |
Medium | 948.99 | 27.49% | 847.9 | 24.56% | −101.09 | −2.93% |
Low | 493.41 | 14.29% | 523.04 | 15.15% | 29.63 | 0.86% |
Variable | B | S.E. | df | Sig. | Exp (B) |
---|---|---|---|---|---|
Spatial lag | 1.111 | 0.224 | 1 | 0.000 | 3.037 |
Landforms | - | - | 4 | 0.008 | - |
Landforms(1) | −0.383 | 0.247 | 1 | 0.121 | 0.682 |
Landforms(2) | −0.488 | 0.493 | 1 | 0.322 | 0.614 |
Landforms(3) | −1.162 | 0.318 | 1 | 0.000 | 0.313 |
DisRCL | −0.310 | 0.098 | 1 | 0.001 | 0.733 |
DisNR | −0.653 | 0.141 | 1 | 0.000 | 0.521 |
DisPR | −0.393 | 0.124 | 1 | 0.002 | 0.675 |
DisCR | −0.380 | 0.104 | 1 | 0.000 | 0.684 |
Slop | −0.278 | 0.100 | 1 | 0.005 | 0.757 |
GraAC | 0.721 | 0.139 | 1 | 0.000 | 2.056 |
HouPC | −0.391 | 0.108 | 1 | 0.000 | 0.677 |
PreC | 0.606 | 0.148 | 1 | 0.000 | 1.834 |
Constant | 0.339 | 0.183 | 1 | 0.064 | 1.403 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, S.; Wang, X.; Cai, Y.; Li, C.; Yan, R.; Cui, G.; Yang, Z. An Integrated Investigation of Spatiotemporal Habitat Quality Dynamics and Driving Forces in the Upper Basin of Miyun Reservoir, North China. Sustainability 2018, 10, 4625. https://doi.org/10.3390/su10124625
Yan S, Wang X, Cai Y, Li C, Yan R, Cui G, Yang Z. An Integrated Investigation of Spatiotemporal Habitat Quality Dynamics and Driving Forces in the Upper Basin of Miyun Reservoir, North China. Sustainability. 2018; 10(12):4625. https://doi.org/10.3390/su10124625
Chicago/Turabian StyleYan, Shengjun, Xuan Wang, Yanpeng Cai, Chunhui Li, Rui Yan, Guannan Cui, and Zhifeng Yang. 2018. "An Integrated Investigation of Spatiotemporal Habitat Quality Dynamics and Driving Forces in the Upper Basin of Miyun Reservoir, North China" Sustainability 10, no. 12: 4625. https://doi.org/10.3390/su10124625
APA StyleYan, S., Wang, X., Cai, Y., Li, C., Yan, R., Cui, G., & Yang, Z. (2018). An Integrated Investigation of Spatiotemporal Habitat Quality Dynamics and Driving Forces in the Upper Basin of Miyun Reservoir, North China. Sustainability, 10(12), 4625. https://doi.org/10.3390/su10124625