Assessment of the Effects of Urban Expansion on Terrestrial Carbon Storage: A Case Study in Xuzhou City, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials
2.3. Estimation of Carbon Storage
2.4. Modeling Urban Expansion
2.5. Analyzing the Carbon Consequence of Future Urban Expansion
3. Results
3.1. Urban Expansion in Xuzhou City from 2000 to 2025
3.2. Changes in Regional Carbon Storage
3.3. Impacts of Future Urban Expansion on Carbon Storage from 2015 to 2025
4. Discussion
4.1. The Integration of the InVEST and CA Models
4.2. The Impact of Urban Expansion on Carbon Storage
4.3. Limitations
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Millenium Ecosystem Assessment (MEA). Ecosystem and Human Wellbeing: Current State and Trends; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Daily, G.C. Nature’s Services Societal Dependence on Natural Ecosystems; Island Press: Washington, DC, USA, 1997. [Google Scholar]
- Wu, J.S.; Feng, Z.; Gao, Y.; Peng, J. Hotspot and relationship identification in multiple landscape services: A case study on an area with intensive human activities. Ecol. Indic. 2013, 29, 529–537. [Google Scholar] [CrossRef]
- Nelson, E.; Sander, H.; Hawthorne, P.; Conte, M.; Ennaanay, D.; Wolny, S.; Manson, S.; Polasky, S. Projecting global land-use change and its effect on ecosystem service provision and biodiversity with simple models. PLoS ONE 2010, 5, e14327. [Google Scholar] [CrossRef] [PubMed]
- Sharp, R.; Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Wood, S.A.; Chaplin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; et al. InVEST +VERSION+ User’s Guide. Available online: http://data.naturalcapitalproject.org/nightly-build/invest-users-guide/html/ (accessed on 20 December 2017).
- Deng, X.; Li, Z.; Gibson, J. A review on trade-off analysis of ecosystem services for sustainable land-use management. J. Geogr. Sci. 2016, 26, 953–968. [Google Scholar] [CrossRef]
- Newbold, T.; Hudson, L.N.; Hill, S.L.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Börger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al. Global effects of land use on local terrestrial biodiversity. Nature 2015, 520, 45–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, C.; Zhang, D.; Huang, Q.; Zhao, Y. Assessing the potential impacts of urban expansion on regional carbon storage by linking the LUSD-urban and InVEST models. Environ. Model. Softw. 2016, 75, 44–58. [Google Scholar] [CrossRef]
- Hutyra, L.R.; Yoon, B.; Hepinstall-Cymerman, J.; Alberti, M. Carbon consequences of land cover change and expansion of urban lands: A case study in Seattle metropolitan region. Landsc. Urban Plan. 2011, 103, 83–93. [Google Scholar] [CrossRef]
- Zhang, C.; Tian, H.; Chen, G.; Chappelka, A.; Xu, X.; Ren, W.; Hui, D.; Liu, M.; Lu, C.; Pan, S.; et al. Impacts of urbanization on carbon balance in terrestrial ecosystems of the Southern United States. Environ. Pollut. 2012, 164, 89–101. [Google Scholar] [CrossRef] [PubMed]
- Braimoh, A.K.; Onishi, T. Spatial determinants of urban land use change in Lagos, Nigeria. Land Use Policy 2007, 24, 502–515. [Google Scholar] [CrossRef]
- Dewan, A.M.; Yamaguchi, Y. Land use and land cover change in Greater Dhaka, Bangladesh: Using remote sensing to promote sustainable urbanization. Appl. Geogr. 2009, 29, 390–401. [Google Scholar] [CrossRef]
- Wu, J.; Jenerette, G.D.; Buyantuyev, A.; Redman, C.L. Quantifying spatiotemporal patterns of urbanization: The case of the two fastest growing metropolitan regions in the United States. Ecol. Complex. 2011, 8, 1–8. [Google Scholar] [CrossRef]
- Zhang, C.; Ju, W.; Chen, J.M.; Wang, X.; Yang, L.; Zheng, G. Disturbance-induced reduction of biomass carbon sinks of China’s forests in recent years. Environ. Res. Lett. 2015, 10, 114021. [Google Scholar] [CrossRef]
- Myeong, S.; Nowak, D.J.; Duggin, M.J. A temporal analysis of urban forest carbon storage using remote sensing. Remote Sens. Environ. 2006, 101, 277–282. [Google Scholar] [CrossRef]
- Fu, Y.C.; Lu, X.Y.; Zhao, Y.L.; Zeng, X.T.; Xia, L.L. Assessment impacts of weather and land use/land cover (LULC) change on urban vegetation net primary productivity (NPP): A case study in Guangzhou, China. Remote Sens. 2013, 5, 4125–4144. [Google Scholar] [CrossRef]
- Jiang, W.; Deng, Y.; Tang, Z.; Lei, X.; Chen, Z. Modelling the potential impacts of urban ecosystem changes on carbon storage under different scenarios by linking the CLUE-S and the InVEST models. Ecol. Model. 2017, 345, 30–40. [Google Scholar] [CrossRef]
- Zhao, S.Q.; Liu, S.G.; Sohl, T.; Young, C.; Werner, J. Land use and carbon dynamics in the southeastern United States from 1992 to 2050. Environ. Res. Lett. 2013, 8, 575–591. [Google Scholar] [CrossRef]
- Zhang, D.; Huang, Q.; He, C.; Wu, J. Impacts of urban expansion on ecosystem services in the Beijing-Tianjin-Hebei urban agglomeration, China: A scenario analysis based on the Shared Socioeconomic Pathways. Resour. Conserv. Recycl. 2017, 128, 115–130. [Google Scholar] [CrossRef]
- Leh, M.D.K.; Matlock, M.D.; Cummings, E.C.; Nalley, L.L. Quantifying and mapping multiple ecosystem services change in west Africa. Agric. Ecosyst. Environ. 2013, 165, 6–18. [Google Scholar] [CrossRef]
- Nelson, E.; Mendoza, G.; Regetz, J.; Polasky, S.; Tallis, H.; Cameron, D.R.; Chan, K.M.; Daily, G.C.; Goldstein, J.; Kareiva, P.M.; et al. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front. Ecol. Environ. 2009, 7, 4–11. [Google Scholar] [CrossRef]
- Xie, Y. A generalized model for cellular urban dynamics. Geogr. Anal. 1996, 28, 350–373. [Google Scholar] [CrossRef]
- Chen, D.; Deng, X.; Jin, G.; Samie, A.; Li, Z. Land-use-change induced dynamics of carbon stocks of the terrestrial ecosystem in Pakistan. Phys. Chem. Earth 2017, 101, 13–20. [Google Scholar] [CrossRef]
- Berling-Wolff, S.; Wu, J. Modeling urban landscape dynamics: A review. Ecol. Res. 2004, 19, 119–129. [Google Scholar] [CrossRef]
- White, R.; Engelen, G. High-resolution integrated modelling of the spatial dynamics of urban and regional systems. Comput. Environ. Urban Syst. 2000, 24, 383–400. [Google Scholar] [CrossRef]
- Santé, I.; Marcía, A.M.; Miranda, D.; Crecente, R. Cellular automata models for the simulation of real-world urban processes: A review and analysis. Landsc. Urban Plan. 2010, 96, 108–122. [Google Scholar] [CrossRef]
- Wu, N.; Silva, E.A. Artificial Intelligence Solutions for Urban Land Dynamics: A Review. J. Plan. Lit. 2010, 24, 246–265. [Google Scholar] [CrossRef]
- Li, X. Emergence of bottom-up models as a tool for landscape simulation and planning. Landsc. Urban Plan. 2011, 100, 393–395. [Google Scholar] [CrossRef]
- Fang, J.; Liu, G.; Xu, S. Carbon Reservoir of Terrestrial Ecosystem in China, in Monitoring and Relevant Process of Greenhouse Gas Concentration and Emission; China Environmental Science Publishing House: Beijing, China, 1996. (In Chinese) [Google Scholar]
- Liu, J.Y.; Wang, S.Q.; Chen, J.M.; Liu, M.L.; Zhuang, D.F. Storages of soil organic carbon and nitrogen and land use changes in China: 1990–2000. Acta Geogr. Sin. 2004, 59, 483–496. (In Chinese) [Google Scholar]
- Davies, Z.G.; Edmondson, J.L.; Heinemeyer, A.; Leake, J.R.; Gaston, K.J. Mapping an urban ecosystem service: Quantifying above-ground carbon storage at a city-wide scale. J. Appl. Ecol. 2011, 48, 1125–1134. [Google Scholar] [CrossRef]
- Barredo, J.I.; Demicheli, L. Urban sustainability in developing countries’ megacities: Modeling and predicting future urban growth in Lagos. Cities 2003, 20, 297–310. [Google Scholar] [CrossRef]
- Wu, F.; Webster, C.J. Simulation of land development through the integration of cellular automata and multicriteria evaluation. Environ. Plan. B Plan. Des. 1998, 25, 103–126. [Google Scholar] [CrossRef]
- Tobler, W.R. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Xiang, W.; Clarke, K.C. The use of scenarios in land-use planning. Environ. Plan. B Plan. Des. 2003, 30, 885–909. [Google Scholar] [CrossRef]
- Lichtenberg, E.; Ding, C. Assessing farmland protection policy in China. Land Use Policy 2008, 25, 29–68. [Google Scholar] [CrossRef]
- Sun, X.; Li, F. Spatiotemporal assessment and trade-offs of multiple ecosystem services based on land use changes in Zengcheng, China. Sci. Total Environ. 2017, 609, 1569–1581. [Google Scholar] [CrossRef] [PubMed]
- Thapa, R.B.; Murayama, Y. Scenario based urban growth allocation in Kathmandu Valley, Nepal. Landsc. Urban Plan. 2012, 105, 140–148. [Google Scholar] [CrossRef]
- Tao, Y.; Li, F.; Wang, R.; Zhao, D. Effects of land use and land cover change on terrestrial carbon stocks in urbanized areas: A study from Changzhou, China. J. Clean. Prod. 2015, 103, 651–657. [Google Scholar] [CrossRef]
- Yu, Y.; Guo, Z.; Wu, H.; Kahmann, J.A.; Oldfield, F. Spatial changes in soil organic carbon density and storage of cultivated soils in China from 1980 to 2000. Glob. Biogeochem. Cycles 2009, 23, GB2021. [Google Scholar] [CrossRef]
- Flight, M.J.; Paterson, R.; Doiron, K.; Polasky, S. Valuing wetland ecosystem services: A case study of Delaware. Natl. Wetl. Newslett. 2012, 34, 16–20. [Google Scholar]
Land Cover Type | Aboveground Carbon Storage (AGC) | Belowground Carbon Storage (BGC) | Soil Organic Carbon Storage (SOC) | Dead Organic Matter Carbon Storage (DOC) |
---|---|---|---|---|
Built-up Land | 0 | 0 | 0 | 0 |
Cultivated Land | 5.7 | 0.7 | 92.6 | 0 |
Vegetation Land | 42.4 | 10.8 | 120.8 | 7.8 |
Wetland | 0 | 0 | 0 | 0 |
Land Cover Type | 2000 | 2005 | 2010 | 2015 |
---|---|---|---|---|
Built-up Land | 354.02 | 429.22 | 612.76 | 915.74 |
Cultivated Land | 2417.76 | 2331.82 | 2144.85 | 1825.27 |
Vegetation Land | 70.56 | 68.31 | 60.27 | 57.73 |
Wetland | 51.12 | 64.11 | 75.58 | 94.72 |
Parameters | 2000–2005 | 2005–2010 | 2010–2015 |
---|---|---|---|
Dis2City | −1.242 | −1.697 | −1.964 |
Dis2Road | −1.359 | −1.274 | −1.256 |
Slope | −1.518 | −1.112 | −0.547 |
Poden | 0.793 | 0.329 | −0.205 |
Weighting Function | exp(−0.5*D) | exp(−0.5*D) | exp(−0.5*D) |
Neighborhood Size | 3 × 3 | 5 × 5 | 5 × 5 |
Adjustment Parameter | 2.2 | 2.4 | 2.5 |
Land Cover Type | BAU | ECO | PLS |
---|---|---|---|
Built-up Land | 1289.97 | 1160.84 | 1050.74 |
Cultivated Land | 1469.04 | 1589.08 | 1694.31 |
Vegetation Land | 50.81 | 57.32 | 57.30 |
Wetland | 83.64 | 86.22 | 91.11 |
Period | Carbon Pool | Cultivated Land | Vegetation Land | Total Carbon Storage Loss |
---|---|---|---|---|
2000–2005 | AGC | 0.049 | 0.010 | 0.892 |
BGC | 0.006 | 0.002 | ||
SOC | 0.796 | 0.027 | ||
DOC | 0.000 | 0.002 | ||
Total | 0.851 | 0.041 | ||
2005–2010 | AGC | 0.107 | 0.034 | 1.997 |
BGC | 0.013 | 0.009 | ||
SOC | 1.731 | 0.097 | ||
DOC | 0.000 | 0.006 | ||
Total | 1.851 | 0.146 | ||
2010–2015 | AGC | 0.182 | 0.011 | 3.210 |
BGC | 0.022 | 0.003 | ||
SOC | 2.959 | 0.031 | ||
DOC | 0.000 | 0.002 | ||
Total | 3.164 | 0.046 |
Scenario | Carbon Pool | Cultivated Land | Vegetation Land | Total Carbon Storage Loss |
---|---|---|---|---|
2015–2025 (BAU) | AGC | 0.203 | 0.029 | 3.653 |
BGC | 0.025 | 0.007 | ||
SOC | 3.299 | 0.084 | ||
DOC | 0.000 | 0.005 | ||
Total | 3.527 | 0.126 | ||
2015–2025 (ECO) | AGC | 0.135 | 0.002 | 2.345 |
BGC | 0.017 | 0.000 | ||
SOC | 2.187 | 0.005 | ||
DOC | 0.000 | 0.000 | ||
Total | 2.338 | 0.007 | ||
2015–2025 (PLS) | AGC | 0.075 | 0.002 | 1.305 |
BGC | 0.009 | 0.000 | ||
SOC | 1.213 | 0.005 | ||
DOC | 0.000 | 0.000 | ||
Total | 1.297 | 0.008 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Zhao, J.; Thinh, N.X.; Xi, Y. Assessment of the Effects of Urban Expansion on Terrestrial Carbon Storage: A Case Study in Xuzhou City, China. Sustainability 2018, 10, 647. https://doi.org/10.3390/su10030647
Li C, Zhao J, Thinh NX, Xi Y. Assessment of the Effects of Urban Expansion on Terrestrial Carbon Storage: A Case Study in Xuzhou City, China. Sustainability. 2018; 10(3):647. https://doi.org/10.3390/su10030647
Chicago/Turabian StyleLi, Cheng, Jie Zhao, Nguyen Xuan Thinh, and Yantao Xi. 2018. "Assessment of the Effects of Urban Expansion on Terrestrial Carbon Storage: A Case Study in Xuzhou City, China" Sustainability 10, no. 3: 647. https://doi.org/10.3390/su10030647
APA StyleLi, C., Zhao, J., Thinh, N. X., & Xi, Y. (2018). Assessment of the Effects of Urban Expansion on Terrestrial Carbon Storage: A Case Study in Xuzhou City, China. Sustainability, 10(3), 647. https://doi.org/10.3390/su10030647