Efficiency of Different Integrated Agriculture Aquaculture Systems in the Red River Delta of Vietnam
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Data Collection
2.1.1. Study Site
2.1.2. Data Collection
2.2. Data analysis
3. Results and Discussion
3.1. Diversification of Integrated Agriculture Aquaculture Systems for Food and Foodstuffs Production
3.2. Economic Effectiveness and Efficiency of Integrated Agriculture Aquaculture Systems
3.3. Integrated Agriculture Aquaculture Systems’ Income and Food Diversity
4. Conclusions
Author Contributions
Conflicts of Interest
Appendix A. Freshwater Fish Production System (FFPS) Characteristics in Hai Duong
FFPS | Location | Integrated Levels between Sub-Systems | Farm Household Situations | Animal Husbandry | Horticulture |
Intensive orchard—very low input aquaculture (Traditional VAC system) | Inside village | High with closed available nutrient flow of food | Experience in aquaculture production, prevalence of rice production | With or without medium pig production (5–15 pigs/HH), or small to medium scale poultry production | Small/medium number and area of perennial trees |
Intensive orchard—low input aquaculture (New VAC system) | Outside village | High with closed nutrient flow of food | Less experience in aquaculture production | With or without small pig production (1–10 pigs/HH), or small to medium scale poultry production | Large number and area of perennial trees |
Semi-intensive orchard—medium input aquaculture (Animal + Fish production—AF system) | Outside village | Medium | Experience in aquaculture and animal production | With or without medium pig production (10–50 pigs/HH) or commercial poultry production | Small number and area of perennial trees |
Extensive orchard high input aquaculture (Commercially intensive fish production—FS system) | Outside village | Low with more external supplement of food flow | Experience in aquaculture | Self-subsistence poultry production | Small number of perennial trees |
Source: Discussion with key informants in the research site, 2015–2016. |
References
- Dey, M.M.; Ahmed, M. Aquaculture—Food and livelihoods for the poor in Asia: A brief overview of the issues. Aquac. Econ. Manag. 2005, 9, 1–10. [Google Scholar] [CrossRef]
- Dey, M.M. Strategies and Options for Increasing and Sustaining Fisheries and Aquaculture Production to Benefit Poorer Households in Asia; WorldFish: Penang, Malaysia, 2008; Volume 1823. [Google Scholar]
- Mishra, V.; Ray, R. Dietary diversity, food security and undernourishment: The Vietnamese evidence. Asian Econ. J. 2009, 23, 225–247. [Google Scholar] [CrossRef]
- Prein, M.; Ahmed, M. Integration of aquaculture into smallholder farming systems for improved food security and household nutrition. Food Nutr. Bull. 2000, 21, 466–471. [Google Scholar] [CrossRef]
- Tacon, A. Contribution to Food Fish Supplies; FAO Fisheries Circular: Rome, Italy, 1997; pp. 17–21. [Google Scholar]
- Belton, B.; Little, D.C. Contemporary visions for small-scale aquaculture. In Contemporary Visions for World Small-Scale Fisheries; Chuenpagdee, R., Ed.; Eburon: Delft, The Netherlands, 2011. [Google Scholar]
- Prein, M. Integration of aquaculture into crop–animal systems in Asia. Agric. Syst. 2002, 71, 127–146. [Google Scholar] [CrossRef]
- Little, D.C.; Belton, B.; Beveridge, M.; Bush, S.; Dabaddie, L.; Demaine, H.; Edwards, P.; Haque, M.; Kibria, G.; Morales, E. Alleviating poverty through aquaculture: Progress, opportunities and improvements. In Proceedings of the Global Conference of Aquaculture 2010: Farming the Waters for People and Food, Phuket, Thailand, 22–25 September 2010; pp. 719–783. [Google Scholar]
- Gyalog, G.; Oláh, J.; Békefi, E.; Lukácsik, M.; Popp, J. Constraining factors in hungarian carp farming: An econometric perspective. Sustainability 2017, 9, 2111. [Google Scholar] [CrossRef]
- Edwards, P. Aquaculture, Poverty Impacts and Livelihoods; Overseas Development Institute: London, UK, 2000. [Google Scholar]
- Blythe, J.; Sulu, R.; Harohau, D.; Weeks, R.; Schwarz, A.-M.; Mills, D.; Phillips, M. Social dynamics shaping the diffusion of sustainable aquaculture innovations in the Solomon Islands. Sustainability 2017, 9, 126. [Google Scholar] [CrossRef]
- Luu, L.T. Vietnam: Status of implementation of the resolution and plan of action on aquaculture. In Sustainable Aquaculture Development for Food Security in Southeast Asia Towards 2020, Proceedings of the Regional Technical Consultation on Sustainable Aquaculture Development in Southeast Asia Towards 2020, Bangkok, Thailand, 17–19 March 2010; Acosta, B.O., Coloso, R.M., de Jesus-Ayson, E.G.T., Toledo, J.D., Eds.; SEAFDEC Aquaculture Department: Iloilo, Philippines, 2011; pp. 129–133. [Google Scholar]
- Allen, T.; Prosperi, P.; Cogill, B.; Flichman, G. Agricultural biodiversity, social–ecological systems and sustainable diets. Proc. Nutr. Soc. 2014, 73, 498–508. [Google Scholar] [CrossRef] [PubMed]
- Luu, L. The VAC system in Northern Viet Nam. In FAO Fisheries Technical Paper; Food and Agriculture Organization: Rome, Italy, 2001; pp. 29–32. [Google Scholar]
- Ruddle, K.; Zhong, G. Integrated Agriculture-Aquaculture in South China: The Dike-Pond System of the Zhujiang Delta; Cambridge University Press(CUP) Archive: Cambridge, UK, 1988. [Google Scholar]
- Nhan, D.K. The Role of a Fish Pond in Optimizing Nutrient Flows in Integrated Agriculture-Aquaculture Farming Systems. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2007. [Google Scholar]
- Luu, L.T. Sustainable Aquaculture for Poverty Alleviation (SAPA): A New Rural Development Strategy for Viet Nam; Part II; FAO Aquaculture Newsletter (FAO): Rome, Italy, 2001. [Google Scholar]
- Pekar, F.; Be, N.; Long, D.; Cong, N.; Dung, D.; Olah, J. Eco-technological analysis of fish farming households in the Mekong Delta, Vietnam. In Rural Aquaculture; CABI Publishing: Wallingford, UK, 2002; pp. 77–95. [Google Scholar]
- Misui, H.; Horiuchi, H. Classification of vac farming systems: A case study of Bac Son Commune in the Red River Delta, Vietnam. J. Agric. Dev. Stud. Jpn. 2006, 17, 1–6. [Google Scholar]
- Mohan Dey, M.; Rab, M.A.; Paraguas, F.J.; Bhatta, R.; Ferdous Alam, M.; Koeshendrajana, S.; Ahmed, M. Status and economics of freshwater aquaculture in selected countries of Asia. Aquac. Econ. Manag. 2005, 9, 11–37. [Google Scholar] [CrossRef]
- Ahmed, M.; Lorica, M.H. Improving developing country food security through aquaculture development—Lessons from Asia. Food Policy 2002, 27, 125–141. [Google Scholar] [CrossRef]
- Ruddle, K.; Prein, M. Assessing the potential nutritional and household economic benefits of developing integrated farming systems, Integrated fish farming. In Proceedings of the International Workshop Held in Wuxi, Wuxi, China, 11–15 October 1994; pp. 11–15. [Google Scholar]
- Sultana, P.; Khan, A.F. Aquaculture Extension Impacts in Bangladesh: A Case Study from Kapasia, Gazipur; WorldFish: Penang, Malaysia, 2005; Volume 1717. [Google Scholar]
- Thilsted, S.H.; Roos, N. Policy Issues on~Isheries in Relation to Food and Nutrition Security; Fisheries Policy Research; Food and Agriculture Organization of the United Nations: Rome, Italy, 1999. [Google Scholar]
- Thompson, P.; Sultana, P.; Nuruzzaman, M.; Khan, A.; Islam, S. Fisheries Extension Evaluation Project; Final Report; ICLARM—The WorldFish Center and Bangladesh DOF: Dhaka, Bangladesh, 2000. [Google Scholar]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization(FAO). The Role of Aquaculture in Sustainable Development; Thirty-Fourth Session; FAO: Rome, Italy, 2007. [Google Scholar]
- Food and Agriculture Organization(FAO). Food Balance Sheets. Vietnam. Available online: http://faostat.fao.org/site/368/DesktopDefault.aspx?PageID=368#ancor (accessed on 14 September 2015).
- Food and Agriculture Organization FAO. Aquaculture Production 1950–2009 (Data Set for Fishstat Plus). Fao Fisheries Department, Fishery Data and Statistics Unit; FAO: Rome, Italy, 2011. [Google Scholar]
- Lebailly, P.; Peemans, J.-P.; Vu Dinh, T.; Diepart, J.-C.; Dupuis, D.; Mai Lan, P.; Nguyen Mau, D.; Nguyen Thi, D.; Verhaegen, E.; Han Quang, H. Développement Rural et Petite Paysannerie en Asie du Sud-Est: Leçons D'expériences au Vietnam et au Cambodge (Rural Development and Small Farmers in South East Asia: Lessons of Experiences in Vietnam and Cambodia); L’Harmattan: Paris, France, 2015. [Google Scholar]
- Hai Duong Statistic Office (HDSO). Hai Duong Statistical Yearbook; Statistical Publishing House: Ha Noi, Vietnam, 2005. [Google Scholar]
- Hai Duong Statistic Office (HDSO). Hai Duong Statistical Yearbook; Statistical Publishing House: Ha Noi, Vietnam, 1999. [Google Scholar]
- Hai Duong Statistic Office (HDSO). Hai Duong Statistical Yearbook; Statistical Publishing House: Ha Noi, Vietnam, 2014. [Google Scholar]
- McConnell, D.J.; Dillon, J.L. Farm Management for Asia: A systems Approach; Food & Agriculture Organization of the United Nation: Rome, Italy, 1997. [Google Scholar]
1 | Haiduong was re-established in 1997 from the before province of HaiHung–a merged Hung Yen and Hai Duong province. |
Location | Fish HHs | Animal/Fish HHs | New VAC HHs | Traditional VAC HHs | Total | |||
---|---|---|---|---|---|---|---|---|
District | Commune | Village | ||||||
Cam Giang | Cam Doai | HoaBinh | 13 | 13 | 10 | 5 | 41 | |
Cam Dong | An Lai | 8 | 18 | 9 | 3 | 38 | ||
Subtotal | 21 | 31 | 19 | 8 | 79 | |||
Tu Ky | Hung Dao | Lac Duc | 19 | 15 | 7 | 4 | 45 | |
Tai Son | Thuong Son | 11 | 19 | 9 | 4 | 43 | ||
Subtotal | 30 | 34 | 16 | 8 | 88 | |||
Total | 51 | 65 | 35 | 16 | 167 |
Measure | Calculation | Notes | Notes |
---|---|---|---|
A. | All Outputs/Returns (Pooled) | ||
B. | All Purchased Activity Direct Inputs (Pooled) | ||
C. | All Farm Fixed Costs (except Depreciation) | Depreciation recorded in D below | |
D. | All Capital Depreciation | ||
E. | Farm Gross Margin | A–B | |
F. | Farm Net Actual Returns | E–C | Depreciation not yet charged. |
G. | Farm Net Sustainable Returns | F–D | Depreciation charged; system now sustainable. |
H. | Family Farm Available Income | H = F | But only if depreciation is not covered. |
I. | Family Farm Sustainable Income | I = G | Long-term Sustainable farm income. |
J. | Total Available Family Income | (H or I) + S | S is non-farm income, here assumed to be zero. |
Unit | FS System (N=51) | AF System (N=65) | New VAC System (N=35) | Traditional VAC System (N=16) | |||||
---|---|---|---|---|---|---|---|---|---|
Age | Year | 52.1 | (9.79) | 52.5 | (8.35) | 55.8 | (8.36) | 57.00 | (4.35) |
Household size | People | 3.02a | (1.09) | 3.80a | (1.12) | 3.51 | (1.40) | 3.63 | (1.71) |
Number of labourers | Labor | 2.45 | (0.92) | 2.86 | (1.10) | 2.66 | (1.45) | 2.63 | (0.96) |
Agriculture land | Sao(#) | 18.7a | (9.10) | 18.3a | (7.76) | 11.7b | (3.82) | 10.25b | (2.29) |
Homestead land | m2 | 353.0a | (271) | 512.3b | (430) | 459.5 | (228) | 320.00a | (109) |
Paddy land | Sao(#) | 4.20a | (3.48) | 6.17b | (3.10) | 5.20b | (3.42) | 7.81c | (2.14) |
Area of fruit trees | m2 | 230.0a | (371) | 317.2a,b | (600) | 515.6b | (878) | 131.25a | (76.58) |
Number of fruit trees | Tree | 36 | (56.00) | 45a | (64.75) | 103b | (171.20) | 17a | (7.85) |
Number of animals raised | Heads of animals | 23b | (26.36) | 188a | (234.4) | 39b | (36.01) | 64.69c | (17.86) |
Area of aquaculture land | Sao(#) | 14.49a | (9.58) | 12.12 | (7.01) | 6.51b | (2.46) | 2.44c | (0.63) |
Number of owned ponds | Ponds | 2.27a | (1.56) | 1.88ac | (0.89) | 1.34c | (0.48) | 1.00b | 0.00 |
Experience in aquaculture | Year | 16.5 | (7.23) | 17.6a | (7.27) | 14.1b | (4.85) | 17.31 | (2.02) |
Stocking density | Fish/m2 | 1.55a | (1.11) | 1.62a | (1.15) | 1.49 | (0.89) | 1.51 | (0.35) |
Kinds of fish | Fish/stocking | 4.31a | (1.22) | 4.37a | (1.18) | 4.31a | (1.39) | 6.13b | (0.88) |
Production cycle time | Months | 9.80a | (2.59) | 10.50a | (1.88) | 10.70a | (2.03) | 12.00b | (0.00) |
FS System (N=51) | AF System (N=65) | New VAC System (N=35) | Traditional VAC System (N=16) | |
---|---|---|---|---|
Global HH production (kg/household) | 4727 | 4254 | 2144 | 885 |
Yield (kg/sao) | 325 | 359 | 339 | 373 |
Home consumption (Kg/sao) | 11.9 | 13.5 | 27.9 | 52.9 |
Working Labor(man-days/sao) | 14.0 | 16.4 | 32.6 | 49.6 |
Total value of fish for home consumption | 502.1 | 602.6 | 1199.0 | 1452.7 |
Total value of fish sold | 13,336.7 | 15,610.2 | 15,100.8 | 9638.8 |
Total value of fish | 17,720.7 | 20,537.0 | 20,140.8 | 13,312.8 |
All variable costs2(All Purchased Activity Direct Inputs) | 8349.9 | 9797.2 | 9305.8 | 5263.4 |
Fingerlings | 2202.9 | 2577.5 | 2995.2 | 1523.5 |
Feed | 5622.3 | 6441.1 | 5641.2 | 2823.7 |
Fertilizer | 3.6 | 1.0 | 9.4 | - |
Lime | 92.8 | 109.7 | 84.5 | 107.7 |
Chemicals | 242.5 | 283.6 | 208.2 | 323.9 |
Energy | 187.6 | 335.7 | 338.7 | 253.1 |
Other | 48.6 | 48.7 | 28.5 | 231.6 |
Gross Margin of Fish | 9370.9 | 10,739.7 | 10,835.2 | 8049.4 |
All Farm Fixed Costs (Except Depreciation) | 172.5 | 193.2 | 272.9 | 231.3 |
Farm Net Actual Returns | 9198.3 | 10,546.5 | 10,562.3 | 7818.3 |
All Capital Depreciation3 | 602.7 | 886.3 | 755.1 | 701.6 |
Farm Net Sustainable Returns of Fish | 8595.6 | 9660.3 | 9807.2 | 7116.7 |
FS System | AF System | New VAC System | Traditional VAC System | |||||
---|---|---|---|---|---|---|---|---|
(N = 51) | % | (N = 65) | % | (N = 35) | % | (N = 16) | % | |
Rice crop | 5265.4 | 64.5 | 8171.3 | 62.40 | 6818.2 | 46.0 | 13,729.1 | 75.6 |
Vegetable crop | - | - | 1380.4 | 10.54 | 1053.3 | 7.1 | 2189.6 | 12.1 |
Fruit crops | 2901.8 | 35.5 | 3544.0 | 27.06 | 6958.0 | 46.9 | 2238.3 | 12.3 |
Total crops | 8167.1 | 11.3 | 13,095.8 | 12.99 | 14,829.5 | 25.6 | 18,157.1 | 31.1 |
Livestock husbandry | 4904.6 | 6.8 | 34,162.4 | 33.87 | 8077.9 | 13.9 | 29,243.0 | 50.1 |
Fish production | 58,922.8 | 81.8 | 53,594.1 | 53.14 | 35,024.8 | 60.4 | 10,997.6 | 18.8 |
Total | 71,994.5 | 100.0 | 100,852.3 | 100.0 | 57,932.1 | 100.0 | 58,397.7 | 100.0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van Huong, N.; Huu Cuong, T.; Thi Nang Thu, T.; Lebailly, P. Efficiency of Different Integrated Agriculture Aquaculture Systems in the Red River Delta of Vietnam. Sustainability 2018, 10, 493. https://doi.org/10.3390/su10020493
Van Huong N, Huu Cuong T, Thi Nang Thu T, Lebailly P. Efficiency of Different Integrated Agriculture Aquaculture Systems in the Red River Delta of Vietnam. Sustainability. 2018; 10(2):493. https://doi.org/10.3390/su10020493
Chicago/Turabian StyleVan Huong, Nguyen, Tran Huu Cuong, Tran Thi Nang Thu, and Philippe Lebailly. 2018. "Efficiency of Different Integrated Agriculture Aquaculture Systems in the Red River Delta of Vietnam" Sustainability 10, no. 2: 493. https://doi.org/10.3390/su10020493
APA StyleVan Huong, N., Huu Cuong, T., Thi Nang Thu, T., & Lebailly, P. (2018). Efficiency of Different Integrated Agriculture Aquaculture Systems in the Red River Delta of Vietnam. Sustainability, 10(2), 493. https://doi.org/10.3390/su10020493