Cooling Effects and Regulating Ecosystem Services Provided by Urban Trees—Novel Analysis Approaches Using Urban Tree Cadastre Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Availability, Database and Study Area
2.2. i-Tree Eco Model
2.3. Data Requirement for i-Tree Eco and Data Availability in the Database
2.3.1. Estimating Tree Height
2.3.2. Estimating Crown Light Exposure
2.4. Assessing Cooling Effects by the Canopy Layer
3. Results
3.1. Crown Light Exposure
3.2. Energy Reduction as Proxy for Thermal Comfort under the Canopy
3.3. Regulating Ecosystem Services Provided by Public Urban Trees
3.4. Spatial Distribution of Ecosystem Services
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Species/Breed | Formula | r | R2 (corr.) | Standard Error | p | n |
---|---|---|---|---|---|---|
Acer campestre | 11.323 *(x0.535) | 0.88 | 0.763 | 0.17 | <0.0001 | 80 |
Acer platanoides | 13.323 *(x0.606) | 0.79 | 0.62 | 0.24 | <0.0001 | 389 |
Acer pseudoplatanus | 13.311 *(x0.558) | 0.75 | 0.57 | 0.22 | <0.0001 | 1323 |
Acer pseudoplatanus ‘Erectum’ | 12.076 *(x0.886) | 0.75 | 0.55 | 0.22 | <0.0001 | 37 |
Acer saccharinum | 14.606 *(x0.551) | 0.74 | 0.54 | 0.20 | <0.0001 | 545 |
Acer saccharinum ‘Wieri’ | 14.797 *(x0.526) | 0.82 | 0.64 | 0.13 | <0.0001 | 18 |
Aesculus carnea | 11.461 *(x0.586) | 0.86 | 0.73 | 0.19 | <0.0001 | 24 |
Aesculus carnea ‘Briotii’ | 10.115 *(x0.600) | 0.85 | 0.72 | 0.19 | <0.0001 | 319 |
Aesculus hippocastanum | 10.894 *(x0.599) | 0.88 | 0.77 | 0.21 | <0.0001 | 301 |
Aesculus hippocastanum ‘Baumanni’ | 9.901 *(x0.473) | 0.95 | 0.90 | 0.10 | <0.0001 | 45 |
Ailanthus altissima | 11.454 *(x0.615) | 0.93 | 0.86 | 0.19 | <0.0001 | 15 |
Betula pendula | 15.355 *(x0.607) | 0.78 | 0.61 | 0.18 | <0.0001 | 612 |
Betula pendula ‘Tristis’ | 16.355 *(x0.636) | 0.79 | 0.62 | 0.17 | <0.0001 | 61 |
Carpinus betulus | 15.117 *(x0.676) | 0.87 | 0.75 | 0.27 | <0.0001 | 71 |
Corylus colurna | 13.997 *(x0.679) | 0.86 | 0.74 | 0.20 | <0.0001 | 424 |
Crataegus x lavallei | 10.165 *(x0.610) | 0.74 | 0.54 | 0.25 | <0.0001 | 227 |
Fagus sylvatica | 11.995 *(x0.622) | 0.77 | 0.59 | 0.26 | <0.0001 | 120 |
Fraxinus excelsior | 13.968 *(x0.569) | 0.85 | 0.72 | 0.19 | <0.0001 | 943 |
Fraxinus excelsior ‘Diversifolia’ | 13.477 *(x0.409) | 0.73 | 0.53 | 0.14 | <0.0001 | 82 |
Fraxinus excelsior ‘Westhof Glorie’ | 13.948 *(x0.538) | 0.89 | 0.78 | 0.20 | <0.0001 | 43 |
Fraxinus ornus | 10.865 *(x0.459) | 0.85 | 0.72 | 0.15 | <0.0001 | 27 |
Ginkgo biloba | 15.595 *(x0.625) | 0.77 | 0.59 | 0.28 | <0.0001 | 56 |
Gleditsia triacanthos | 15.485 *(x0.629) | 0.94 | 0.88 | 0.14 | <0.0001 | 113 |
Liquidambar stryaciflura | 14.810 *(x0.561) | 0.81 | 0.66 | 0.24 | <0.0001 | 116 |
Liriodendron tulipifera | 13.352 *(x0.666) | 0.84 | 0.70 | 0.25 | <0.0001 | 91 |
Platanus x acerifolia | 13.336 *(x0.582) | 0.85 | 0.72 | 0.20 | <0.0001 | 1852 |
Populus x canadensis | 10.515 *(x0.817) | 0.76 | 0.55 | 0.10 | <0.0001 | 28 |
Prunus avium | 11.426 *(x0.424) | 0.72 | 0.51 | 0.26 | <0.0001 | 48 |
Qercus robur | 14.608 *(x0.619) | 0.81 | 0.66 | 0.27 | <0.0001 | 60 |
Quercus robur ‘Fastigiata’ | 20.091 *(x0.930) | 0.86 | 0.74 | 0.27 | <0.0001 | 132 |
Quercus rubra | 14.113 *(x0.629) | 0.85 | 0.72 | 0.21 | <0.0001 | 387 |
Robinia pseudoacacia | 12.259 *(x0.625) | 0.86 | 0.72 | 0.15 | <0.0001 | 24 |
Robinia pseudoacacia ‘Umbraculifera’ | 7.239 *(x0.473) | 0.84 | 0.69 | 0.21 | <0.0001 | 22 |
Sorbus aria | 12.283 *(x0.782) | 0.96 | 0.91 | 0.15 | <0.0001 | 21 |
Sorbus aucuparia | 11.747 *(x0.721) | 0.79 | 0.62 | 0.24 | <0.0001 | 68 |
Sorbus x thuringiaca ‘Fastigiata’ | 13.989 *(x0.730) | 0.82 | 0.65 | 0.25 | <0.0001 | 15 |
Tilia cordata | 14.608 *(x0.588) | 0.87 | 0.75 | 0.17 | <0.0001 | 52 |
Tilia cordata ‘Greenspire’ | 15.499 *(x0.791) | 0.84 | 0.70 | 0.17 | <0.0001 | 80 |
Tilia platyphyllos | 14.002 *(x0.735) | 0.89 | 0.79 | 0.18 | <0.0001 | 184 |
Tilia tomentosa | 13.349 *(x0.694) | 0.87 | 0.76 | 0.19 | <0.0001 | 375 |
Tilia tomentosa ‘Brabant’ | 15.315 *(x0.633) | 0.92 | 0.84 | 0.14 | <0.0001 | 27 |
Tilia x euchlora | 15.759 *(x0.703) | 0.74 | 0.55 | 0.22 | <0.0001 | 198 |
Tilia x vulgaris | 15.681 *(x0.682) | 0.9 | 0.82 | 0.24 | <0.0001 | 167 |
Tilia x vulgaris ‘Palida’ | 15.486 *(x0.574) | 0.86 | 0.74 | 0.17 | <0.0001 | 77 |
Height and crown specific equations | ||||||
Tall & Broad Crown | 13.287 *(x0.586) | 0.88 | 0.78 | 0.21 | <0.0001 | 23,923 |
Tall & Medium Crown | 14.882 *(x0.591) | 0.84 | 0.70 | 0.20 | <0.0001 | 4245 |
Tall & Small Crown | 13.563 *(x0.790) | 0.76 | 0.58 | 0.32 | <0.0001 | 233 |
Medium Height & Broad Crown | 13.954 *(x0.570) | 0.85 | 0.72 | 0.25 | <0.0001 | 109 |
Medium Height & Medium Crown | 13.477 *(x0.625) | 0.86 | 0.74 | 0.24 | <0.0001 | 5691 |
Medium Height & Small Crown | 14.510 *(x0.609) | 0.86 | 0.74 | 0.23 | <0.0001 | 896 |
Small & Small Crown | 9.691 *(x0.477) | 0.73 | 0.53 | 0.29 | <0.0001 | 2943 |
References
- United Nations. World Urbanization Prospects: The 2014 Revision; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [PubMed]
- Hansen, A.J.; Knight, R.L.; Marzluff, J.M.; Powell, S.; Brown, K.; Gude, P.H.; Jones, K. Effects of Exurban Development on Biodiversity: Patterns Mechanisms and Research Needs. Ecol. Appl. 2015, 15, 1893–1905. [Google Scholar] [CrossRef]
- Kuttler, W. Climate change in urban areas, part 1, effects. Environ. Sci. Eur. 2011, 23. [Google Scholar] [CrossRef]
- Artmann, M.; Kohler, M.; Meinel, G.; Gan, J.; Ioja, I. How smart growth and green infrastructure can mutually support each other—A conceptual framework for compact and green cities. Ecol. Indic. 2017. [Google Scholar] [CrossRef]
- Haase, D.; Neele, L.; Andersson, E.; Artmann, M.; Borgström, S.; Breuste, J.; Gomez-Baggethun, E.; Gren, A.; Hamstead, Z.; Hansen, R.; et al. A Quantitative Review of Urban Ecosystem Service Assessments: Concepts, Models, and Implementation. Ambio 2014, 43, 413–433. [Google Scholar] [CrossRef] [PubMed]
- Gillner, S.; Vogt, J.; Tharang, A.; Dettmann, S.; Roloff, A. Role of street trees in mitigating effects of heat and drought at highly sealed urban sites. Landsc. Urban Plan. 2015, 143, 33–42. [Google Scholar] [CrossRef]
- Moser, A.; Rötzler, T.; Pauleit, S.; Pretzsch, H. Structure and ecosystem services of small-leaved lime (Tilia cordata) and black locust (Robinia pseudoacacia) in urban environments. Urban For. Urban Green. 2015, 14, 1110–1121. [Google Scholar] [CrossRef]
- Lehmann, I.; Mathey, J.; Rößler, S.; Bräuer, A.; Goldberg, V. Urban vegetation structure types as a methodological approach for identifying ecosystem services—Application to the analysis of micro-climatic effects. Ecol. Indic. 2014, 42, 58–72. [Google Scholar] [CrossRef]
- Nowak, D.J.; Crane, D.E.; Jack, C.S. Air pollution removal by urban trees in the United States. Urban For. Urban Green. 2006, 4, 115–123. [Google Scholar] [CrossRef]
- Takashi, M.; Higaki, A.; Nohno, M.; Kamada, M.; Okamura, Y.; Matsiu, K.; Kitani, S.; Morikawa, H. Differential assimilation of nitrogen dioxide by 70 taxa of roadside trees at an urban pollution level. Chemosphere 2005, 61, 633–639. [Google Scholar] [CrossRef] [PubMed]
- Beckett, K.P.; Freer-Smith, P.H.; Taylor, G. Urban woodlands: Their role in reducing the effects of particulate pollution. Environ. Pollut. 1998, 99, 347–360. [Google Scholar] [CrossRef]
- Xiao, Q.; McPherson, E.G.; Simpson, J.R.; Ustin, S.L. Rainfall interception by Sacramento’s urban forest. J. Arboric. 1998, 24, 235–244. [Google Scholar]
- Sanders, R.A. Urban vegetation impacts on the hydrology of Dayton, Ohio. Urban Ecol. 1986, 9, 361–376. [Google Scholar] [CrossRef]
- Strohbach, M.W.; Haase, D. Above-ground carbon storage by urban trees in Leipzig, Germany: Analysis of patterns in a European city. Landsc. Urban Plan. 2012, 104, 95–104. [Google Scholar] [CrossRef]
- Nowak, D.J.; Crane, D.E. Carbon storage and sequestration by urban trees in the USA. Environ. Pollut. 2002, 116, 381–389. [Google Scholar] [CrossRef]
- Strohbach, M.W.; Lerman, S.B.; Warren, P.S. Are small greening areas enhancing bird diversity? Insights from community-driven greening projects in Boston. Landsc. Urban Plan. 2013, 114, 69–79. [Google Scholar] [CrossRef]
- Carbó-Ramírez, P.; Zuria, I. The value of small urban greenspaces for birds in a Mexican city. Landsc. Urban Plan. 2011, 100, 213–222. [Google Scholar] [CrossRef]
- Kronenberg, J. Why not to green a city? Institutional barriers to preserving urban ecosystem services. Ecosyst. Serv. 2015, 12, 218–227. [Google Scholar] [CrossRef]
- Vogt, J.; Gillner, S.; Hofmann, M.; Tharang, A.; Dettmann, S.; Gerstenberg, T.; Schmidt, C.; Gebauer, H.; van de Riet, K.; Berger, U.; et al. Citree: A database supporting tree selection for urban areas in temperate climate. Landsc. Urban Plan. 2017, 157, 14–25. [Google Scholar] [CrossRef]
- i-Tree Eco User’s Manual, Version 6.0; Forest Service: New York, NY, USA, 2016.
- Selmi, W.; Weber, C.; Rivière, E.; Blond, N.; Mehdi, L.; Nowak, D. Air pollution removal by trees in public green spaces in Strasbourg city, France. Urban For. Urban Green. 2017, 17, 192–201. [Google Scholar] [CrossRef]
- Russo, A.; Escobedo, F.J.; Zerbe, S. Quantifying the local-scale ecosystem services provided by urban treed streetscapes in Bolzano, Italy. AIMS Environ. Sci. 2016, 3, 58–76. [Google Scholar] [CrossRef]
- Rogers, K.; Sacre, K.; Goodenough, J.; Doick, K. Valuing London’s Urban Forest. In Results of the London i-Tree Eco Project; Treeconomics: London, UK, 2015. [Google Scholar]
- Baró, F.; Chaparro, L.; Gómez-Baggethun, E.; Langemeyer, J.; Nowak, D.J.; Terradas, J. Contribution of ecosystem services to air quality and climate change mitigation policies: The case of urban forest in Barcelona, Spain. Ambio 2014, 43, 466–479. [Google Scholar] [CrossRef] [PubMed]
- LANUV NRW—Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen. Climate Atlas of Northrine-Westphalia. Available online: http://www.klimaatlas.nrw.de/site/ (accessed on 10 February 2018).
- Snowden, A.; Rauch, B. Klimaanalyse Stadt Duisburg (Climate Analysis of Duisburg). In Report on Behalf of the Regional Association Ruhr; Regionalverband Ruhr: Essen, Germany, 2010. [Google Scholar]
- Geobasis NRW. DOP20 Web Map Service. Available online: https://www.wms.nrw.de/geobasis/wms_nw_dop20. The License Germany—Attribution—Version 2.0 is Valid for the Imprint. License Text. Available online: https://www.govdata.de/dl-de/by-2-0 (accessed on 13 February 2018).
- LANUV NRW—Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen. Hourly Pollution Immission on Continuous Measuring Stations in Duisburg. Available online: https://www.lanuv.nrw.de/umwelt/luft/immissionen/stationen-und-messwerte/ (accessed on 17 May 2017).
- Peper, P.J.; McPherson, E.J.; Mori, S.M. Equations for predicting Diameter, Height, Crown Width and Leaf Area of San Joaquin Valley Street Trees. J. Arboric. 2001, 27, 306–317. [Google Scholar]
- Pretzsch, H. Forest Dynamics, Growth and Yield: From Measurement to Model; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Roloff, A.; Bärtels, A. Flora der Gehölze: Bestimmung, Eigenschaften, Verwendung (Flora of Trees. Determination, Characteristics, Usage), 4th ed.; Ulmer: Stuttgart, Germany, 2014. [Google Scholar]
- Nowak, D.J. Estimating Leaf Area and Leaf Biomass of Open-Grown Deciduous Urban Trees. For. Sci. 1994, 42, 504–507. [Google Scholar]
- Larcher, W. Physiological Plant Ecology, 4th ed.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Häckel, H. Meteorologie (Meteorology), 8th ed.; Ulmer: Stuttgart, Germany, 2016. [Google Scholar]
- Bird, R.E. A simple, solar spectral model for direct-normal and diffuse horizontal irradiance. Sol. Energy 1984, 32, 461–471. [Google Scholar] [CrossRef]
- Bendix, J. Geländeklimatologie (Terrain Climatology); Ulmer: Stuttgart, Germany, 2004. [Google Scholar]
- Lauer, W.; Bendix, J. Klimatologie (Climatology), 2th ed.; Ulmer: Stuttgart, Germany, 2006. [Google Scholar]
- Monsi, M.; Saeki, T. On the Factor Light in Plant Communities and its Importance for Matter Production. Ann. Bot. 2005, 95, 549–567. [Google Scholar] [CrossRef] [PubMed]
- Geobasis, N.R.W. Digital Surface Model (1 m). The license Germany—Attribution—Version 2.0 is Valid for the Imprint. License Text. Available online: https://www.govdata.de/dl-de/by-2-0 (accessed on 13 February 2018).
- LANUV NRW—Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen. Online-Emission-Cadastre NRW. Available online: http://www.ekl.nrw.de/ekat/ (accessed on 17 May 2017).
- Langner, M. Analysen zur Staubauflage auf Bäume (Acer platanoides) innerstädtischer Standorte (Analyze of dust coating on trees (Acer platanoides) on urban sites). In Karlsruher Berichte zur Geographie und Geoökologie, 15; Forschungsbericht: Karlsruhe, Germany, 2002. [Google Scholar]
- Dochinger, L.S. Interception on airborne particles by tree planting. J. Environ. Qual. 1980, 9, 265–268. [Google Scholar] [CrossRef]
- Aguaron, E.; McPherson, E.G. Comparison of Methods for Estimating Carbon Dioxide Storage of Sacramento’s Urban Forest. In Carbon Sequestration in Urban Ecosystems; Lal, R., Augustin, B., Eds.; Springer Science & Business Media: Heidelberg, Germany, 2012; pp. 43–72. [Google Scholar]
- Roloff, A. Urban trees—Importance, benefits, problems. In Urban Tree Management. for the Sustainable Development of Green Cities; Roloff, A., Ed.; John Wiley & Sons: New York, NY, USA, 2016; pp. 1–14. [Google Scholar]
- Lizuka, K.; Taichiro, Y.; Itoh, M.; Kosugi, Y. Estimating Tree Height and Diameter at Breast Height (DBH) from Digital Surface Models and Orthophotos Obtained with an Unmanned Aerial System for a Japanese Cypress (Chamaecyparis obtusa) Forest. Remote Sens. 2018, 10, 13. [Google Scholar] [CrossRef]
- Shashua-Bar, L.; Potchter, O.; Bitan, A.; Boltansky, D.; Yaakov, Y. Microclimatic modelling of street tree species effects within the varied urban morphology in the Mediterranean city of Tel Aviv, Israel. Int. J. Climatol. 2010, 30, 44–57. [Google Scholar]
- Donovan, G.H.; Butry, D.T. The value of shade: Estimating the effect of urban trees on summertime electricity use. Energy Build. 2009, 41, 662–668. [Google Scholar] [CrossRef]
- Hardin, P.J.; Jensen, R.R. The effect of urban leaf area on summertime urban surface kinetic temperatures: A Terre Haute case study. Urban For. Urban Green. 2007, 6, 63–72. [Google Scholar] [CrossRef]
- Kuttler, W. Climate change in urban areas, part 2, measures. Environ. Sci. Eur. 2011, 23. [Google Scholar] [CrossRef]
- Mayer, H.; Kuppe, S.; Holst, J.; Imbery, F.; Matzarakis, A. Human thermal comfort below the canopy of street trees on a typical Central European summer day. In Reports of the Meteorological Institute of the University of Freiburg; Meteorologisches Institut, Albert-Ludwigs-Universität Freiburg: Freiburg, Germany, 2009; Volume 18, pp. 211–219. [Google Scholar]
- Shashua-Bar, L.; Hoffmann, M.E. Vegetation as a climatic component in the design of an urban street. An empirical model for predicting the cooling effect of urban green areas with trees. Energy Build. 2000, 31, 221–235. [Google Scholar] [CrossRef]
- Millward, A.A.; Sabir, S. Benefits of a forested urban park: What ist the value of Allan Gardens to the city of Toronto, Canada? Landsc. Urban Plan. 2011, 100, 177–188. [Google Scholar] [CrossRef]
- Norton, B.A.; Coutts, A.M.; Livesley, S.J.; Harris, R.J.; Hunter, A.M.; Williams, N.S.G. Planning for cooler cities. A framework to prioritise green infracstructure to mitigate high temperatures in urban landscapes. Landsc. Urban Plan. 2015, 134, 127–138. [Google Scholar] [CrossRef]
- Kniesel, B. Dust and noise reduction. In Urban Tree Management for Sustainable Development of Green Cities; Roloff, A., Ed.; John Wiley & Sons: Oxford, UK, 2016; pp. 177–183. [Google Scholar]
- Wang, Z.-H.; Zhao, X.; Yang, J.; Song, J. Cooling and energy saving potentials of shade trees and urban lawns in a desert city. Appl. Energy 2016, 161, 437–444. [Google Scholar] [CrossRef]
- Bowler, D.E.; Buyung-Ali, L.M.; Knight, T.M.; Pulling, A.S. A systematic review of evidence for the added benefits to health of exposure to natural environments. BMC Public Health 2010, 10. [Google Scholar] [CrossRef] [PubMed]
Data requirement | Availability |
---|---|
Tree species and breeds | ✓ |
Status | ✓ |
Land-use | ✓ |
DBH (cm) | ✓ |
Crown width (m) | ✓ |
Local climate and air pollution data | ✓ |
Crown missing (%) | (✓) |
Crown dieback (%) | (✓) |
Lower crown height (m) | (✓) |
Tree height (m) | x |
Crown Light Exposure (CLE) | x |
Species | n | DBH (cm) | Height (m) | Typical and Reachable Height (m) | ||||
---|---|---|---|---|---|---|---|---|
Min | Average | Max | Min | Average | Max | |||
Acer platanoides | 3447 | 0.6 | 23.7 | 121.0 | 1.2 | 10.7 | 29.9 | 25 (30) |
Acer pseudoplatanus | 3106 | 1.3 | 31.4 | 127.3 | 2.2 | 12.9 | 28.9 | 30 (40) |
Acer saccharinum | 1348 | 5.7 | 52.1 | 159.2 | 5.7 | 18.9 | 35.5 | 30 (40) |
Corylus colurna | 1778 | 3.2 | 22.7 | 79.6 | 2.9 | 10.8 | 26.1 | 15 (25) |
Fraxinus excelsior | 1549 | 0.6 | 18.5 | 92.3 | 1.5 | 9.7 | 25.6 | 35 (40) |
Platanus x acerifolia | 10,107 | 3.2 | 60.7 | 159.2 | 3.5 | 19.1 | 34.0 | 25 (35) |
Quercus robur | 1087 | 0.6 | 27.6 | 130.5 | 1.3 | 12.8 | 35.0 | 25 (40) |
Tilia cordata | 5453 | 3.8 | 37.7 | 101.9 | 4.2 | 15.8 | 28.9 | 27 (40) |
Tilia platyphyllos | 924 | 2.9 | 26.6 | 117.8 | 2.4 | 11.6 | 36.6 | 32 (40) |
Tilia tomentosa | 1741 | 6.0 | 43.6 | 114.6 | 4.2 | 16.3 | 32.5 | 27 (30) |
Species | n | Ground Cover (m2) | LAI (m2 m−2) | LAD (m2 m−3) | ΔT (K) | ΔL (W m−2) | ΔQ (W m−2) | ΔE (kW) |
---|---|---|---|---|---|---|---|---|
Acer platanoides | 3447 | 36.8 ± 33.6 | 7.4 ± 2.7 | 0.9 ± 0.5 | 6.4 ± 2.1 | 41.1 ± 12.6 | 507.4 ± 18.0 | 20.0 ± 18.1 |
Acer pseudoplatanus | 3106 | 48.0 ± 33.0 | 7.1 ± 2.4 | 0.6 ± 0.3 | 5.3 ± 1.3 | 33.9 ± 7.9 | 507.2 ± 19.4 | 25.9 ± 17.5 |
Acer saccharinum | 1348 | 115.7 ± 61.8 | 5.4 ± 1.3 | 0.3 ± 0.1 | 3.7 ± 0.6 | 24.1 ± 3.9 | 501.4 ± 17.4 | 60.6 ± 32.2 |
Corylus colurna | 1778 | 26.4 ± 20.2 | 6.2 ± 2.4 | 0.7 ± 0.3 | 5.6 ± 1.5 | 35.9 ± 9.4 | 499.3 ± 26.0 | 14.2 ± 10.9 |
Fraxinus excelsior | 1549 | 24.6 ± 27.7 | 5.7 ± 1.9 | 0.8 ± 0.5 | 6.1 ± 1.7 | 39.2 ± 10.8 | 499.7 ± 20.4 | 13.2 ± 14.8 |
Platanus x acerifolia | 10,107 | 154.2 ± 97.7 | 7.2 ± 1.8 | 0.4 ± 0.2 | 4.2 ± 1.0 | 27.3 ± 6.5 | 510.9 ± 13.6 | 82.7 ± 50.4 |
Quercus robur | 1087 | 45.9 ± 45.2 | 5.0 ± 1.7 | 0.5 ± 0.4 | 4.7 ± 1.4 | 30.5 ± 8.8 | 489.7 ± 34.3 | 23.7 ± 23.1 |
Tilia cordata | 5453 | 60.0 ± 39.3 | 8.0 ± 2.6 | 0.6 ± 0.3 | 5.0 ± 1.4 | 32.2 ± 8.5 | 511.8 ± 13.9 | 32.5 ± 21.0 |
Tilia platyphyllos | 924 | 51.6 ± 59.5 | 6.7 ± 2.5 | 1.0 ± 0.7 | 7.0 ± 3.3 | 44.6 ± 20.1 | 505.8 ± 17.0 | 27.8 ± 31.9 |
Tilia tomentosa | 1741 | 80.1 ± 54.9 | 7.3 ± 2.0 | 0.5 ± 0.3 | 4.8 ± 1.3 | 30.8 ± 8.0 | 510.7 ± 15.0 | 43.2 ± 29.4 |
Ecosystem Service | Inventory Trees | Urban Emissions, Precipitation, Direct and Thermal Energy Received | Percentage |
---|---|---|---|
C-storage | 21,749 t | - | - |
CO2-sequestration | 708 t y−1 | 355,383 t y−1 | 0.2% |
Pollutants removal (without O3) | 16 t y−1 | 626 t y−1 | 2.6% |
NO2 | 6 t y−1 | 266 t y−1 | 2.3% |
SO2 | 3 t y−1 | 316 t y−1 | 0.9% |
PM10 + PM2.5 | 7 t y−1 | 44 t y−1 | 15.9% |
O3 | 11 t y−1 | - | - |
Interception | 69,832 m3 y−1 | 2,382,715 m3 y−1 | 2.9% |
Energy reduction | 1767 MW | 3054 MW | 57.9% |
Street | n | C-Storage (t) | CO2-Sequestration (kg a−1) | Pollution Removal (kg a−1) | Energy Reduction (kW) | Interception (m3 a−1) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Average | Sum | Average | Sum | Average | Sum | Average | Sum | Average | Sum | ||
Streets with highest ecosystem services | |||||||||||
Voßstraße | 50 | 3.5 | 176.5 | 62.8 | 3141.3 | 2.1 | 105.8 | 147.6 | 7379.3 | 6.3 | 316.7 |
Königsberger Allee | 104 | 1.5 | 158.9 | 39.9 | 4152.1 | 1.8 | 183.2 | 128.9 | 13,402.9 | 5.2 | 542.6 |
Streets with lowest ecosystem services | |||||||||||
Schifferstraße | 237 | 0.02 | 4.3 | 2.8 | 669.1 | 0.06 | 14.5 | 3.9 | 932.0 | 0.12 | 28.5 |
Europaallee | 62 | 0.02 | 1.1 | 3.4 | 211.6 | 0.07 | 4.4 | 4.2 | 257.9 | 0.12 | 7.4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scholz, T.; Hof, A.; Schmitt, T. Cooling Effects and Regulating Ecosystem Services Provided by Urban Trees—Novel Analysis Approaches Using Urban Tree Cadastre Data. Sustainability 2018, 10, 712. https://doi.org/10.3390/su10030712
Scholz T, Hof A, Schmitt T. Cooling Effects and Regulating Ecosystem Services Provided by Urban Trees—Novel Analysis Approaches Using Urban Tree Cadastre Data. Sustainability. 2018; 10(3):712. https://doi.org/10.3390/su10030712
Chicago/Turabian StyleScholz, Tobias, Angela Hof, and Thomas Schmitt. 2018. "Cooling Effects and Regulating Ecosystem Services Provided by Urban Trees—Novel Analysis Approaches Using Urban Tree Cadastre Data" Sustainability 10, no. 3: 712. https://doi.org/10.3390/su10030712
APA StyleScholz, T., Hof, A., & Schmitt, T. (2018). Cooling Effects and Regulating Ecosystem Services Provided by Urban Trees—Novel Analysis Approaches Using Urban Tree Cadastre Data. Sustainability, 10(3), 712. https://doi.org/10.3390/su10030712