Developing an Accessible Landslide Susceptibility Model Using Open-Source Resources
Abstract
:1. Introduction
2. Method
2.1. Method Outline
2.2. Landslide Susceptibility Modeling
2.3. Case Study Application
3. Results
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Formetta, G.; Rago, V.; Capparelli, G.; Rigon, R.; Muto, F.; Versace, P. Integrated Physically based System for Modeling Landslide Susceptibility. Procedia Earth Planet. Sci. 2014, 9, 74–82. [Google Scholar] [CrossRef]
- Lee, S.; Hong, S.-M.; Jung, H.-S. A support vector machine for landslide susceptibility mapping in Gangwon province, Korea. Sustainability 2017, 9, 48. [Google Scholar] [CrossRef]
- Jeong, S.; Lee, K.; Kim, J.; Kim, Y. Analysis of rainfall-induced landslide on unsaturated soil slopes. Sustainability 2017, 9, 1280. [Google Scholar] [CrossRef]
- Crosta, G.B.; Frattini, P. Rainfall-induced landslides and debris flows. Hydrol. Process. 2008, 22, 473–477. [Google Scholar] [CrossRef]
- Safaei, M.; Omar, H.; Huat, B.; Yousof, Z.B.M.; Ghiasi, V. Deterministic rainfall induced landslide approaches, advantage and limitation. Electron. J. Geotech. Eng. 2011, 16, 1619–1650. [Google Scholar]
- Simoni, S.; Zanotti, F.; Bertoldi, G.; Rigon, R. Modelling the probability of occurrence of shallow landslides and channelized debris flows using GEOtop-FS. Hydrol. Process. 2008, 22, 532–545. [Google Scholar] [CrossRef]
- El-Emam, M.M.; Bathurst, R.J. Influence of reinforcement parameters on the seismic response of reduced-scale reinforced soil retaining walls. Geotext. Geomembr. 2007, 25, 33–49. [Google Scholar] [CrossRef]
- Dietrich, W.; Montgomery, D. A Digital Terrain Model for Mapping Shallow Landslide Potential (SHALSTAB); University of California: Berkeley, CA, USA, 1988. [Google Scholar]
- Dhakal, A.S.; Sidle, R.C. Long-term modelling of landslides for different forest management practices. Earth Surf. Process. Landf. 2003, 28, 853–868. [Google Scholar] [CrossRef]
- Burton, A.; Bathurst, J. Physically based modelling of shallow landslide sediment yield at a catchment scale. Environ. Geol. 1998, 35, 89–99. [Google Scholar] [CrossRef]
- Montgomery, D.R.; Sullivan, K.; Greenberg, H.M. Regional test of a model for shallow landsliding. Hydrol. Process. 1998, 12, 943–955. [Google Scholar] [CrossRef]
- Borga, M.; Dalla Fontana, G.; Cazorzi, F. Analysis of topographic and climatic control on rainfall-triggered shallow landsliding using a Quasi-dynamic wetness index. J. Hydrol. 2002, 268, 56–71. [Google Scholar] [CrossRef]
- Casadei, M.; Dietrich, W.; Miller, N. Testing a model for predicting the timing and location of shallow landslide initiation in soil-mantled landscapes. Earth Surf. Process. Landf. 2003, 28, 925–950. [Google Scholar] [CrossRef]
- Vieira, B.C.; Fernandes, N.F.; Filho, O.A. Shallow landslide prediction in the Serra do Mar, São Paulo, Brazil. Nat. Hazards Earth Syst. Sci. 2010, 10, 1829–1837. [Google Scholar] [CrossRef]
- Wu, W.; Sidle, R.C. A distributed slope stability model for steep forested basins. Water Resour. Res. 1995, 31, 2097–2110. [Google Scholar] [CrossRef]
- Pack, R.; Tarboton, D.; Goodwin, C. The SINMAP approach to terrain stability mapping. In Proceedings of the 8th Congress of the International Association of Engineering Geology, Vancouver, BC, Canada, 21–25 September 1998. [Google Scholar]
- Schwarz, M.; Lehmann, P.; Or, D. Quantifying lateral root reinforcement in steep slopes—From a bundle of roots to tree stands. Earth Surf. Process. Landf. 2010, 35, 354–367. [Google Scholar] [CrossRef]
- O’loughlin, C.; Pearce, A. Influence of Cenozoic geology on mass movement and sediment yield response to forest removal, North Westland, New Zealand. Bull. Int. Assoc. Eng. Geol.-Bull. Assoc. Int. Géol. Ing. 1976, 13, 41–46. [Google Scholar] [CrossRef]
- Wu, T.H.; McKinnell, W.P., III; Swanston, D.N. Strength of tree roots and landslides on Prince of Wales Island, Alaska. Can. Geotech. J. 1979, 16, 19–33. [Google Scholar] [CrossRef]
- Von Ruette, J.; Lehmann, P.; Or, D. Rainfall-triggered shallow landslides at catchment scale: Threshold mechanics-based modeling for abruptness and localization. Water Resour. Res. 2013, 49, 6266–6285. [Google Scholar] [CrossRef]
- Martinez-Graña, A.M.; Goy, J.; Zazo, C. Ground movement risk in ‘Las Batuecas-Sierra de Francia’ and ‘Quilamas’ nature parks (central system, Salamanca, Spain). J. Maps 2014, 10, 223–231. [Google Scholar] [CrossRef]
- Martínez-Graña, A.M.; Goy, J.L.; Zazo, C. Geomorphological applications for susceptibility mapping of landslides in natural parks. Environ. Eng. Manag. J. EEMJ 2016, 15, 327–338. [Google Scholar]
- Baum, R.L.; Savage, W.Z.; Godt, J.W. TRIGRS—A Fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis. US Geol. Surv. Open-File Rep. 2002, 424, 38. [Google Scholar]
- Malet, J.-P.; Van Asch, T.W.J.; Van Beek, R.; Maquaire, O. Forecasting the behaviour of complex landslides with a spatially distributed hydrological model. Nat. Hazards Earth Syst. Sci. 2005, 5, 71–85. [Google Scholar] [CrossRef]
- Kuriakose, S.L.; Van Beek, L.; Van Westen, C. Parameterizing a physically based shallow landslide model in a data poor region. Earth Surf. Process. Landf. 2009, 34, 867–881. [Google Scholar] [CrossRef]
- Muntohar, A.S.; Liao, H.-J. Rainfall infiltration: Infinite slope model for landslides triggering by rainstorm. Nat. Hazards 2010, 54, 967–984. [Google Scholar] [CrossRef]
- Wang, P.-H.; Wu, C.-C.; Wang, W.-H. TRIGRS—Assessment of the Effects of Grid Size, Rainfall Pattern, and Groundwater Stage on Slope Stability at Shan-Tsun-Laio Landslide; National Pingtung University of Science and Technology Journal; National Pingtung University of Science and Technology: Pingtung, Taiwan, 2010; pp. 664–677. [Google Scholar]
- Tan, C.H.; Ku, C.Y.; Chi, S.Y.; Chen, Y.H.; Fei, L.Y.; Lee, J.F.; Su, T.W. Assessment of regional rainfall-induced landslides using 3S-based hydro-geological model. In Proceedings of the 10th International Symposium on Landslides and Engineered Slopes, Xi’an, China, 30 June–4 July 2008. [Google Scholar]
- Liu, C.-N.; Wu, C.-C. Mapping susceptibility of rainfall-triggered shallow landslides using a probabilistic approach. Environ. Geol. 2008, 55, 907–915. [Google Scholar] [CrossRef]
- Chien-Yuan, C.; Tien-Chien, C.; Fan-Chieh, Y.; Sheng-Chi, L. Analysis of time-varying rainfall infiltration induced landslide. Environ. Geol. 2005, 48, 466–479. [Google Scholar] [CrossRef]
- Lan, H.X.; Lee, C.F.; Zhou, C.H.; Martin, C.D. Dynamic characteristics analysis of shallow landslides in response to rainfall event using GIS. Environ. Geol. 2004, 47, 254–267. [Google Scholar] [CrossRef]
- Liao, Z.; Hong, Y.; Wang, J.; Fukuoka, H.; Sassa, K.; Karnawati, D.; Fathani, F. Prototyping an experimental early warning system for rainfall-induced landslides in Indonesia using satellite remote sensing and geospatial datasets. Landslides 2010, 7, 317–324. [Google Scholar] [CrossRef]
- Aleotti, P.; Chowdhury, R. Landslide hazard assessment: Summary review and new perspectives. Bull. Eng. Geol. Environ. 1999, 58, 21–44. [Google Scholar] [CrossRef]
- Chen, D.; Shams, S.; Carmona-Moreno, C.; Leone, A. Assessment of open source GIS software for water resources management in developing countries. J. Hydro-Environ. Res. 2010, 4, 253–264. [Google Scholar] [CrossRef]
- Mazzorana, B.; Comiti, F.; Scherer, C.; Fuchs, S. Developing consistent scenarios to assess flood hazards in mountain streams. J. Environ. Manag. 2012, 94, 112–124. [Google Scholar] [CrossRef] [PubMed]
- Baum, R.L.; Godt, J.W.; Savage, W.Z. Estimating the timing and location of shallow rainfall-induced landslides using a model for transient, unsaturated infiltration. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Park, D.W.; Nikhil, N.V.; Lee, S.R. Landslide and debris flow susceptibility zonation using Trigrs for the 2011 Seoul landslide event. Nat. Hazards Earth Syst. Sci. 2013, 13, 2833. [Google Scholar] [CrossRef]
- Funtowicz, S.O.; Ravetz, J.R. The worth of a songbird: Ecological economics as a post-normal science. Ecol. Econ. 1994, 10, 197–207. [Google Scholar] [CrossRef]
- Kolkman, M.J.; Kok, M.; van der Veen, A. Mental model mapping as a new tool to analyse the use of information in decision-making in integrated water management. Phys. Chem. Earth Parts A/B/C 2005, 30, 317–332. [Google Scholar] [CrossRef]
- Crosta, G.; Frattini, P. Distributed modelling of shallow landslides triggered by intense rainfall. Nat. Hazards Earth Syst. Sci. 2003, 3, 81–93. [Google Scholar] [CrossRef]
- Kim, D.; Im, S.; Lee, S.H.; Hong, Y.; Cha, K.-S. Predicting the rainfall-triggered landslides in a forested mountain region using trigrs model. J. Mt. Sci. 2010, 7, 83–91. [Google Scholar] [CrossRef]
- Huang, J.; Kao, S. Optimal estimator for assessing landslide model performance. Hydrol. Earth Syst. Sci. Discuss. 2006, 10, 957–965. [Google Scholar] [CrossRef]
- Godt, J.; Baum, R.; Savage, W.; Salciarini, D.; Schulz, W.; Harp, E. Transient deterministic shallow landslide modeling: Requirements for susceptibility and hazard assessments in a GIS framework. Eng. Geol. 2008, 102, 214–226. [Google Scholar] [CrossRef]
- Montrasio, L.; Valentino, R.; Losi, G. Towards a real-time susceptibility assessment of rainfall-induced shallow landslides on a regional scale. Nat. Hazards Earth Syst. Sci. 2011, 11, 1927. [Google Scholar] [CrossRef]
- Sorbino, G.; Sica, C.; Cascini, L. Susceptibility analysis of shallow landslides source areas using physically based models. Nat. Hazards 2010, 53, 313–332. [Google Scholar] [CrossRef]
- Liao, Z.; Hong, Y.; Kirschbaum, D.; Adler, R.F.; Gourley, J.J.; Wooten, R. Evaluation of TRIGRS (transient rainfall infiltration and grid-based regional slope-stability analysis)’s predictive skill for hurricane-triggered landslides: A case study in Macon county, North Carolina. Nat. Hazards 2011, 58, 325–339. [Google Scholar] [CrossRef]
- Bathrellos, G.D.; Gaki-Papanastassiou, K.; Skilodimou, H.D.; Papanastassiou, D.; Chousianitis, K.G. Potential suitability for urban planning and industry development using natural hazard maps and geological–geomorphological parameters. Environ. Earth Sci. 2012, 66, 537–548. [Google Scholar] [CrossRef]
- Bathrellos, G.D.; Gaki-Papanastassiou, K.; Skilodimou, H.D.; Skianis, G.A.; Chousianitis, K.G. Assessment of rural community and agricultural development using geomorphological–geological factors and GIS in the Trikala prefecture (central Greece). Stoch. Environ. Res. Risk Assess. 2013, 27, 573–588. [Google Scholar] [CrossRef]
- Bathrellos, G.D.; Skilodimou, H.D.; Chousianitis, K.; Youssef, A.M.; Pradhan, B. Suitability estimation for urban development using multi-hazard assessment map. Sci. Total Environ. 2017, 575, 119–134. [Google Scholar] [CrossRef] [PubMed]
Modeling | Description | License/Open source |
---|---|---|
CHASM | Hydrological Stability Model | Standalone Software |
LISA | Stability Analysis | Scripts, No source |
SHALSTAB | Shallow Landslide Stability Model | jgrasstools (Java source), supplied ArchView extension dll |
SMORPH | Slope Morphology Model | ESRI ArcScript |
iSLAM/IDSSM | Shallow Landslide Model, Dynamic Stability and Shallow Landslide Model | No open source |
SINMAP | Stability Factor Method | MW-SINMAP |
SHETRAN | European Hydrology System | No open source |
TRIGRS | Rainfall Intensity and Regional Slope Stability | USGS TRIGRS, open source, Scripts |
PROBSTAB | PCRaster GIS Package (Stability Model) | No open source |
PISA | Slope Probability Analysis Model | PISA-m Software |
SUSHI | Slope Stability and Water Saturation Simulation | No open source |
GEOtop-FS | Hydrological Dispersion Model, Slope Stability Probability Model | No open source |
Study | Case Study | Environmental Variables | Elevation Data and Year |
---|---|---|---|
TRIGRS—Assessment of the effects of grid size, rainfall pattern, and groundwater stage on slope stability at Shan-Tsun-Laio landslide [27] | Taiwan, Fu-Hsin village Chihchang Township Taitung County | Grid size, Rainfall pattern, Groundwater stage | DEM (5 m × 5 m, 10 m × 10 m) 2012 |
Assessment of regional rainfall-induced landslides using 3S-based hydro-geological model [28] | Taiwan, Ta-Chia River Central western Taiwan | Geology, Climatic setting | DTM (40 m × 40 m) 2008 |
Mapping susceptibility of rainfall-triggered shallow landslides using a probabilistic approach [29] | Taiwan, Route Nantou 71 Bet. Wujai tribe and Fachi village Central Taiwan | DEM (40 m × 40 m, 10 m × 10 m) 2007 | |
Analysis of time-varying rainfall infiltration induced landslide [30] | Taiwan, Tenlio Mountain Northern Taipei County | Climatic antecedent condition | DTM 2005 |
Rainfall infiltration: infinite slope model for landslides triggering by rainstorm [26] | Hong Kong, Tung Chung East Lantau Island | Soil type | 2010 |
Dynamic characteristics analysis of shallow landslides in response to rainfall event using GIS [31] | Hong Kong, Tung Chung East Lantau Island | Historic rainfall record | DEM 2005 |
Prototyping an experimental early warning system for rainfall-induced landslides in Indonesia using satellite remote sensing and geospatial datasets [32] | Indonesia, Karnaganyar Java | Rainfall | DEM 2010 |
Parameter | Units | Value |
---|---|---|
Water Unit Weight (γω) | kN/m3 | 9.8 |
Soil Cohesion (c) | kPa | 2 |
Friction Angle () | degree | 38.5 |
Soil Unit Weight (γs) | KN/m3 | 19 |
Initial Infiltration rate (Iz) | Ms−1 | 0 |
Rainfall Period (h) | hours | 48 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, K.; Kim, S.; Chae, T.; Park, D. Developing an Accessible Landslide Susceptibility Model Using Open-Source Resources. Sustainability 2018, 10, 293. https://doi.org/10.3390/su10020293
An K, Kim S, Chae T, Park D. Developing an Accessible Landslide Susceptibility Model Using Open-Source Resources. Sustainability. 2018; 10(2):293. https://doi.org/10.3390/su10020293
Chicago/Turabian StyleAn, Kyungjin, Suyeon Kim, Taebyeong Chae, and Daeryong Park. 2018. "Developing an Accessible Landslide Susceptibility Model Using Open-Source Resources" Sustainability 10, no. 2: 293. https://doi.org/10.3390/su10020293
APA StyleAn, K., Kim, S., Chae, T., & Park, D. (2018). Developing an Accessible Landslide Susceptibility Model Using Open-Source Resources. Sustainability, 10(2), 293. https://doi.org/10.3390/su10020293