Sustainable Municipal Solid Waste Disposal in the Belt and Road Initiative: A Preliminary Proposal for Chengdu City
Abstract
:1. Introduction
2. Literature Review
3. Method and Data
3.1. Scenario Development
3.2. GHG Emissions Assessment
3.2.1. GHG Emissions from Incineration
3.2.2. GHG Emissions from Landfill Disposal
3.2.3. GHG Emissions from Anaerobic Digestion
3.3. Economic Assessment
3.4. Data Source
4. Results and Discussion
4.1. Results
4.2. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Du, M.M. China’s “One Belt, One Road” Initiative: Context, Focus, Institutions, and Implications. Chin. J. Glob. Govern. 2016, 2, 30–43. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.K. Three questions on China’s “Belt and Road Initiative”. China Econ. Rev. 2016, 40, 309–313. [Google Scholar] [CrossRef]
- Xu, L.; Fan, X.; Wang, W.; Xu, L.; Duan, Y.; Shi, R. Renewable and sustainable energy of Xinjiang and development strategy of node areas in the “Silk Road Economic Belt”. Renew. Sustain. Energy Rev. 2017, 79, 274–285. [Google Scholar] [CrossRef]
- Voytenko, Y.; McCormick, K.; Evans, J.; Schliwa, G. Urban living labs for sustainability and low carbon cities in Europe: Towards a research Agenda. J. Clean. Prod. 2016, 123, 45–54. [Google Scholar] [CrossRef]
- Mutizwa-Mangiza, N.D.; Arimah, B.C.; Jensen, I.; Yemeru, E.A.; Kinyanjui, M.K. Global Report on Human Settlements 2011. Cities and Climate Change; UN-HABITAT: Nairobi, Kenia, 2011. [Google Scholar]
- Ho, W.S.; Hashim, H.; Lim, J.S.; Lee, C.T.; Sam, K.C.; Tan, S.T. Waste Management Pinch Analysis (WAMPA): Application of Pinch Analysis for greenhouse gas (GHG) emission reduction in municipal solid waste management. Appl. Energy 2017, 185, 1481–1489. [Google Scholar] [CrossRef]
- Cocarta, D.M.; Rada, E.C.; Ragazzi, M.; Badea, A.; Apostol, T. A contribution for a correct vision of health impact from municipal solid waste treatments. Environ. Technol. 2009, 30, 963–968. [Google Scholar] [CrossRef] [PubMed]
- Jha, A.K.; Singh, S.K.; Singh, G.P.; Gupta, P.K. Sustainable municipal solid waste management in low income group of cities: A review. Trop. Ecol. 2011, 52, 123–131. [Google Scholar]
- Zulkepli, N.E.; Muis, Z.A.; Mahmood, N.A.N.; Hashim, H.; Ho, W.S. Cost benefit analysis of composting and anaerobic digestion in a community: A review. Chem. Eng. Trans. 2017, 56, 1777–1782. [Google Scholar]
- Ionescu, G.; Rada, E.C.; Cioca, L.I. Municipal solid waste sorting and treatment schemes for the maximization of material and energy recovery in a latest EU member. Environ. Eng. Manag. J. 2015, 14, 2537–2544. [Google Scholar]
- Zhao, R.; Huang, T.; McGuire, M. From a Literature Review to an Alternative Treatment System for Landfill Gas and Leachate. Challenges 2012, 3, 278–289. [Google Scholar] [CrossRef]
- Bosmans, A.; Vanderreydt, I.; Geysen, D.; Helsen, L. The crucial role of Waste-to-Energy technologies in enhanced landfill mining: A technology review. J. Clean. Prod. 2013, 55, 10–23. [Google Scholar] [CrossRef]
- Beyene, H.D.; Werkneh, A.A.; Ambaye, T.G. Current updates on waste to energy (WtE) technologies: A review. Renew. Energy Focus 2018, 24, 1–11. [Google Scholar] [CrossRef]
- Ministry of Commerce People’s Republic of China. Law of the People’s Republic of China on Prevention and Control of Environmental Pollution by Solid Waste. Available online: http://english.mofcom.gov.cn/aarticle/policyrelease/internationalpolicy/200703/20070304471567.html (accessed on 6 February 2018).
- Zhang, D.Q.; Tan, S.K.; Gersberg, R.M. Municipal solid waste management in China: Status, problems and challenges. J. Environ. Manag. 2010, 91, 1623–1633. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.; Niu, D.; Zhao, Y. A comprehensive overview of rural solid waste management in China. Front. Environ. Sci. Eng. 2015, 9, 949–961. [Google Scholar] [CrossRef]
- Qin, B. City profile: Chengdu. Cities 2015, 43, 18–27. [Google Scholar] [CrossRef]
- Li, Y.; Zhan, J.; Zhang, F.; Zhang, M.; Chen, D. The study on ecological sustainable development in Chengdu. Phys. Chem. Earth Parts A/B/C 2017, 101, 112–120. [Google Scholar] [CrossRef]
- Chengdu Planning and Management Bureau. Overall City Plan of Chengdu (2016–2035). Available online: http://www.cdgh.gov.cn/gsgg/lbgggb/6053.htm (accessed on 5 March 2018).
- Zhou, H.; Meng, A.; Long, Y.; Li, Q.; Zhang, Y. An overview of characteristics of municipal solid waste fuel in China: Physical, chemical composition and heating value. Renew. Sustain. Energy Rev. 2014, 36, 107–122. [Google Scholar] [CrossRef]
- Fu, Y.; Qiu, Z.; Fu, C.; Zhu, D.; Yin, Y. Analysis of Municipal Solid Waste Composition and Physicochemical Properties in Urban Areas of Chengdu. Sichuan Environ. 2015, 33, 126–129, (In Chinese with English Abstract). [Google Scholar]
- Kibler, K.M.; Reinhart, D.; Hawkins, C.; Motlagh, A.M.; Wright, J. Food waste and the food-energy-water nexus: A review of food waste management alternatives. Waste Manag. 2018, 74, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.P.; Huang, G.H. An interval-based possibilistic programming method for waste management with cost minimization and environmental-impact abatement under uncertainty. Sci. Total Environ. 2010, 408, 4296–4308. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Huang, G. Contract-out planning of solid waste management system under uncertainty: Case study on Toronto, Ontario, Canada. J. Clean. Prod. 2017, 168, 1370–1380. [Google Scholar] [CrossRef]
- Dai, C.; Li, Y.P.; Huang, G.H. A two-stage support-vector-regression optimization model for municipal solid waste management—A case study of Beijing, China. J. Environ. Manag. 2011, 92, 3023–3037. [Google Scholar] [CrossRef] [PubMed]
- Economopoulou, M.A.; Economopoulou, A.A.; Economopoulos, A.P. A methodology for optimal MSW management, with an application in the waste transportation of Attica Region, Greece. Waste Manag. 2013, 33, 2177–2187. [Google Scholar] [CrossRef] [PubMed]
- Asefi, H.; Lim, S. A novel multi-dimensional modeling approach to integrated municipal solid waste management. J. Clean. Prod. 2017, 166, 1131–1143. [Google Scholar] [CrossRef]
- Das, S.; Bhattacharyya, B.K. Optimization of municipal solid waste collection and transportation routes. Waste Manag. 2015, 43, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Yadav, V.; Karmakar, S.; Dikshit, A.K.; Bhurjee, A.K. Interval-valued facility location model: An appraisal of municipal solid waste management system. J. Clean. Prod. 2018, 171, 250–263. [Google Scholar] [CrossRef]
- Zhao, R.; Liu, Y.; Zhang, N.; Huang, T. An optimization model for green supply chain management by using a big data analytic approach. J. Clean. Prod. 2017, 142, 1085–1097. [Google Scholar] [CrossRef]
- Wittmaier, M.; Langer, S.; Sawilla, B. Possibilities and limitations of life cycle assessment (LCA) in the development of waste utilization systems—Applied examples for a region in Northern Germany. Waste Manag. 2009, 29, 1732–1738. [Google Scholar] [CrossRef] [PubMed]
- Liamsanguan, C.; Gheewala, S.H. LCA: A decision support tool for environmental assessment of MSW management systems. J. Environ. Manag. 2008, 87, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Cifrian, E.; Galan, B.; Andres, A.; Viguri, J.R. Material flow indicators and carbon footprint for MSW management systems: Analysis and application at regional level, CantaB & Ra, Spain. Resour. Conserv. Recycl. 2012, 68, 54–66. [Google Scholar]
- Zhao, W.; Huppes, G.; van der Voet, E. Eco-efficiency for greenhouse gas emissions mitigation of municipal solid waste management: A case study of Tianjin, China. Waste Manag. 2011, 31, 1407–1415. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.W.; Huang, G.H.; He, L.; Zeng, G.M. An inexact dynamic optimization model for municipal solid waste management in association with greenhouse gas emission control. J. Environ. Manag. 2009, 90, 396–409. [Google Scholar] [CrossRef] [PubMed]
- Mavrotas, G.; Gakis, N.; Skoulaxinou, S.; Katsouros, V.; Georgopoulou, E. Municipal solid waste management and energy production: Consideration of external cost through multi-objective optimization and its effect on waste-to-energy solutions. Renew. Sustain. Energy Rev. 2015, 51, 1205–1222. [Google Scholar] [CrossRef]
- Hanandeh, A.E.; Zein, A.E. Are the aims of increasing the share of green electricity generation and reducing GHG emissions always compatible? Renew. Energy 2011, 36, 3031–3036. [Google Scholar] [CrossRef]
- Pin, B.V.R.; Barros, R.M.; Silva Lora, E.E.; dos Santos, I.F.S. Waste management studies in a Brazilian microregion: GHG emissions balance and LFG energy project economic feasibility analysis. Energy Strateg. Rev. 2018, 19, 31–43. [Google Scholar] [CrossRef]
- Demirbas, A. Waste management, waste resource facilities and waste conversion processes. Energy Convers. Manag. 2011, 52, 1280–1287. [Google Scholar] [CrossRef]
- Jia, X.; Wang, S.; Li, Z.; Wang, F.; Tan, R.R.; Qian, Y. Pinch analysis of GHG mitigation strategies for municipal solid waste management: A case study on Qingdao City. J. Clean. Prod. 2018, 174, 933–944. [Google Scholar] [CrossRef]
- Zhao, R.; Liu, Y.; Zhang, Z.; Guo, S.; Tseng, M.L.; Wu, K.J. Enhancing Eco-Efficiency of Agro-Products’ Closed-Loop Supply Chain under the Belt and Road Initiatives: A System Dynamics Approach. Sustainability 2018, 10, 668. [Google Scholar] [CrossRef]
- Zhao, R.; Xi, B.; Liu, Y.; Su, J.; Liu, S. Economic potential of leachate evaporation by using landfill gas: A system dynamics approach. Resour. Conserv. Recycl. 2017, 124, 74–84. [Google Scholar] [CrossRef]
- Xu, Y.; Chan, A.P.; Xia, B.; Qian, Q.K.; Liu, Y.; Peng, Y. Critical risk factors affecting the implementation of PPP waste-to-energy projects in China. Appl. Energy 2015, 158, 403–411. [Google Scholar] [CrossRef]
- Johnson, T. The politics of waste incineration in Beijing: The limits of a top-down approach? J. Environ. Policy Plan. 2013, 15, 109–128. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, L.; Li, A. Anaerobic co-digestion of food waste with MSW incineration plant fresh leachate: Process performance and synergistic effects. Chem. Eng. J. 2015, 259, 795–805. [Google Scholar] [CrossRef]
- Gimenez, C.; Sierra, V.; Rodon, J. Sustainable operations: Their impact on the triple bottom line. Int. J. Prod. Econ. 2012, 140, 149–159. [Google Scholar] [CrossRef]
- Nikolaou, I.E.; Evangelinos, K.I.; Allan, S. A reverse logistics social responsibility evaluation framework based on the triple bottom line approach. J. Clean. Prod. 2013, 56, 173–184. [Google Scholar] [CrossRef]
- Chauhan, A.; Singh, A. A hybrid multi-criteria decision making method approach for selecting a sustainable location of healthcare waste disposal facility. J. Clean. Prod. 2016, 139, 1001–1010. [Google Scholar] [CrossRef]
- Gou, Z.; Xie, X. Evolving green building: Triple bottom line or regenerative design? J. Clean. Prod. 2017, 153, 600–607. [Google Scholar] [CrossRef]
- Eggleston, S.; Buendia, L.; Miwa, K.; Ngara, T. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Geneva, Switzerland, 2006. [Google Scholar]
- Woon, K.S.; Lo, I.M.C. Greenhouse gas accounting of the proposed landfill extension and advanced incineration facility for municipal solid waste management in Hong Kong. Sci. Total Environ. 2013, 458–460, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Gaur, A.; Park, J.-W.; Maken, S.; Song, H.-J.; Park, J.-J. Landfill gas (LFG) processing via adsorption and alkanolamine absorption. Fuel Process. Technol. 2010, 91, 635–640. [Google Scholar] [CrossRef]
- Wang, X.; Jia, M.; Zhang, C.; Chen, S.; Cai, Z. Leachate treatment in landfills is a significant N2O source. Sci. Total Environ. 2017, 596–597, 18–25. [Google Scholar] [CrossRef] [PubMed]
- De Menna, F.; Dietershagen, J.; Loubiere, M.; Vittuari, M. Life cycle costing of food waste: A review of methodological approaches. Waste Manag. 2018, 73, 1–13. [Google Scholar] [CrossRef] [PubMed]
- You, S.; Wang, W.; Dai, Y.; Tong, Y.W.; Wang, C.-H. Comparison of the co-gasification of sewage sludge and food wastes and cost-benefit analysis of gasification- and incineration-based waste treatment schemes. Bioresour. Technol. 2016, 218, 595–605. [Google Scholar] [CrossRef] [PubMed]
- Schneider, D.R.; Kirac, M.; Hublin, A. Cost-effectiveness of GHG emission reduction measures and energy recovery from municipal waste in Croatia. Energy 2012, 48, 203–211. [Google Scholar] [CrossRef]
- National Development and Reform Commission. Guidelines for Provincial Level Greenhouse Gas Inventory. Available online: http://qhs.ndrc.gov.cn/dtjj/201403/W020140328413051841999.pdf (accessed on 6 January 2018).
- National Development and Reform Commission. Baseline Emission Factors for Regional Power Grids in China. Available online: http://www.ndrc.gov.cn/yjzq/201704/t20170414_847850.html (accessed on 6 January 2018).
- Wang, X.; Jia, M.; Chen, X.; Xu, Y.; Lin, X.; Kao, C.M.; Chen, S. Greenhouse gas emissions from landfill leachate treatment plants: A comparison of young and aged landfill. Waste Manag. 2014, 34, 1156–1164. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Zheng, D. Generation regularities and application of LFG from Chengdu Chang’an waste landfill site. Environ. Sanit. Eng. 2012, 20, 46–48. [Google Scholar]
- Yang, N.; Zhang, H.; Shao, L.-M.; Lü, F.; He, P.-J. Greenhouse gas emissions during MSW landfilling in China: Influence of waste characteristics and LFG treatment measures. J. Environ. Manag. 2013, 129, 510–521. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Liu, Y.; Zheng, D.; Wang, L.; Pu, X.; Song, L.; Wang, Z.; Lei, Y.; Chen, Z.; Long, Y. Application and development of biogas technology for the treatment of waste in China. Renew. Sustain. Energy Rev. 2017, 70, 845–851. [Google Scholar] [CrossRef]
- Chen, T.; Shen, D.; Jin, Y.; Li, H.; Yu, Z.; Feng, H.; Long, Y.; Yin, J. Comprehensive evaluation of environ-economic bene fi ts of anaerobic digestion technology in an integrated food waste-based methane plant using a fuzzy mathematical model. Appl. Energy 2017, 208, 666–677. [Google Scholar] [CrossRef]
- Zhao, X.; Jiang, G.; Li, A.; Li, Y. Technology, cost, a performance of waste-to-energy incineration industry in China. Renew. Sustain. Energy Rev. 2016, 55, 115–130. [Google Scholar]
- Rajaeifar, M.A.; Ghanavati, H.; Dashti, B.B.; Heijungs, R.; Aghbashlo, M.; Tabatabaei, M. Electricity generation and GHG emission reduction potentials through different municipal solid waste management technologies: A comparative review. Renew. Sustain. Energy Rev. 2017, 79, 414–439. [Google Scholar] [CrossRef]
- Ren, X.; Che, Y.; Yang, K.; Tao, Y. Risk perception and public acceptance toward a highly protested Waste-to-Energy facility. Waste Manag. 2016, 48, 528–539. [Google Scholar] [CrossRef] [PubMed]
- Wan, C.; Shen, G.Q.; Choi, S. Differential public support for waste management policy: The case of Hong Kong. J. Clean. Prod. 2018, 175, 477–488. [Google Scholar] [CrossRef]
- De Feo, G.; De Gisi, S.; Williams, I.D. Public perception of odour and environmental pollution attributed to MSW treatment and disposal facilities: A case study. Waste Manag. 2013, 33, 974–987. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Ning, Y.; Zhang, T.; Fei, Y. Public acceptance of waste incineration power plants in China: Comparative case studies. Habitat Int. 2015, 47, 11–19. [Google Scholar] [CrossRef]
- Lang, G.; Xu, Y. Anti-incinerator campaigns and the evolution of protest politics in China. Environ. Polit. 2013, 22, 832–848. [Google Scholar] [CrossRef]
- Zhao, R.; Neighbour, G.; Deutz, P.; McGuire, M. Materials selection for cleaner production: An environmental evaluation approach. Mater. Des. 2012, 37, 429–434. [Google Scholar] [CrossRef]
Composition (%) | |||||
---|---|---|---|---|---|
Paper | Textile | Food | Wood | Rest | |
Waste before stacking | 8.516 | 2.983 | 66.533 | 3.015 | 18.953 |
Waste stacking for 3–7 days | 10.140 | 3.406 | 59.722 | 3.262 | 23.500 |
Parameters | Data | Source |
---|---|---|
Incineration capacity (2016–2020; million tons) | 2.08, 2.86, 2.96, 2.96, and 4.27, respectively | [19] |
CCW (%) | 20 | [57] |
EF (%) | 95 | [57] |
EFCH4 | 0.2 | [50] |
EFN2O | 47 | [50] |
EMSW in Scenario 1 (2016–2020; MWh) | 661,977 | UMBC |
EMSW in Scenario 2 (2016–2020; MWh) | 1,064,071, 1,123,169, 1,185,671, 1,251,885, and 1,321,503, respectively | [19] |
EMSW in Scenario 3 (2016–2020; MWh) | 428,055, 451,829, 476,972, 503,608, and 531,614, respectively | Field investigation |
EFep (t CO2∙MWh−1) | 0.9229 | [58] |
MSWQ in Scenario 1 (2016–2020; million tons) | 1.359, 1.55, 1.752, 1.966, and 2.191, respectively | [19] |
MSWQ in Scenario 3 (2016–2020; million tons) | 0.020, 0.021, 0.022, 0.024, and 0.025, respectively | [19] |
MCF | 1 | [50] |
DOCF | 0.5 | [59] |
F | 0.35 | [60] |
R | 0 | Field investigation |
OX | 0.1 | [57] |
Ql,y (2016–2020; million tons) | 0.5175, 0.705, 0.883, 0.885, and 0.885, respectively | Field investigation |
Etp (kg/m3) | 0.059 | [59] |
Ec (MWh/m3) | 0.014 | [61] |
PRgas (m3/t) | 76.71 | [62] |
RCH4 (%) | 61 | Experiment |
Construction investment for AD plants | 90,644 USD/t | [63] |
r | 8% | [56] |
Operating cost | 9.35 USD/t (landfill), 26.82 USD/t (incineration), 45.03 USD/t (AD) | [42,63,64], respectively |
Subsidy | 12.64 USD/t (landfill), 28.44 USD/t (incineration), 27.46 USD/t (AD) | Field investigation [42,63], respectively |
Wi (Paper, Textile, Food, Wood; %) | 10.14, 3.406, 59.722, and 3.262, respectively | UMBC |
DOCi default value (Paper, Textile, Food, Wood; %) | 40, 24, 15, and 43, respectively | [57] |
Indicator | GHGs | Cost | Public Acceptance | Score | Weight |
---|---|---|---|---|---|
GHGs | - | 1 | 1 | 3 | 0.5 |
Cost | 0 | - | 1 | 2 | 0.33 |
Public acceptance | 0 | 0 | - | 1 | 0.17 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Zhao, R.; Huang, T.; Wang, X.; Tseng, M.-L. Sustainable Municipal Solid Waste Disposal in the Belt and Road Initiative: A Preliminary Proposal for Chengdu City. Sustainability 2018, 10, 1147. https://doi.org/10.3390/su10041147
Huang J, Zhao R, Huang T, Wang X, Tseng M-L. Sustainable Municipal Solid Waste Disposal in the Belt and Road Initiative: A Preliminary Proposal for Chengdu City. Sustainability. 2018; 10(4):1147. https://doi.org/10.3390/su10041147
Chicago/Turabian StyleHuang, Junhan, Rui Zhao, Tao Huang, Xiaoqian Wang, and Ming-Lang Tseng. 2018. "Sustainable Municipal Solid Waste Disposal in the Belt and Road Initiative: A Preliminary Proposal for Chengdu City" Sustainability 10, no. 4: 1147. https://doi.org/10.3390/su10041147
APA StyleHuang, J., Zhao, R., Huang, T., Wang, X., & Tseng, M. -L. (2018). Sustainable Municipal Solid Waste Disposal in the Belt and Road Initiative: A Preliminary Proposal for Chengdu City. Sustainability, 10(4), 1147. https://doi.org/10.3390/su10041147