Utilization of CFBC Fly Ash as a Binder to Produce In-Furnace Desulfurization Sorbent
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Particle Size and Structure of CFBC Fly Ash
2.2.2. Free CaO Analysis of CFBC Fly Ash
2.2.3. Prepared of (Ca-Based) Desulfurization Sorbents
2.2.4. Compressive Strength Test of Ca-Based Desulfurization Sorbents
2.2.5. Desulfurization Test Using the FBC Reactor
3. Experimental Results and Discussion
3.1. Particle Size and Structure of CFBC Fly Ash
3.2. Free CaO Analysis of CFBC Fly Ash
3.3. Mineral Composition Analysis of Ca-Based Sorbents
3.4. Compressive Strength Test of Ca-Based Desulfurization Sorbents
3.5. Desulfurization Tests Using the FBC Reactor
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Oka, S.N.; Anthony, E.J. Fluidized Bed Combustion; Marcel Dekker Inc.: New York, NY, USA, 2004; pp. 1–31. ISBN 0-8247-4699-6. [Google Scholar]
- Cuenca, M.A.; Anthony, E.J. Pressurized Fluidized Bed Combustion; BLACKIE ACADEMIC & PROFESSIONAL: London, UK, 1995; pp. 80–113. ISBN 978-94-011-0617-7. [Google Scholar]
- Kang, Y.H.; Choi, Y.C. Development of non-sintered zero-OPC Binders using circulating fluidized bed combustion ash. Constr. Build. Mater. 2018, 178, 562–573. [Google Scholar] [CrossRef]
- Havlica, J.; Brandstetr, J.; Odler, I. Possibilities of utilizing solid residues from pressured fluidized bed coal combustion (PSBC) for the production of blended cements. Cem. Concr. Res. 1998, 28, 299–307. [Google Scholar] [CrossRef]
- Conn, R.E.; Sellakumar, K.; Bland, A.E. Utilization of CFB Fly ash for Construction Applications. In Proceedings of the International Conference on Fluidized Bed Combustion, Livingston, NJ, USA, 16–19 May 1999; pp. 1–18. [Google Scholar]
- Zhang, Z.; Qian, J.; You, C.; Hu, C. Use of circulating fluidized bed combustion fly ash and slag in autoclaved brick. Constr. Build. Mater. 2012, 35, 109–116. [Google Scholar] [CrossRef]
- Chen, X.; Yan, Y.; Liu, Y.; Hu, Z. Utilization of circulating fluidized bed fly ash for the preparation of foam concrete. Constr. Build. Mater. 2014, 54, 137–146. [Google Scholar] [CrossRef]
- Wu, T.; Chi, M.; Huang, R. Characteristics of CFBC fly ash and properties of cement-based composites with CFBC fly ash and coal-fired fly ash. Constr. Build. Mater. 2014, 66, 172–180. [Google Scholar] [CrossRef]
- Cho, Y.K.; Lee, Y.M.; Nam, S.Y.; Kim, C.S.; Seo, S.K.; Jo, S.H.; Lee, H.Y.; Ahn, J.W. A Basic Study on the Development of Backfill Material with Fly Ash and Bottom Ash of Circulating Fluid Bed Combustion. J. Korea Inst. Build. Constr. 2018, 18, 25–31. [Google Scholar]
- Jang, J.G.; Park, S.M.; Chung, S.H.; Ahn, J.H.; Kim, H.K. Utilization of circulating fluidized bed combustion ash in producing controlled low-strength materials with cement or sodium carbonate as activator. Constr. Build. Mater. 2018, 159, 642–651. [Google Scholar] [CrossRef]
- Park, S.M.; Seo, J.H.; Lee, H.K. Binder chemistry of sodium carbonate-activated CFBC fly ash. Mater. Struct. 2018, 51, 59–69. [Google Scholar] [CrossRef]
- Seo, J.H.; Baek, C.S.; Cho, J.S.; Ahn, J.H.; Yoon, D.Y.; Cho, K.H. Desulfurization Efficiency of Lime Absorbent in In-Furnace Desulfurization as Fly Ash Binder in Power Plant. J. Korean Inst. Resour. Recycl. 2018, 27, 58–65. [Google Scholar]
- Korea Agency for Technology and Standards (KATS) Homepage. KS L ISO 679: Methods of Testing Cements—Determination of Strength. Available online: https://standard.go.kr/KSCI/standardIntro/getStandardSearchView.do (accessed on 10 December 2018).
- Park, J.T.; Oh, H.S. A Study on the Pozzolan Reactivity and Mechanical Characteristic of Blended Portland Cements using CFBC Fly Ash. J. Rec. Constr. Resour. 2018, 6, 207–213. [Google Scholar]
- National Digital Science Library (of Korea) Homepage. Development of Commercialization and Manufacturing System for Zero Emission Binder Using Recycling Resource—Technological Innovation Promotion Study Project (2nd Report). Available online: http://www.ndsl.kr/ndsl/search/detail/report/reportSearchResultDetail.do?cn=TRKO201500019492 (accessed on 10 December 2018).
- Li, X.G.; Chen, Q.B.; Huang, K.Z.; Ma, B.G.; Wu, B. Cementitious properties and hydration mechanism of circulating fluidized bed combustion (CFBC) desulfurization ashes. Constr. Build. Mater. 2012, 36, 182–187. [Google Scholar] [CrossRef]
- Lim, S.H.; Choo, H.W.; Lee, W.J.; Lee, C.H. The Characterization of Controlled Low Strength Material (CLSM) Using High CaO Fly Ash without Chemical Alkaline Activator. J. Korean Geo-Environ. Soc. 2016, 17, 17–26. [Google Scholar] [Green Version]
- Lee, H.S.; Lim, H.S.; Ismail, M.A. Quantitative evaluation of free CaO in electric furnace slag using the ethylene glycol method. Constr. Build. Mater. 2017, 131, 676–681. [Google Scholar] [CrossRef]
- Lim, H.S.; Lee, H.S. An Experimental Study on the Free-CaO Quantitative Analysis in the Aging Period of the Electric Arc Furnace Slag. Proc. Korea Concr. Inst. 2014, 26, 349–350. [Google Scholar]
- Chie, H.B.; Lim, H.S.; Lee, H.S. A Study on the Content Evaluation of Free-CaO in Electric Arc Furnace Oxidizing Slag and Reduction Slag in accordance with its Collection Location at Open-air Storage Yard. J. Archit. Inst. Korea 2014, 34, 419–420. [Google Scholar]
- Seo, J.H.; Baek, C.S.; Kim, Y.J.; Choi, M.K.; Cho, K.H.; Ahn, J.W. Study on the Free CaO Analysis of Coal Ash in the Domestic Circulating Fluidized Bed Combustion using ethylene glycol method. J. Energy Eng. 2017, 26, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Sheng, G.; Li, Q.; Zhai, J. Investigation on the hydration of CFBC fly ash. Fuel 2012, 98, 61–66. [Google Scholar] [CrossRef]
- An, Y.M.; Jo, H.D.; Choi, W.K.; Park, Y.S.; Keel, S.I.; Lee, H.G. Study on Calcination Characteristics of Limestones for In-Furnace Desulfurization in Oxy-Fuel Combustion. J. KSEE 2009, 31, 371–377. [Google Scholar]
- Laursen, K.; Duo, W.; Grace, J.R.; Lim, J. Sulfation and reactivation characteristics of nine limestones. Fuel 1999, 79, 153–163. [Google Scholar] [CrossRef]
- Tsuchiai, H.; Ishizuka, T.; Ueno, T.; Hattori, H.; Kita, H. Highly active absorbent for SO2 removal prepared from coal fly ash. Ind. Eng. Chem. Res. 1995, 34, 1404–1411. [Google Scholar] [CrossRef]
Element | Limestone | SCFA | YCFA |
---|---|---|---|
CaO | 52.98 | 26.7 | 27.3 |
MgO | 2.02 | 10.50 | 4.41 |
SiO2 | 0.76 | 19.60 | 26.2 |
Al2O3 | 0.17 | 10.10 | 13.3 |
Fe2O3 | 0.31 | 20.03 | 13.3 |
SO3 | - | 8.41 | 8.65 |
NaO2 | - | 1.81 | 2.09 |
K2O | - | 1.01 | 1.01 |
Other | - | 1.84 | 3.74 |
LOI | 44.81 | - | - |
Sample Name | Limestone (%) | Binder (%) | |||
---|---|---|---|---|---|
SFA | YFA | Ca(OH)2 | OPC 1 | ||
SFC60 | 60 | 35 | 5 | ||
SFC70 | 70 | 25 | 5 | ||
SFC80 | 80 | 15 | 5 | ||
YFC60 | 60 | 35 | 5 | ||
YFC70 | 70 | 25 | 5 | ||
YFC80 | 80 | 15 | 5 | ||
OPS60 | 60 | 5 | 35 | ||
OPS70 | 70 | 5 | 25 | ||
OPS80 | 80 | 5 | 15 | ||
SFO70 | 70 | 25 | 5 |
Sample Name | CaO (%) | 0.1 N HCl Consumption (mL) | Free CaO (%) |
---|---|---|---|
SCFA | 26.7 | 3.38 | 9.46 |
YCFA | 27.3 | 3.86 | 10.81 |
Compressive Strength (MPa) | ||
---|---|---|
After 7 Days | After 28 Days | |
SFC60 | 11.0 | 15.3 |
SFC70 | 7.7 | 11.5 |
SFC80 | 3.0 | 5.0 |
YFC60 | 8.0 | 13.3 |
YFC70 | 5.2 | 9.3 |
YFC80 | 1.7 | 3.5 |
OPS60 | 17.0 | 24.8 |
OPS70 | 8.3 | 15.5 |
OPS80 | 3.3 | 6.0 |
SFO70 | 7.5 | 8.5 |
Conversion X-ray Analysis (mass %) | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Limestone | SFC60 (1,4,6) | SFC70 (6,7,8) | SFC80 (1,6,8) | YFC70 (1,2,4) | OPS70 (1,2,3) | SFO70 (2,1,4) | |||||||||||||||
Ca | S | O | Ca | S | O | Ca | S | O | Ca | S | O | Ca | S | O | Ca | S | O | Ca | S | O | |
1 | 53.0 | 7.9 | 36.3 | 28.2 | 22.1 | 46.0 | 29.8 | 21.7 | 46.4 | 31.4 | 20.3 | 46.6 | 30.8 | 21.8 | 46.6 | 33.8 | 19.7 | 45.4 | 27.4 | 16.6 | 44.1 |
2 | 52.2 | 7.0 | 37.0 | 28.6 | 22.3 | 46.2 | 30.6 | 21.1 | 46.4 | 30.8 | 20.4 | 46.2 | 30.7 | 22.0 | 46.7 | 33.0 | 18.8 | 45.5 | 27.0 | 18.6 | 45.0 |
3 | 53.2 | 6.9 | 36.5 | 28.6 | 22.2 | 46.1 | 30.0 | 21.5 | 46.3 | 31.0 | 21.1 | 46.5 | 30.7 | 21.9 | 46.6 | 33.3 | 20.3 | 45.7 | 27.8 | 16.6 | 44.1 |
Average | 52.8 | 7.2 | 36.6 | 28.4 | 22.2 | 46.1 | 30.1 | 21.4 | 46.3 | 31.0 | 20.6 | 46.4 | 30.7 | 21.9 | 46.6 | 33.3 | 19.6 | 45.5 | 27.4 | 17.2 | 44.4 |
Coefficient of utilization (%) | 30.9 | 94.4 | 91.2 | 87.6 | 93.1 | 83.4 | 73.4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baek, C.; Seo, J.; Choi, M.; Cho, J.; Ahn, J.; Cho, K. Utilization of CFBC Fly Ash as a Binder to Produce In-Furnace Desulfurization Sorbent. Sustainability 2018, 10, 4854. https://doi.org/10.3390/su10124854
Baek C, Seo J, Choi M, Cho J, Ahn J, Cho K. Utilization of CFBC Fly Ash as a Binder to Produce In-Furnace Desulfurization Sorbent. Sustainability. 2018; 10(12):4854. https://doi.org/10.3390/su10124854
Chicago/Turabian StyleBaek, Chulseoung, Junhyung Seo, Moonkwan Choi, Jinsang Cho, Jiwhan Ahn, and Kyehong Cho. 2018. "Utilization of CFBC Fly Ash as a Binder to Produce In-Furnace Desulfurization Sorbent" Sustainability 10, no. 12: 4854. https://doi.org/10.3390/su10124854
APA StyleBaek, C., Seo, J., Choi, M., Cho, J., Ahn, J., & Cho, K. (2018). Utilization of CFBC Fly Ash as a Binder to Produce In-Furnace Desulfurization Sorbent. Sustainability, 10(12), 4854. https://doi.org/10.3390/su10124854