Silver Buckshot or Bullet: Is a Future “Energy Mix” Necessary?
Abstract
:1. Introduction
2. Alternative Energy Mixes and the “Silver Buckshot”
3. Integral Fast Reactors—An Exemplar “Silver Bullet” Clean-Energy Technology
4. Unconventional Fossil Future?
5. More Silver Bullets
6. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- World Energy Council (WEC). Energy Trilemma Index Tool. Available online: https://trilemma.worldenergy.org/ (accessed on 15 February 2017).
- Verbruggen, A. Renewable and nuclear power: A common future? Energy Policy 2008, 36, 4036–4047. [Google Scholar] [CrossRef]
- Hoffert, M.I.; Caldeira, K.; Benford, G.; Criswell, D.R.; Green, C.; Herzog, H.; Jain, A.K.; Kheshgi, H.S.; Lackner, K.S.; Lewis, J.S.; et al. Advanced technology paths to global climate stability: Energy for a greenhouse planet. Science 2002, 298, 981–987. [Google Scholar] [CrossRef] [PubMed]
- Clarke, L.; Edmonds, J.; Jacoby, J.; Pitcher, H.; Reilly, J.; Richels, R.; Parson, E.; Burkett, V.; Fisher-Vanden, K.; Keith, D.; et al. Scenarios of Greenhouse Gas Emissions and Atmospheric Concentrations; Department of Energy, Office of Biological & Environmental Research: Washington, DC, USA, 2007. [Google Scholar]
- Energy Information Administration (EIA). International Energy Outlook 2016; Energy Information Administration: Washington, DC, USA, 2016.
- International Energy Agency (IEA). World Energy Outlook 2016; International Energy Agency: Paris, France, 2016. [Google Scholar]
- Sims, R.E.H.; Schock, R.N.; Adegbululgbe, A.; Fenhann, J.; Konstantinaviciute, I.; Moomaw, W.; Nimir, H.B.; Schlamadinger, B. IPCC Fourth Assessment Report: Climate Change 2007 (AR4)—Climate Change 2007: Working Group III: Mitigation of Climate Change; Intergovernmental Panel on Climate Change: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Pielke, R., Jr.; Wigley, T.M.L.; Green, C. Dangerous assumptions. Nature 2008, 452, 531–532. [Google Scholar] [CrossRef] [PubMed]
- Brook, B.W.; Blomqvist, L. Innovations and limits in methods of forecasting global environmental change. Basic Appl. Ecol. 2016, 17, 565–575. [Google Scholar] [CrossRef]
- Hong, S.; Bradshaw, C.J.A.; Brook, B.W. Nuclear power can reduce emissions and maintain a strong economy: Rating Australia’s optimal future electricity-generation mix by technologies and policies. Appl. Energy 2014, 136, 712–725. [Google Scholar] [CrossRef]
- Greenpeace. Energy Evolution. 2012. Available online: https://www.greenpeace.org/international/Global/international/publications/climate/2015/Energy-Revolution-2015-Full.pdf (accessed on 19 January 2018).
- Jacobson, M.Z.; Delucchi, M.A. A path to sustainable energy by 2030. Sci. Am. 2009, 301, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, M.Z.; Delucchi, M.A.; Bauer, Z.A.F.; Goodman, S.C.; Chapman, W.E.; Cameron, M.A.; Bozonnat, C.; Chobadi, L.; Clonts, H.A.; Enevoldsen, P.; et al. 100% clean and renewable wind, water, and sunlight all-sector energy roadmaps for 139 countries of the world. Joule 2017, 1, 108–121. [Google Scholar] [CrossRef]
- Zweibel, K.; Mason, J.; Fthenakis, V. A solar grand plan. Sci. Am. 2008, 298, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Hayden, H. The Solar Fraud; Vales Lake: Pueblo West, CO, USA, 2004. [Google Scholar]
- Elliston, B.; Diesendorf, M.; MacGill, I. Simulations of scenarios with 100% renewable electricity in the Australian National Electricity Market. Energy Policy 2012, 45, 606–613. [Google Scholar] [CrossRef]
- MacKay, D.J.C. Sustainable energy—Without the hot air. Am. J. Phys. 2010, 78, 222–223. [Google Scholar]
- Smil, V. Energy Transitions: History, Requirements, Prospects; Praeger: Toronto, AB, Canada, 2010. [Google Scholar]
- Smil, V. Energy Myths and Realities: Bringing Science to the Energy Policy Debate; Government Institutes: Washington, DC, USA, 2010.
- Jacobson, M.Z.; Delucchi, M.A.; Bazouin, G.; Bauer, Z.A.F.; Heavey, C.C.; Fisher, E.; Morris, S.B.; Piekutowski, D.J.Y.; Vencill, T.A.; Yeskoo, T.W. 100% clean and renewable wind, water, and sunlight (WWS) all-sector energy roadmaps for the 50 United States. Energy Environ. Sci. 2015, 8, 2093–2117. [Google Scholar] [CrossRef]
- MacDonald, A.E.; Clack, C.T.M.; Alexander, A.; Dunbar, A.; Wilczak, J.; Xie, Y. Future cost-competitive electricity systems and their impact on US CO2 emissions. Nat. Clim. Chang. 2016, 6, 526–531. [Google Scholar] [CrossRef]
- Smith, S.J.; Edmonds, J.; Hartin, C.A.; Mundra, A.; Calvin, K. Near-term acceleration in the rate of temperature change. Nat. Clim. Chang. 2015, 5, 333–336. [Google Scholar] [CrossRef]
- Bistline, J.E.; Blanford, G.J. More than one arrow in the quiver: Why “100% renewables” misses the mark. Proc. Natl. Acad. Sci. USA 2016, 113, E3988. [Google Scholar] [CrossRef] [PubMed]
- Heard, B.P.; Brook, B.W.; Wigley, T.M.L.; Bradshaw, C.J.A. Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems. Renew. Sustain. Energy Rev. 2017, 76, 1122–1133. [Google Scholar] [CrossRef]
- Hansen, J.; Kharecha, P.; Sato, M.; Masson-Delmotte, V.; Ackerman, F.; Beerling, D.J.; Hearty, P.J.; Hoegh-Guldberg, O.; Hsu, S.-L.; Parmesan, C.; et al. Assessing “dangerous climate change”: Required reduction of carbon emissions to protect young people, future generations and nature. PLoS ONE 2013, 8, e81648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rittel, H.W.J.; Webber, M.M. Dilemmas in a general theory of planning. Policy Sci. 1973, 4, 155–169. [Google Scholar] [CrossRef]
- Trembath, A.; Pielke, R., Jr.; Nordhaus, T.; Caine, M.; Moss, T.; Sarewitz, D.; Shellenberger, M.; Lloyd, J.; Roy, J.; Margonelli, L.; et al. Our High-Energy Planet: A Climate Pragmatism Project. Available online: https://thebreakthrough.org/index.php/programs/energy-and-climate/our-high-energy-planet (accessed on 27 November 2017).
- Kriegler, E.; Luderer, G.; Rogelj, J.; Riahi, K.; Schaeffer, M.; Pietzcker, R.C.; Krey, V. Energy system transformations for limiting end-of-century warming to below 1.5 °C. Nat. Clim. Chang. 2015, 5, 519–527. [Google Scholar]
- Prins, G.; Rayner, S. Time to ditch Kyoto. Nature 2007, 449, 973–975. [Google Scholar] [CrossRef] [PubMed]
- Blees, T. Prescription for the Planet: The Painless Remedy for Our Energy & Environmental Crises; Booksurge: Charleston, SC, USA, 2008. [Google Scholar]
- Connolly, D.; Lund, H.; Mathiesen, B.V. Smart snergy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union. Renew. Sustain. Energy Rev. 2016, 60, 1634–1653. [Google Scholar] [CrossRef]
- Delucchi, M.A.; Jacobson, M.Z. Providing all global energy with wind, water, and solar power, Part II: Reliability, system and transmission costs, and policies. Energy Policy 2011, 39, 1170–1190. [Google Scholar] [CrossRef]
- Jacobson, M.Z.; Delucchi, M.A. Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials. Energy Policy 2011, 39, 1154–1169. [Google Scholar] [CrossRef]
- Ekins, P.; Anandarajah, G.; Strachan, N. Towards a low-carbon economy: Scenarios and policies for the UK. Clim. Policy 2011, 11, 865–882. [Google Scholar] [CrossRef]
- Breyer, C.; Bogdanov, D.; Komoto, K.; Ehara, T.; Song, J.; Enebish, N. North-East Asian super grid: Renewable energy mix and economics. Jpn. J. Appl. Phys. 2015, 54, 08KJ01. [Google Scholar] [CrossRef]
- Beyond Zero Emissions. Zero Carbon Australia Stationary Energy Plan; Beyond Zero Emissions: Melbourne, Australia, 2010. [Google Scholar]
- Jacobson, M.Z.; Delucchi, M.A.; Cameron, M.A.; Frew, B.A. Low-cost solution to the grid reliability problem with 100% penetration of intermittent wind, water, and solar for all purposes. Proc. Natl. Acad. Sci. USA 2015, 112, 15060–15065. [Google Scholar] [CrossRef] [PubMed]
- Frew, B.A.; Becker, S.; Dvorak, M.J.; Andresen, G.B.; Jacobson, M.Z. Flexibility mechanisms and pathways to a highly renewable US electricity future. Energy 2016, 101, 65–78. [Google Scholar] [CrossRef]
- Murakami, K.; Ida, T.; Tanaka, M.; Friedman, L. Consumers’ willingness to pay for renewable and nuclear energy: A comparative analysis between the US and Japan. Energy Econ. 2015, 50, 178–189. [Google Scholar] [CrossRef]
- Nicholson, M.; Biegler, T.; Brook, B.W. How carbon pricing changes the relative competitiveness of low-carbon baseload generating technologies. Energy 2011, 36, 305–313. [Google Scholar] [CrossRef]
- Australia Energy Market Operator (AEMO); Manitoba HVDC Research Centre. Report for Review of the Black System South Australia Report; Australia Energy Market Operator: Melbourne, Australia, 2017. [Google Scholar]
- Trainer, T. Can renewables etc. solve the greenhouse problem? The negative case. Energy Policy 2010, 38, 4107–4114. [Google Scholar] [CrossRef]
- Hong, S.; Brook, B.W. A nuclear-to-gas transition in South Korea: Is it environmentally friendly or economically viable? Energy Policy 2018, 112, 67–73. [Google Scholar] [CrossRef]
- Steinke, F.; Wolfrum, P.; Hoffmann, C. Grid vs. storage in a 100% renewable Europe. Renew. Energy 2013, 50, 826–832. [Google Scholar] [CrossRef]
- Haegel, N.M.; Margolis, R.; Buonassisi, T.; Feldman, D.; Froitzheim, A.; Garabedian, R.; Green, M.; Glunz, S.; Henning, H.-M.; Holder, B.; et al. Terawatt-scale photovoltaics: Trajectories and challenges. Science 2017, 356, 141–143. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Wang, J.; Dooner, M.; Clarke, J. Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl. Energy 2015, 137, 511–536. [Google Scholar] [CrossRef]
- Hohmeyer, O.H.; Bohm, S. Trends toward 100% renewable electricity supply in Germany and Europe: A paradigm shift in energy policies. WIREs Energy Environ. 2015, 4, 74–97. [Google Scholar] [CrossRef]
- Purvins, A.; Papaioannou, I.T.; Debarberis, L. Application of battery-based storage systems in household-demand smoothening in electricity-distribution grids. Energy Convers. Manag. 2013, 65, 272–284. [Google Scholar] [CrossRef]
- Tesla. Powerwall|The Tesla Home Battery. Available online: https://www.teslamotors.com/en_GB/powerwall (accessed on 20 November 2017).
- Truong, C.N.; Naumann, M.; Karl, R.C.; Müller, M.; Jossen, A.; Hesse, H.C. Economics of Residential Photovoltaic Battery Systems in Germany: The Case of Tesla’s Powerwall. Batteries 2016, 2, 14. [Google Scholar] [CrossRef]
- Bradbury, K.; Pratson, L.; Patiño-Echeverri, D. Economic viability of energy storage systems based on price arbitrage potential in real-time U.S. electricity markets. Appl. Energy 2014, 114, 512–519. [Google Scholar] [CrossRef]
- Wilson, I.A.G.; Rennie, A.J.R.; Ding, Y.; Eames, P.C.; Hall, P.J.; Kelly, N.J. Historical daily gas and electrical energy flows through Great Britain’s transmission networks and the decarbonisation of domestic heat. Energy Policy 2013, 61, 301–305. [Google Scholar] [CrossRef] [Green Version]
- Kong, Z.; Dong, X.; Zhou, Z. Seasonal imbalances in natural gas imports in major Northeast Asian countries: Variations, reasons, outlooks and countermeasures. Sustainability 2015, 7, 1690–1711. [Google Scholar] [CrossRef]
- Cochran, J.; Mai, T.; Bazilian, M. Meta-analysis of high penetration renewable energy scenarios. Renew. Sustain. Energy Rev. 2014, 29, 246–253. [Google Scholar] [CrossRef]
- Baek, J. Do nuclear and renewable energy improve the environment? Empirical evidence from the United States. Ecol. Indic. 2016, 66, 352–356. [Google Scholar] [CrossRef]
- Renn, O.; Marshall, J.P. Coal, nuclear and renewable energy policies in Germany: From the 1950s to the “Energiewende”. Energy Policy 2016, 99, 224–232. [Google Scholar] [CrossRef]
- Brook, B.W. Could nuclear fission energy, etc., solve the greenhouse problem? The affirmative case. Energy Policy 2012, 42, 4–8. [Google Scholar] [CrossRef]
- Alonso, A.; Brook, B.W.; Meneley, D.A.; Misak, J.; Blees, T.; van Erp, J.B. Why nuclear energy is essential to reduce anthropogenic greenhouse gas emission rates. EPJ Nucl. Sci. Technol. 2015, 1, 3. [Google Scholar] [CrossRef]
- Brook, B.W.; van Erp, J.B.; Meneley, D.A.; Blees, T.A. The case for a near-term commercial demonstration of the Integral Fast Reactor. Sustain. Mater. Technol. 2015, 3, 2–6. [Google Scholar] [CrossRef]
- Till, C.E.; Chang, Y.I. Plentiful Energy: The Story of the Integral Fast Reactor; CreateSpace Independent Publishing Platform: Idaho Falls, ID, USA, 2011; p. 404. [Google Scholar]
- Bird, D.K.; Haynes, K.; van den Honert, R.; McAneney, J.; Poortinga, W. Nuclear power in Australia: A comparative analysis of public opinion regarding climate change and the Fukushima disaster. Energy Policy 2014, 65, 644–653. [Google Scholar] [CrossRef]
- Hannum, W.H. The technology of the integral fast reactor and its associated fuel cycle. Prog. Nucl. Energy 1997, 31. [Google Scholar]
- Clinton, W.J. U.S. President: 1993 State of the Union Address; Addressed before a Joint Session of Congress on Administration Goals; Washington, DC, USA, 1993. Available online: http://www.presidency.ucsb.edu/ws/?pid=47232 (accessed on 24 January 2018).
- GIF. GIF Portal. Available online: https://www.gen-4.org/gif/jcms/c_9492/members (accessed on 20 November 2017).
- Lynas, M. The God Species: How the Planet Can Survive the Age of Humans; Fourth Estate: London, UK, 2011. [Google Scholar]
- Lightfoot, H.D.; Manheimer, W.; Meneley, D.A.; Pendergast, D.; Stanford, G.S. Nuclear fission fuel is inexhaustible. In Proceedings of the EIC Climate Change Technology, Ottawa, ON, Canada, 10–12 May 2006; pp. 1–8. [Google Scholar]
- Shuster, J.; Archambeau, C.; Blees, T.; Chang, T.; Hunter, R.; Ware, R.; Wooley, J. Economic and Business Case for the Pyroprocessing of Spent Nuclear Fuel (Snf): 100 Ton/Yr Pyroprocessing Demonstration Plant. Available online: http://www.thesciencecouncil.com/index.php/latest-news/243-economicbusiness-case-for-the-pyroprocessing-of-spent-nuclear-fuel (accessed on 20 January 2018).
- IAEA Office of External Relations and Policy Coordination. Multilateral Approaches to the Nuclear Fuel Cycle: Preliminary Views of the IAEA Secretariat for the Proposed Study. Available online: https://www.iaea.org/sites/default/files/preliminaryviews.pdf (accessed on 12 January 2018).
- World Nuclear Association (WNA). Fukushima Accident—World Nuclear Association. Available online: http://www.world-nuclear.org/information-library/safety-and-security/safety-of-plants/fukushima-accident.aspx (accessed on 28 November 2017).
- World Health Organization (WHO). Health Risk Assessment: From the Nuclear Accident after the 2011 Great East Japan Earthquake and Tsunami: Based on a Preliminary Dose Estimation; 92-4-150513-3; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- World Nuclear Association (WNA). Fast Neutron Reactors. Available online: http://www.world-nuclear.org/information-library/current-and-future-generation/fast-neutron-reactors.aspx (accessed on 15 November 2017).
- International Atomic Energy Agency (IAEA); International Working Group on Fast Reactors. Technical Committee Meeting on Evaluation of Radioactive Materials Release and Sodium Fires in Fast Reactors; IAEA: Vienna, Austria, 1996. [Google Scholar]
- Koomey, J.; Hultman, N.E. A reactor-level analysis of busbar costs for US nuclear plants, 1970–2005. Energy Policy 2007, 35, 5630–5642. [Google Scholar] [CrossRef]
- Rangel, L.E.; Leveque, F. Revisiting the cost escalation curse of nuclear power: New lessons from the french experience. Econ. Energy Environ. Policy 2015, 4. [Google Scholar] [CrossRef]
- Lovering, J.R.; Yip, A.; Nordhaus, T. Historical construction costs of global nuclear power reactors. Energy Policy 2016, 91, 371–382. [Google Scholar] [CrossRef]
- GE Hitachi Nuclear Energy. GE Hitachi PRISM|The future of nuclear energy. Available online: http://gehitachiprism.com/ (accessed on 27 November 2017).
- Triplett, B.S.; Loewen, E.P.; Dooies, B.J. PRISM: A competitive small modular sodium-cooled reactor. Nucl. Technol. 2012, 178, 186–200. [Google Scholar] [CrossRef]
- Dubberley, A.E.; Boardman, C.E.; Carroll, D.G.; Ehrman, C.; Walter, C.E. S-PRISM Fuel Cycle Study; ICAPP: Cordoba, Spain, 2003; pp. 4–7. [Google Scholar]
- Boldon, L.M.; Sabharwall, P. Small Modular Reactor: First-of-a-Kind (FOAK) and Nth-of-a-Kind (NOAK) Economic Analysis; Idaho National Lab.(INL): Idaho Falls, ID, USA, 2014. [Google Scholar]
- Hong, S.; Qvist, S.; Brook, B.W. Economic and environmental costs of replacing nuclear fission with solar and wind energy in Sweden. Energy Policy 2018, 112, 56–66. [Google Scholar] [CrossRef]
- Qvist, S.A.; Brook, B.W. Environmental and health impacts of a policy to phase out nuclear power in Sweden. Energy Policy 2015, 84, 1–10. [Google Scholar] [CrossRef]
- Parker, D.T. Building Victory: Aircraft Manufacturing in the Los Angeles Area in World War II; Cypress: Los Angeles, CA, USA, 2013. [Google Scholar]
- Orhan, M.F.; Dincer, I.; Naterer, G.F.; Rosen, M.A. Coupling of copper–chloride hybrid thermochemical water splitting cycle with a desalination plant for hydrogen production from nuclear energy. Int. J. Hydrogen Energy 2010, 35, 1560–1574. [Google Scholar] [CrossRef]
- Gaede, J.; Meadowcroft, J. Carbon Capture and Storage Demonstration and Low-Carbon Energy Transitions: Explaining Limited Progress. In The Palgrave Handbook of the International Political Economy of Energy; Graaf, T.V.D., Sovacool, B.K., Ghosh, A., Kern, F., Klare, M.T., Eds.; Palgrave Macmillan: Basingstoke, UK, 2016; pp. 319–340. [Google Scholar]
- Eerkens, J.W. The Nuclear Imperative; Springer: New York, NY, USA, 2010. [Google Scholar]
- Forsberg, C.W. Nuclear energy for a low-carbon-dioxide-emission transportation system with liquid fuels. Nucl. Technol. 2008, 164, 348–367. [Google Scholar] [CrossRef]
- Demirbas, A. Energy from boron and non-nuclear metallic fuels. Energy Sources Part A 2008, 30, 1108–1113. [Google Scholar] [CrossRef]
- Li, Y.; Cao, H.; Wang, S.; Jin, Y.; Li, D.; Wang, X.; Ding, Y. Load shifting of nuclear power plants using cryogenic energy storage technology. Appl. Energy 2014, 113, 1710–1716. [Google Scholar] [CrossRef]
- Shannon, M.A.; Bohn, P.W.; Elimelech, M.; Georgiadis, J.G.; Mariñas, B.J.; Mayes, A.M. Science and technology for water purification in the coming decades. Nature 2008, 452, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Gerland, P.; Raftery, A.E.; Ševčíková, H.; Li, N.; Gu, D.; Spoorenberg, T.; Alkema, L.; Fosdick, B.K.; Chunn, J.; Lalic, N.; et al. World population stabilization unlikely this century. Science 2014, 346, 234–237. [Google Scholar] [CrossRef] [PubMed]
- Raftery, A.E.; Li, N.; Ševčíková, H.; Gerland, P.; Heilig, G.K. Bayesian probabilistic population projections for all countries. Proc. Natl. Acad. Sci. USA 2012, 109, 13915–13921. [Google Scholar] [CrossRef] [PubMed]
- Water Technology. Ras Al Khair Desalination Plant, Saudi Arabia. Available online: http://www.water-technology.net/projects/-ras-al-khair-desalination-plant/ (accessed on 8 January 2018).
- Ziolkowska, J.R. Is Desalination Affordable?—Regional Cost and Price Analysis. Water Resour. Manag. 2015, 29, 1385–1397. [Google Scholar] [CrossRef]
- Mountouris, A.; Voutsas, E.; Tassios, D. Solid waste plasma gasification: Equilibrium model development and exergy analysis. Energy Convers. Manag. 2006, 47, 1723–1737. [Google Scholar] [CrossRef]
- Buttler, A.; Dinkel, F.; Franz, S.; Spliethoff, H. Variability of wind and solar power—An assessment of the current situation in the European Union based on the year 2014. Energy 2016, 106, 147–161. [Google Scholar] [CrossRef]
- Trembath, A.; Jenkins, J. Gas Boom Poses Challenges for Renewables and Nuclear. Available online: http://thebreakthrough.org/archive/gas_boom_poses_challenges_for (accessed on 20 November 2017).
- Moniz, E.J.; Jacoby, H.D.; Meggs, A.J.M.; Armtrong, R.C.; Cohn, D.R.; Connors, S.R.; Deutch, J.M.; Ejaz, Q.J.; Hezir, J.S.; Kaufman, G.M. The Future of Natural Gas; Cambridge MA Massachusetts Institute Technology: Cambridge, MA, USA, 2011. [Google Scholar]
- De Gouw, J.A.; Parrish, D.D.; Frost, G.J.; Trainer, M. Reduced emissions of CO2, NOx, and SO2 from U.S. power plants owing to switch from coal to natural gas with combined cycle technology. Earth’s Future 2014, 2, 75–82. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Energy Technology Perspectives 2017; IEA: Paris, France, 2017. [Google Scholar]
- Van den Broek, M.; Berghout, N.; Rubin, E.S. The potential of renewables versus natural gas with CO2 capture and storage for power generation under CO2 constraints. Renew. Sustain. Energy Rev. 2015, 49, 1296–1322. [Google Scholar] [CrossRef]
- Wigley, T.M.L. Coal to gas: The influence of methane leakage. Clim. Chang. 2011, 108, 601–608. [Google Scholar] [CrossRef]
- Birol, F.; Besson, C. World Energy Outlook 2012-Special Report-Golden Rules for a Golden Age of Gas, World Energy Outlook Special Report on Unconventional Gas; International Energy Agency: Paris, France, 2012; p. 12. [Google Scholar]
- Hughes, J.D. Energy: A reality check on the shale revolution. Nature 2013, 494, 307–308. [Google Scholar] [CrossRef] [PubMed]
- Kerr, R.A. Technology is turning U.S. oil around but not the world’s. Science 2012, 335, 522–523. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, R.A.; Pacala, S.W.; Winebrake, J.J.; Chameides, W.L.; Hamburg, S.P. Greater focus needed on methane leakage from natural gas infrastructure. Proc. Natl. Acad. Sci. USA 2012, 109, 6435–6440. [Google Scholar] [CrossRef] [PubMed]
- Wigley, T.M.L.; Clarke, L.E.; Edmonds, J.A.; Jacoby, H.D.; Paltsev, S.; Pitcher, H.; Reilly, J.M.; Richels, R.; Sarofim, M.C.; Smith, S.J. Uncertainties in climate stabilization. Clim. Chang. 2009, 97, 85–121. [Google Scholar] [CrossRef]
- Myhrvold, N.P.; Caldeira, K. Greenhouse gases, climate change and the transition from coal to low-carbon electricity. Environ. Res. Lett. 2012, 7, 014019. [Google Scholar] [CrossRef]
- Haubenreich, P.N.; Engel, J. Experience with the molten-salt reactor experiment. Nucl. Appl. Technol. 1970, 8, 118–136. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brook, B.W.; Blees, T.; Wigley, T.M.L.; Hong, S. Silver Buckshot or Bullet: Is a Future “Energy Mix” Necessary? Sustainability 2018, 10, 302. https://doi.org/10.3390/su10020302
Brook BW, Blees T, Wigley TML, Hong S. Silver Buckshot or Bullet: Is a Future “Energy Mix” Necessary? Sustainability. 2018; 10(2):302. https://doi.org/10.3390/su10020302
Chicago/Turabian StyleBrook, Barry W., Tom Blees, Tom M. L. Wigley, and Sanghyun Hong. 2018. "Silver Buckshot or Bullet: Is a Future “Energy Mix” Necessary?" Sustainability 10, no. 2: 302. https://doi.org/10.3390/su10020302
APA StyleBrook, B. W., Blees, T., Wigley, T. M. L., & Hong, S. (2018). Silver Buckshot or Bullet: Is a Future “Energy Mix” Necessary? Sustainability, 10(2), 302. https://doi.org/10.3390/su10020302