Identifying Farm Pond Habitat Suitability for the Common Moorhen (Gallinula chloropus): A Conservation-Perspective Approach
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Fuzzy Delphi Analysis
2.3. Environment Investigation of Pond Habitats
2.4. Population Census of Common Moorhen
2.5. Habitat Suitability Assessment and Statistical Analysis
3. Results
3.1. Population Census and Seasonal Variations of Common Moorhen in Farm Ponds
3.2. Evaluation Framework of Habitat Suitability
3.3. Evaluation Criteria of Habitat Suitability
3.3.1. Suitability of External Environments of Farm Ponds
3.3.2. Suitability of Internal Environments of Farm Ponds
3.3.3. Overall Habitat Suitability of Farm Ponds
3.4. Overall Accuracy of the Habitat-Suitability Assessment Model on Farm Ponds for the Common Moorhen
4. Discussion
4.1. Spatial Distribution of the Common Moorhen Population
4.2. Comparisons of Habitat-Suitability Assessment Models
4.3. Implications of Habitat Management and Restoration for Common Moorhen Conservation
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Wang, W.B. Taiwan Historic Irrigation System; Walkers Culture: Taipei, Taiwan, 2003. [Google Scholar]
- Yunlin County Government. Report of Farm Ponds Culture Area Planning; Chinese Landscape Architecture Society: Taipei, Taiwan, 2012.
- Hu, S.Y. A Study on the Value of Agricultural Pond and Its Relationships with Place Attachment and the Future Use of Agricultural Pond in Yunlin Area. Master’s Thesis, National Chung Hsing University, Taichung, Taiwan, 2013. [Google Scholar]
- Chou, W.W.; Lee, S.H.; Wu, C.F. Evaluate the preservation value and location of farm ponds in Yunlin County. Int. J. Environ. Res. Public Health 2014, 11, 548–572. [Google Scholar] [CrossRef] [PubMed]
- Juang, S.R.; Chen, S.H.; Wu, C.F. An Expert-based assessment model for evaluating habitat suitability of pond-breeding amphibians. Sustainability 2017, 9, 278. [Google Scholar] [CrossRef]
- Kao, Y.H. Bird Diversity and Ponds around the Landscape Correlation Analysis on Taoyuan Ponds. Master’s Thesis, Chung Hua University, Hsinghu, Taiwan, 2013. [Google Scholar]
- Froneman, A.; Mangnall, M.J.; Little, R.M.; Crowe, T.M. Waterbird assemblages and associated habitat characteristics of farm ponds in the Western Cape, South Africa. Biodivers. Conserv. 2001, 10, 251–270. [Google Scholar] [CrossRef]
- Chen, C.P. Report of Pond Investigation at Taiyuan and Guangfu Irrigation System; Hakka Affairs Council: Taipei, Taiwan, 2003. [Google Scholar]
- Feng, Z.Y.; Liu, Y.A. Efficient assessment of farm pond reconstruction as detention pond. TSWCJ 2007, 59, 8–15. [Google Scholar]
- Sebastián-González, E.; Sánchez-Zapata, J.A.; Botella, F. Agricultural ponds as alternative habitat for waterbirds: Spatial and temporal patterns of abundance and management strategies. Eur. J. Wildl. Res. 2010, 56, 11–20. [Google Scholar] [CrossRef]
- Huang, K.F. Function of farm pond, pool and detention pond. Technol. Soil Water Conserv. 2012, 7, 63–65. [Google Scholar]
- Forman, R.T.T.; Godron, M. Landscape Ecology; John Wiley: New York, NY, USA, 1986; ISBN 0471870374. [Google Scholar]
- Langevelde, F.; Schotman, A.; Claassen, F.; Sparenburg, G. Competing land use in the reserve site selection problem. Landsc. Ecol. 2000, 15, 243–256. [Google Scholar] [CrossRef]
- Savard, J.P.L.; Clergeau, P.; Mennechez, G. Biodiversity concepts and urban planning. Landsc. Urban Plan 2000, 48, 131–142. [Google Scholar] [CrossRef]
- Chiang, Y.C.; Chang, C.Y. The relationship between patch structure indices and bird diversity. Hort NCHU 2004, 29, 97–109. [Google Scholar]
- Lu, A.H.; Perng, J.J.; Kuo, W.C.; Ueh, C.L.; Ting, C.S.; Chen, J.H. A biodiversity study on the rural ditch landscape in the Wuggo Village, Pingtung County. Taiwan J. Archit. 2007, 59, 163–188. [Google Scholar]
- Ma, Z.; Cai, Y.; Li, B.; Chen, J. Managing wetland habitats for waterbirds: An international perspective. Wetlands 2010, 30, 15–27. [Google Scholar] [CrossRef]
- Chang, K.W.; Chang, C.Y. The relationship between landscape ecology structure and species diversity of birds. Hort. NCHU 2000, 25, 95–108. [Google Scholar]
- Kuan, C.C. Study on Bio-Environment Investigation and Application for Eco-Pond Planning. Master’s Thesis, National Chung Hsing University, Taichung, Taiwan, 2009. [Google Scholar]
- DeSante, D.F. The role of recruitment in the dynamics of a Sierran subalpine bird community. Am. Nat. 1986, 136, 429–445. [Google Scholar] [CrossRef]
- Kremen, C. Assessing the indicator properties of the species assemblages for natural area monitoring. Ecol. Appl. 1992, 2, 203–217. [Google Scholar] [CrossRef] [PubMed]
- Chettri, N.; Sharma, E.; Deb, D.C. Bird community along a trekking corridor of Sikkim Himalaya: A conservation perspective. Biol. Conserv. 2001, 102, 1–16. [Google Scholar] [CrossRef]
- Lin, H.S. A Study on Connectivity of Urban Park and Green Land—A Case Study of Da-An District in Taipei City. Master’s Thesis, Tunghai University, Taichung, Taiwan, 2006. [Google Scholar]
- Hunter, J.V.; Jeske, C.W.; Norling, W. Managing agricultural wetlands for waterbirds in the coastal regions of Louisiana, USA. Waterbirds 2002, 25 (Suppl. 2), 66–78. [Google Scholar]
- Chiayi County Government. Report of Assessing Environmental Resource of Farm Ponds in Chiayi County; Chiayi County Government: Chiayi County, Taiwan, 2012.
- Fang, W.T.; Chu, H.J.; Cheng, B.Y. Modelling waterbird diversity in irrigation ponds of Taoyuan, Taiwan using an artificial neural network approach. Paddy Water Environ. 2009, 7, 209–216. [Google Scholar] [CrossRef]
- Horsfall, J.A.; Robinson, R. Rails. In Firefly Encyclopedia of Birds; Perrins, C., Ed.; Firefly Books: Toronto, ON, Canada, 2003; ISBN 1552977773. [Google Scholar]
- Benton, T.G.; Vickery, J.A.; Wilson, J.D. Farmland biodiversity is habitat heterogeneity the key? Trends Ecol. Evol. 2003, 18, 182–188. [Google Scholar] [CrossRef]
- Piha, M.; Tiainen, J.; Holopainen, J.; Vepsäläinen, V. Effects of land-use and landscape characteristics on avian diversity and abundance in a boreal agricultural landscape with organic and conventional farms. Biol. Conserv. 2007, 140, 50–61. [Google Scholar] [CrossRef]
- Bridle, K.; Fitzgerald, M.; Green, D.; Smith, J.; McQuillan, P.; Lefroy, T. Relationships between site characteristics, farming system and biodiversity on Australian mixed farms. Anim. Prod. Sci. 2009, 49, 869–882. [Google Scholar] [CrossRef]
- Liao, Y.C. Environmental Factors of Primary Waterbird Choosing Fishponds in Shou-Feng Fishery Area. Master’s Thesis, National Dong Hwa University, Hualien, Taiwan, 2006. [Google Scholar]
- Huang, J.Y. Landscape and Breeding Ecology of Common Moorhen (Gallinula choropus) in Rice Paddies in Ilan. Master’s Thesis, National Ilan University, Ilan, Taiwan, 2008. [Google Scholar]
- Pierluissi, S.; King, S.L. Relative nest density, nest success, and site occupancy of King Rails in southwestern Louisiana rice fields. Waterbirds 2008, 31, 530–540. [Google Scholar]
- Wang, C.H.; Wu, S.H.; Huang, K.Y.; Yang, H.Y.; Tsai, C.H.; Tsai, M.C.; Hsiao, Q.L. Taiwan Wild Bird Illustrations; Asher: Taipei, Taiwan, 1991. [Google Scholar]
- Elphick, C.S.; Baicich, P.; Parsons, K.C.; Fasola, M.; Mugica, L. The future for research on waterbirds in rice fields. Waterbirds 2010, 33 (Suppl. 1), 231–243. [Google Scholar] [CrossRef]
- Liao, B.S. Wild Birds of Taiwan; Morning Star: Taichung, Taiwan, 2012. [Google Scholar]
- Lucia Liu, S.; Ding, T.S.; Feng, W.H.; Lin, W.H.; Tsai, M.C.; Yan, C.W. The Avifauna of Taiwan, 2nd ed.; Forest Bureau, COA: Taipei, Taiwan, 2012.
- Ritter, M.W.; Savidge, J.A. Rapid colonization of a human-made wetland by Mariana Common Moorhen on Guam. Wilson Bull. 1993, 105, 685–687. [Google Scholar]
- Lin, W.L.; Tsai, H.S.; Wu, H.J. Effect of ditch living thing by process of original structure replacement by RC irrigation ditch. J. Chin. Soil Water Conserv. 2007, 38, 31–42. [Google Scholar]
- Wang, C.W. Bird’s Habitat Conservation in Non-Statutory Protected Area—A Case Study in Taoyuan Coastal Area. Master’s Thesis, National Taiwan Normal University, Taipei, Taiwan, 2003. [Google Scholar]
- Traut, A.H.; Hostetler, M.E. Urban lakes and waterbirds: Effects of shoreline development on avian distribution. Landsc. Urban Plan. 2004, 69, 69–85. [Google Scholar] [CrossRef]
- Kuo, M. Ecological planning and design of river corridor. In Ecological and Natural Engineering; Water Resource Agency: Taipei, Taiwan, 1999; pp. 1–79. [Google Scholar]
- Fang, W.T.; Cheng, B.Y.; Shih, S.S.; Chou, J.Y.; Otte, M.L. Modelling driving forces of avian diversity in a spatial configuration surrounded by farm ponds. Paddy Water Environ. 2016, 14, 185–191. [Google Scholar] [CrossRef]
- Ishikawa, A.; Amagasa, M.; Shiga, T.; Tomizawa, G.; Tatsuta, R.; Mieno, H. The Max-Min Delphi method and Fuzzy Delphi method via fuzzy integration. Fuzzy Sets Syst. 1993, 55, 241–253. [Google Scholar] [CrossRef]
- Jeng, T.B. Fuzzy Assessment Model for Maturity of Software Organization in Improving Its Staff’s Capability. Master’s Thesis, National Taiwan University of Science and Technology, Taipei, Taiwan, 2001; pp. 33–36. [Google Scholar]
- Wei, W.L.; Chang, W.C. A study on selecting optimal product design solution using fuzzy Delphi method and analytic. J. Des. 2007, 10, 59–76. [Google Scholar]
- Chou, W.W. A Study on Evaluation and Strategies for the Conservation Value of Farm Ponds in Yunlin County. Ph.D. Dissertation, National Cheng Kung University, Tainan, Taiwan, 2014. [Google Scholar]
- Hsu, F.H. Bird survey techniques. Taiwan J. Biodiv. 2001, 3, 81–90. [Google Scholar]
- Wu, C.F.; Lin, Y.P.; Lin, S.H. A hybrid scheme for comparing the effect of bird diversity conservation approaches on landscape patterns and biodiversity in the Shangan subwatershed in Taiwan. J. Environ. Manag. 2011, 92, 1809–1820. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.P.; Chu, H.J.; Wu, C.F.; Verburg, P.H. Predictive ability of logistic regression, auto-logistic regression and neural network models in empirical land-use change modeling—A case study. Int. J. Geogr. Inform. Sci. 2011, 25, 65–87. [Google Scholar] [CrossRef] [Green Version]
- Gibbons, D.W. Juvenile helping in the moorhen, Gallinula chloropus. Anim. Behav. 1989, 35, 170–181. [Google Scholar] [CrossRef]
- Meniaia, Z.; Samraoui, F.; Alfarhan, A.H.; Samraoui, B. Nest-site selection, breeding success and brood parasitism in the common moorhen Gallinula chloropus in Algeria. Zool. Ecol. 2014, 24, 305–313. [Google Scholar] [CrossRef]
- Paracuellos, M.; Telleria, J.L. Factors affecting the distribution of a waterbird community: The role of habitat configuration and bird abundance. Waterbirds 2004, 27, 446–453. [Google Scholar] [CrossRef]
- Clergeau, P.; Jokimäki, J.; Savard, J.-P.L. Are urban bird communities influenced by the bird diversity of adjacent landscapes? J. Appl. Ecol. 2001, 38, 1122–1134. [Google Scholar] [CrossRef]
- Pennings, S.C.; Callaway, R.M. Salt marsh plant zonation: The relative importance of competition and physical factors. Ecology 1992, 73, 681–690. [Google Scholar] [CrossRef]
- Bartodziej, W.; Weymouth, G. Water bird abundance and activity on water hyacinth and egeria in the St. Marks River, Florida. J. Aquat. Plant Manag. 1995, 33, 19–22. [Google Scholar]
- Naugle, D.E.; Johnson, R.R.; Estey, M.E.; Higgins, K.F. A landscape approach to conserving wetland bird habitat in the prairie pothole region of Eastern South Dakota. Wetland 2001, 21, 1–17. [Google Scholar] [CrossRef]
- Liang, J.; Hua, S.; Zeng, G.; Yuan, Y.; Lai, X.; Li, X.; Li, F.; Wu, H.; Huang, L.; Yu, X. Application of weight method based on canonical correspondence analysis for assessment of Anatidae habitat suitability: A case study in East Dongting Lake, Middle China. Ecol. Eng. 2015, 77, 119–126. [Google Scholar] [CrossRef]
- Suarez-Seoane, S.; Osborne, P.E.; Alonso, J.C. Large-scale habitat selection by agricultural steppe birds in Spain: Identifying species–habitat responses using generalized additive models. J. Appl. Ecol. 2002, 39, 755–771. [Google Scholar] [CrossRef]
- Cardador, L.; De Cáceres, M.; Bota, G.; Giralt, G.; Casas, F.; Arroyo, B.; Mougeot, F.; Cantero-Martínez, C.; Moncunill, J.; Butler, S.J.; et al. A resource-based modelling framework to assess habitat suitability for steppe birds in semiarid mediterranean agricultural systems. PLoS ONE 2014, 9, e92790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardador, L.; De Cáceres, M.; Giralt, D.; Bota, G.; Aquilué, N.; Arroyo, B.; Mougeot, F.; Cantero-Martínez, C.; Viladomiu, L.; Rosell, J.; et al. Tools for exploring habitat suitability for steppe birds under land use change scenarios. Agric. Ecosyst. Environ. 2015, 200, 119–125. [Google Scholar] [CrossRef]
- Hernando, A.; Tejera, R.; Velazquez, J.; Nunez, M.V. Quantitatively defining the conservation status of Natura 2000 forest habitats and improving management options for enhancing biodiversity. Biodivers. Conserv. 2010, 19, 2221–2233. [Google Scholar] [CrossRef]
- Osgathorpe, L.M.; Park, K.; Goulson, D. The use of off-farm habitats by foraging bumblebees in agricultural landscapes: Implications for conservation management. Apidologie 2012, 43, 113–127. [Google Scholar] [CrossRef]
- Okes, N.C.; Hockey, P.A.R.; Cumming, G.S. Habitat use and life history as predictors of bird responses to habitat change. Conserv. Biol. 2008, 22, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Rendon, M.A.; Green, A.J.; Aquilera, E.; Almaraz, P. Status, distribution and long-term changes in the waterbird community wintering in Doñana, south-west Spain. Biol. Conserv. 2008, 141, 1371–1388. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Zapata, J.A.; Anadón, J.D.; Carrete, M.; Giménez, A.; Navarro, J.; Villacorta, C.; Botella, F. Breeding waterbirds in relation to artificial pond attributes: Implications for the design of irrigationfacilities. Biodivers. Conserv. 2005, 14, 1627–1639. [Google Scholar] [CrossRef] [Green Version]
- Abellán, P.; Sánchez-Fernández, D.; Millán, A.; Botella, F.; Sánchez-Zapata, J.A.; Giménez, A. Irrigation ponds as macroinvertebratehabitat in a semi-arid agricultural landscape (SE Spain). J. Arid Environ. 2006, 67, 255–269. [Google Scholar] [CrossRef]
First-Layer Evaluation Criteria | Second-Layer Evaluation Criteria | Final Weight Coefficient (A × B) | Ref. | ||
---|---|---|---|---|---|
Main Category | Relative Weight Coefficient (A) | Sub-Category: Specific Indicators | Relative Weight Coefficient (B) | ||
External Environments | 0.457 | Pond area | 0.341 | 0.156 | [7,10,32,50,51,52] |
Area ratio of farmlands within 200m of the farm pond | 0.339 | 0.155 | [15,16,35,36,53] | ||
Pond perimeter | 0.319 | 0.146 | [32] | ||
Internal Environments | 0.543 | Aquatic plant coverage of the pond surface (Winter) | 0.215 | 0.117 | [10,16,31,32,54] |
Drought period | 0.210 | 0.114 | [7,17,32] | ||
Shrub coverage of the pond bank (Winter) | 0.206 | 0.112 | [7,10,17,40,52,55,56] | ||
Bank type | 0.193 | 0.105 | [10,39,40] | ||
Water-surface-to-bank distance (Winter) | 0.175 | 0.095 | [32] |
Evaluation Criteria | Score = 1 | Score = 2 | Score = 3 | Score = 4 | Score = 5 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
First-Layer | Second-Layer | Description | n (%) | Description | n (%) | Description | n (%) | Description | n (%) | Description | n (%) |
External Environments | Area ratio of farmlands within 200 m of the farm pond | Less than 20% | 6 (8%) | 20–40% | 13 (17%) | 40–60% | 32 (43%) | 60–80% | 17 (23%) | More than 80% | 7 (9%) |
Pond area | 500–1000 m2 | 7 (9%) | 1000–5000 m2 | 35 (47%) | 5000–10,000 m2 | 11 (15%) | 10,000–50,000 m2 | 18 (24%) | 50,000 m2 | 4 (5%) | |
Pond perimeter | Less than 200 m | 18 (24%) | 201–300 m | 20 (27%) | 301–600 m | 15 (20%) | 601–1000 m | 10 (13%) | More than 1001 m | 12 (16%) | |
Internal Environments | Bank type | Reinforced concrete | 38 (35%) | Rubble (masonry) | 12 (11%) | Pebblework | 6 (5%) | Hollow block | 1 (1%) | Grass slope, soil slope | 54 (49%) |
Shrub coverage of the pond bank (winter) | Less than 20% | 30 (40%) | 21–40% | 2 (3%) | 41–60% | 7 (9%) | 61–80% | 8 (11%) | More than 81% | 28 (37%) | |
Aquatic plant coverage of the pond surface (winter) | Less than 20% | 58 (77%) | 21–40% | 7 (9%) | 41–60% | 3 (4%) | 61–80% | 3 (4%) | More than 81% | 4 (5%) | |
Drought period | Farm pond drought period of longer than 1–3 months | 1 (1%) | - | - | Drought period within 1–3 months | 3 (4%) | - | - | Pond has water year-round | 71 (95%) | |
Water-surface-to-bank distance (winter) | More than 181 cm | 29 (39%) | 131–180 cm | 16 (21%) | 101–130 cm | 2 (3) | 61–100 cm | 10 (13%) | Less than 60 cm | 18 (24%) |
Items | Threshold Value: 3.147 | Total (%) | ||
---|---|---|---|---|
Higher | Lower | |||
Presence of Common Moorhen | Presence | 29 | 6 | 35 |
(39%) | (8%) | (47%) | ||
Absence | 9 | 31 | 40 | |
(12%) | (41%) | (53%) | ||
Total | 38 | 37 | 75 | |
(51%) | (49%) | (100%) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, C.-H.; Lin, S.-H.; Tsai, C.-Y.; Chen, S.-H. Identifying Farm Pond Habitat Suitability for the Common Moorhen (Gallinula chloropus): A Conservation-Perspective Approach. Sustainability 2018, 10, 1352. https://doi.org/10.3390/su10051352
Lai C-H, Lin S-H, Tsai C-Y, Chen S-H. Identifying Farm Pond Habitat Suitability for the Common Moorhen (Gallinula chloropus): A Conservation-Perspective Approach. Sustainability. 2018; 10(5):1352. https://doi.org/10.3390/su10051352
Chicago/Turabian StyleLai, Chun-Hsien, Shin-Hwei Lin, Chia-Yi Tsai, and Szu-Hung Chen. 2018. "Identifying Farm Pond Habitat Suitability for the Common Moorhen (Gallinula chloropus): A Conservation-Perspective Approach" Sustainability 10, no. 5: 1352. https://doi.org/10.3390/su10051352
APA StyleLai, C.-H., Lin, S.-H., Tsai, C.-Y., & Chen, S.-H. (2018). Identifying Farm Pond Habitat Suitability for the Common Moorhen (Gallinula chloropus): A Conservation-Perspective Approach. Sustainability, 10(5), 1352. https://doi.org/10.3390/su10051352