Dynamic Change in the Water-Level Fluctuation Zone of the Danjiangkou Reservoir and Its Influence on Water Quality
Abstract
:1. Introduction
2. Research Area and Data
2.1. Research Area
2.2. Data
3. Remote-Sensing Image Extraction in the WLFZ
3.1. Reservoir Water Extraction
3.2. Extraction of Reservoir Inundation Area and Non-Flooded Area
3.3. Potential N/P Release in Reservoir WLFZ
4. Results and Analysis
4.1. Dynamic Process of the WLFZ
4.2. Spatial Features before the Water Diversion and after the Water Diversion
4.3. Nitrogen and Phosphorus Release in the WLFZ
5. Discussion
5.1. Discussion of Precision
5.2. The Dynamic Processes of the WLFZ
5.3. Impact on Reservoir Water Quality
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- White, M.; Xenopoulos, M.; Hogsden, K.; Metcalfe, R.; Dillon, P. Natural lake level fluctuation and associated concordance with water quality and aquatic communities within small lakes of the Laurentian Great Lakes region. Hydrobiologia 2008, 613, 21–31. [Google Scholar] [CrossRef]
- Mpelasoka, F.; Hennessy, K.; Jones, R.; Bates, B. Comparison of suitable drought indices for climate change impacts assessment over Australia towards resource management. Int. J. Climatol. 2008, 28, 1283–1292. [Google Scholar] [CrossRef]
- Naiman, R.J.; Decamps, H. The ecology of interfaces: Riparian zones. Ann. Rev. Ecol. Syst. 1997, 28, 621–658. [Google Scholar] [CrossRef]
- Li, S.; Xia, X.; Tan, X.; Zhang, Q. Effects of catchment and riparian landscape setting on water chemistry and seasonal evolution of water quality in the upper Han river basin, China. PLoS ONE 2013, 8, e53163. [Google Scholar] [CrossRef] [PubMed]
- Klemas, V. Remote sensing of riparian and wetland buffers: An overview. J. Coast. Res. 2014, 30, 869–880. [Google Scholar] [CrossRef]
- Cheng, R.; Wang, X.; Xiao, W.; Guo, Q. Advances in studies on water-level-fluctuation zone. Sci. Silvae Sin. 2010, 46, 111–119. [Google Scholar]
- Ye, C.; Li, S.; Zhang, Y.; Zhang, Q. Assessing soil heavy metal pollution in the water-level-fluctuation zone of the Three Gorges Reservoir, China. J. Hazard. Mater. 2011, 191, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zeng, B.; Lin, F.; Ayi, Q. Effects of water level regulation on the seed germination and production of annual plant xanthium sibiricum in the water-level-fluctuating-zone of Three Gorges Reservoir. Sci. Rep. 2017, 7, 5056. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Liu, J.; Xu, S.; Qin, G.; Sun, Y.; Wang, F. Spatial distribution, adsorption/release characteristics, and environment influence of phosphorus on sediments in reservoir. Water 2017, 9, 724. [Google Scholar] [CrossRef]
- Fu, B.; Li, Y.; Wang, Y.; Campbell, A.; Zhang, B.; Yin, S.; Zhu, H.; Xing, Z.; Jin, X. Evaluation of riparian condition of Songhua river by integration of remote sensing and field measurements. Sci. Rep. 2017, 7, 2565. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Du, B.; Zhao, X.; He, B. Fractions and adsorption characteristics of phosphorus on sediments and soils in water level fluctuating zone of the Pengxi river, a tributary of the Three Gorges Reservoir. Environ. Sci. 2013, 34, 1107–1113. [Google Scholar]
- Leigh, C.; Burford, M.A.; Roberts, D.T.; Udy, J.W. Predicting the vulnerability of reservoirs to poor water quality and cyanobacterial blooms. Water Res. 2010, 44, 4487–4496. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Zeng, B.; Su, X.; Xu, J. Effect of water-level fluctuation discrepancy on the composition of different annuals in Three Gorges Reservoir drawdown zone. Acta Ecol. Sin. 2014, 34, 6481–6488. [Google Scholar]
- Wang, Y.; Liu, Y.; Liu, S.; Huang, H. Vegetation reconstruction in the water-level-fluctuation zone of the Three Gorges Reservoir. Chin. Bull. Bot. 2005, 22, 513–522. [Google Scholar]
- Stutter, M.I.; Chardon, W.J.; Kronvang, B. Riparian buffer strips as a multifunctional management tool in agricultural landscapes: Introduction. J. Environ. Qual. 2012, 41, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Tomer, M.D.; Dosskey, M.G.; Burkart, M.R.; James, D.E.; Helmers, M.J.; Eisenhauer, D.E. Methods to prioritize placement of riparian buffers for improved water quality. Agrofor. Syst. 2009, 75, 17–25. [Google Scholar] [CrossRef]
- Ruban, V.; Brigault, S.; Demare, D.; Philippe, A.-M. An investigation of the origin and mobility of phosphorus in freshwater sedimments from Bort-Les-Orgues reservoir, france. J. Environ. Monit. 1999, 1, 403–407. [Google Scholar] [CrossRef] [PubMed]
- Johansen, K.; Arroyo, L.A.; Armston, J.; Phinn, S.; Witte, C. Mapping riparian condition indicators in a sub-tropical Savanna environment from discrete return LiDAR data using object-based image analysis. Ecol. Indic. 2010, 10, 796–807. [Google Scholar] [CrossRef]
- Lv, M.; Wu, S.; Chen, C.; Jiang, Y.; Wen, Z.; Chen, J.; Wang, Y.; Wang, X.; Huang, P. A review of studies on water level fluctuating zone (WLFZ) of the Three Gorges Reservoir (TGR) based on bibliometric perspective. Acta Ecol. Sin. 2015, 35. [Google Scholar] [CrossRef]
- Han, B. Reservoir ecology and limnology in China: A retrospective comment. J. Lake Sci. 2010, 22, 151–160. [Google Scholar]
- Tan, S.; Wang, Y.; Zhang, Q. Environmental challenges and countermeasures of the water-level-fluctuation zone (wlfz) of the Three Gorges Reservoir. Resour. Environ. Yangtze Basin 2008, 17, 101–105. [Google Scholar]
- Li, S.; Cheng, X.; Xu, Z.; Han, H.; Zhang, Q. Spatial and temporal patterns of the water quality in the Danjiangkoureservoir, China. Hydrol. Sci. J. 2009, 54, 124–134. [Google Scholar] [CrossRef]
- Li, W.; Zeng, Y.; Zhang, L.; Yin, K.; Yuan, C.; Wu, B. The spatial pattern of land cover in the drawdown area of Danjiangkou reservoir. Remote Sens. Land Resour. 2011, 91, 108–114. [Google Scholar]
- Zhang, B.; Chen, Y. Nitrogen forms and their distribution characteristics in the soils of water; level; fluctuation zone in the central Three Gorges Reservoir. Acta Sci. Circum Stant. 2012, 32, 1126. [Google Scholar]
- Yin, W.; Zhu, D.; Lei, J.; Jia, H.; Zeng, Z. Distribution of nitrogen, phospthorus in the soils of different land uses from the representive water-level-fluctuating zone of Danjiangkou Reservoir. Resour. Environ. Yangtze Basin 2015, 224, 1185–1191. [Google Scholar]
- Crétaux, J.-F.; Biancamaria, S.; Arsen, A.; Bergé-Nguyen, M.; Becker, M. Global surveys of reservoirs and lakes from satellites and regional application to the Syrdarya river basin. Environ. Res. Lett. 2015, 10, 015002. [Google Scholar] [CrossRef]
- Feng, L.; Hu, C.; Chen, X.; Cai, X.; Tian, L.; Gan, W. Assessment of inundation changes of Poyang lake using modis observations between 2000 and 2010. Remote Sens. Environ. 2012, 121, 80–92. [Google Scholar] [CrossRef]
- Yamazaki, D.; Trigg, M.A.; Ikeshima, D. Development of a global ~90 m water body map using multi-temporal landsat images. Remote Sens. Environ. 2015, 171, 337–351. [Google Scholar] [CrossRef] [Green Version]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated water extraction index: A new technique for surface watemapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Tang, Q.; Bao, Y.; He, X.; Zhou, H.; Cao, Z.; Gao, P.; Zhong, R.; Hu, Y.; Zhang, X. Sedimentation and associated trace metal enrichment in the riparian zone of the Three Gorges Reservoir, China. Sci. Total Environ. 2014, 479, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Shu, X.; Zhang, K.; Zhang, Q.; Wang, W. Response of soil physico-chemical properties to restoration approaches and submergence in the water level fluctuation zone of the Danjiangkou reservoir, China. Ecotoxicol. Environ. Saf. 2017, 145, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Lei, P.; Zhang, H.; Shan, B.; Ye, Y. Nitrogen and phosphorus fractions and releasing characteristics of the soilsfrom the representative water-level-fluctuating zone of Danjiangkou reservoir. Acta Sci. Circumst. 2015, 35, 1383–1392. [Google Scholar]
- Song, C.; Huang, B.; Ke, L. Modeling and analysis of lake water storage changes on the Tibetan Plateau using multi-mission satellite data. Remote Sens. Environ. 2013, 135, 25–35. [Google Scholar] [CrossRef]
- Fowe, T.; Karambiri, H.; Paturel, J.-E.; Poussin, J.-C.; Cecchi, P. Water balance of small reservoirs in the Volta basin: A case study of Boura reservoir in Burkina Faso. Agric. Water Manag. 2015, 152, 99–109. [Google Scholar] [CrossRef]
- Liu, H.; Yin, J.; Chen, J.; Chen, X.L. Dynamic change and cause of water area in Danjingkou reservoir based on remote sensing image. Resour. Environ. Yangtze Basin 2016, 25, 1759–1766. [Google Scholar]
- Lu, S.; Wu, B.; Yan, N.; Wang, H. Water body mapping method with HJ-1A/B satellite imagery. Int. J. Appl. Earth Obs. Geoinform. 2011, 13, 428–434. [Google Scholar] [CrossRef]
- Park, J.; Jeong, H.J.; Du Yoo, Y.; Yoon, E.Y. Mixotrophic dinoflagellate red tides in Korean waters: Distribution andecophysiology. Harmful Algae 2013, 30, S28–S40. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, Y.; Qiao, X.; Zheng, B.; Chang, S.; Fu, Q. Investigation of nitrogen and phosphorus contents in water in the tributaries of Danjiangkou reservoir. R. Soc. Open Sci. 2018, 5, 170624. [Google Scholar] [CrossRef] [PubMed]
Dead Water Level | Normal Water Level | Highest Water Level | Lowest Water Level | Flood Limit Water Level | ||
---|---|---|---|---|---|---|
Summer | Autumn | |||||
Before the dam-heightening stage (2000–2013) | 139.00 | 157.00 | 157.20 * (6 December 2011) | 134.70 * (20 May 2011) | ≤149.00 | ≤152.50 |
After the dam-heightening stage (2014–2016) | 150.00 | 170.00 | 160.72 * (1 November 2014) | 136.51 * (11 April 2014) | ≤160.00 | ≤163.50 |
Component | Application | Source | Description | |
---|---|---|---|---|
Remote sensing data | Landsat 5 TM 32, 7 ETM+ 83, 8 OLI 15, HJ-1A 49 HJ-1B 6 | Obtaining the water level dynamics in Danjiangkou Reservoir | http://www.gscloud.cn/ http://www.cresda.com/ | The loss of ETM+ sensing image is repaired by gap mask; projection reference is WGS84_UTM_zone_49N |
Land cover/use data | Land cover/use data in 2006 and 2015 in WLFZ | Analyzing the N and P released in alternating dry–wet conditions | Interpretation according to different objects | Obtaining remote-sensing images at a low water level; the types of land cover/use include plow, garden, forest, grassland, desert land, tidal flat, construction land |
Soil data | The world soil database | Analyzing the N and P release in the reservoir | Harmonized World Soil Database (HWSD) v1.1 | The spatial resolution is 1 km; released by the United Nations Food and Agriculture Organization (FAO) |
elevation data | Reservoir SRTM DEM | Analyzing the range of reservoir’s characteristic water level | http://www.gscloud.cn/ | The spatial resolution is 90 m, acquired in February 2000, during a historically low water level |
Flood Land | Wild Grassland | Plow | Garden | Forest | |
---|---|---|---|---|---|
Total phosphorus (TP) * | 372. 0 | 494.8 | 820.9 | 765.1 | 518.4 |
Total nitrogen (TN) * | 545.3 | 668.7 | 723.0 | 932.1 | 674.5 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, J.; Liu, H.; Chen, X. Dynamic Change in the Water-Level Fluctuation Zone of the Danjiangkou Reservoir and Its Influence on Water Quality. Sustainability 2018, 10, 1025. https://doi.org/10.3390/su10041025
Yin J, Liu H, Chen X. Dynamic Change in the Water-Level Fluctuation Zone of the Danjiangkou Reservoir and Its Influence on Water Quality. Sustainability. 2018; 10(4):1025. https://doi.org/10.3390/su10041025
Chicago/Turabian StyleYin, Jie, Hai Liu, and Xiaoling Chen. 2018. "Dynamic Change in the Water-Level Fluctuation Zone of the Danjiangkou Reservoir and Its Influence on Water Quality" Sustainability 10, no. 4: 1025. https://doi.org/10.3390/su10041025
APA StyleYin, J., Liu, H., & Chen, X. (2018). Dynamic Change in the Water-Level Fluctuation Zone of the Danjiangkou Reservoir and Its Influence on Water Quality. Sustainability, 10(4), 1025. https://doi.org/10.3390/su10041025