Sustainable Agriculture in the Arabian/Persian Gulf Region Utilizing Marginal Water Resources: Making the Best of a Bad Situation
Abstract
:1. Introduction
2. Treated Sewage Effluent (TSE)
3. Produced Water
4. Use of Saline Water for Terrestrial Agriculture
5. Marginal Water to Cultivate Microalgae for Use as Feed
6. Challenges in Large-Scale Cultivation of Microalgae
7. Marine Aquaculture
8. Integrated Seawater Agriculture
9. Discussion of Challenges with Scaling up
10. Conclusions
Author Contributions
Conflicts of Interest
References
- Kotilaine, J.T. GCC Agriculture. Available online: https://www.gulfbase.com/ScheduleReports/GCC_Agriculture_Sector_March2010.pdf (accessed on 17 April 2018).
- Saif, O.; Mezher, T.; Arafat, H.A. Water security in the GCC countries: Challenges and opportunities. J. Environ. Stud. Sci. 2014, 4, 329–346. [Google Scholar] [CrossRef]
- Shahid, S.A.; Ahmed, M. Changing face of agriculture in the Gulf Cooperation Council countries. In Environmental Cost and Face of Agriculture in the Gulf Cooperation Council Countries—Fostering Agriculture in the Context of Climate Change; Shahid, S.A., Ahmed, M., Eds.; Springer: Berlin, Germany, 2014; pp. 1–25. [Google Scholar]
- Alnaser, W.E.; Alnaser, N.W. The status of renewable energy in the GCC countries. Renew. Sustain. Energy Rev. 2011, 15, 3074–3098. [Google Scholar] [CrossRef]
- Pirani, S.I.; Arafat, H.A. Interplay of food security, agriculture and tourism within GCC countries. Glob. Food Secur. 2016, 9, 1–9. [Google Scholar] [CrossRef]
- Schlumberger Water Services. Study and Developing the Natural and Artificial Recharge of Groundwater Aquifer in the State of Qatar; Qatar Ministry of Environment: Doha, Qatar, 2009.
- Bank, T.W. Improving Wastewater Use in Agriculture: An Emerging Priority; The World Bank: Washington, DC, USA, 2010; p. 190. [Google Scholar]
- Aleisa, E.; Al-Zubari, W. Wastewater reuse in the countries of the Gulf Cooperation Council (GCC): The lost opportunity. Environ. Monit. Assess. 2017, 189, 553. [Google Scholar] [CrossRef] [PubMed]
- Darwish, M.; Abdulrahim, H.; Mabrouk, A.N.; Hassan, A.; Shomar, B. Reclaimed wastewater for agriculture irrigation in Qatar. Glob. J. Agric. Res. Rev. 2014, 31, 106–120. [Google Scholar]
- Jasim, S.Y.; Saththasivam, J.; Loganathan, K.; Ogunbiyi, O.O.; Sarp, S. Reuse of Treated Sewage Effluent (TSE) in Qatar. J. Water Process Eng. 2016, 11, 174–182. [Google Scholar] [CrossRef]
- Hong, P.-Y.; Al-Jassim, N.; Ansari, M.I.; Mackie, R.I. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes. Antibiotics 2013, 2, 367–399. [Google Scholar] [CrossRef] [PubMed]
- Ouda, O.K.M. Treated wastewater use in Saudi Arabia: Challenges and initiatives. Int. J. Water Resour. Dev. 2016, 32, 799–809. [Google Scholar] [CrossRef]
- Elgallal, M.; Fletcher, L.; Evans, B. Assessment of potential risks associated with chemicals in wastewater used for irrigation in arid and semiarid zones: A review. Agric. Water Manag. 2016, 177, 419–431. [Google Scholar] [CrossRef]
- Mohammad Rusan, M.J.; Hinnawi, S.; Rousan, L. Long term effect of wastewater irrigation of forage crops on soil and plant quality parameters. Desalination 2007, 215, 143–152. [Google Scholar] [CrossRef]
- Da Fonseca, A.F.; Herpin, U.; de Paula, A.M.; Victória, R.L.; Melfi, A.J. Agricultural use of treated sewage effluents: Agronomic and environmental implications and perspectives for Brazil. Sci. Agricola 2007, 64, 194–209. [Google Scholar] [CrossRef]
- Al Omron, A.M.; El-Maghraby, S.E.; Nadeem, M.E.A.; El-Eter, A.M.; Al-Mohani, H. Long term effect of irrigation with the treated sewage effluent on some soil properties of Al-Hassa Governorate, Saudi Arabia. J. Saudi Soc. Agric. Sci. 2012, 11, 15–18. [Google Scholar] [CrossRef]
- Balkhair, K.S.; Ashraf, M.A. Field accumulation risks of heavy metals in soil and vegetable crop irrigated with sewage water in western region of Saudi Arabia. Saudi J. Biol. Sci. 2016, 23, S32–S44. [Google Scholar] [CrossRef] [PubMed]
- El-Zohri, M.; Hifney, A.; Ramadan, T.; Abdel-Basset, R. Use of Sewage in Agriculture and Related Activities. In Handbook of Plant and Crop Physiology, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2014; pp. 931–966. ISBN 978-1-4665-5328-6. [Google Scholar]
- Hussain, G.; Al-Saati, A.J. Wastewater quality and its reuse in agriculture in Saudi Arabia. Desalination 1999, 123, 241–251. [Google Scholar] [CrossRef]
- Dorta-Santos, M.; Tejedor, M.; Jiménez, C.; Hernández-Moreno, J.M.; Díaz, F.J. “Using marginal quality water for an energy crop in arid regions: Effect of salinity and boron distribution patterns”. Agric. Water Manag. 2016, 171, 142–152. [Google Scholar] [CrossRef]
- Neff, J.; Lee, K.; DeBlois, E.M. Produced Water: Overview of Composition, Fates, and Effects. In Produced Water; Springer: New York, NY, US, 2011; pp. 3–54. ISBN 9781461400455. [Google Scholar]
- Duraisamy, R.T.; Beni, A.H.; Henni, A. State of the Art Treatment of Produced Water. In Water Treatment; Elshorbagy, W., Chowdhury, R.K., Eds.; InTech: Rijeka, Croatia, 2013. [Google Scholar]
- Janson, A.; Katebah, M.; Santos, A.; Minier-Matar, J.; Hussain, A.; Adham, S.; Judd, S. Assessing the biotreatability of produced water from a Qatari gas field. SPE J. 2015, 20, 1113–1119. [Google Scholar] [CrossRef]
- Alfarhan, A.A.; Duane, M.J. Geochemistry and modification of oilfield brines in surface pits in Northern Kuwait. Arab. J. Geosci. 2012, 5, 1055–1068. [Google Scholar] [CrossRef]
- Frequently Asked Question about Recycled Oilfield Water for Crop Irrigation. Available online: https://www.waterboards.ca.gov/publications_forms/publications/factsheets/docs/prod_water_for_crop_irrigation.pdf (accessed on 17 April 2018).
- Shannon, M.C.; Grieve, C.M. Tolerance of vegetable crops to salinity. Sci. Hortic. 1998, 78, 5–38. [Google Scholar] [CrossRef]
- Bandaranayake, W.M. Traditional and medicinal uses of mangroves. Mangroves Salt Marshes 1998, 2, 133–148. [Google Scholar] [CrossRef]
- Ventura, Y.; Sagi, M. Halophyte crop cultivation: The case for salicornia and sarcocornia. Environ. Exp. Bot. 2013, 92, 144–153. [Google Scholar] [CrossRef]
- Ventura, Y.; Myrzabayeva, M.; Alikulov, Z.; Cohen, S.; Shemer, Z.; Sagi, M. The importance of iron supply during repetitive harvesting of Aster tripolium. Funct. Plant Biol. 2013, 40, 968–976. [Google Scholar] [CrossRef]
- Glenn, E.P.; O’Leary, J.W.; Watson, M.C.; Thompson, T.L.; Kuehl, R.O. Salicornia bigelovii Torr.: An Oilseed Halophyte for Seawater Irrigation. Science 1991, 251, 1065–1067. [Google Scholar] [CrossRef] [PubMed]
- Glenn, E.P.; Anday, T.; Chaturvedi, R.; Martinez-Garcia, R.; Pearlstein, S.; Soliz, D.; Nelson, S.G.; Felger, R.S. Three halophytes for saline-water agriculture: An oilseed, a forage and a grain crop. Environ. Exp. Bot. 2013, 92, 110–121. [Google Scholar] [CrossRef]
- Weber, D.J.; Ansari, R.; Gul, B.; Ajmal Khan, M. Potential of halophytes as source of edible oil. J. Arid Environ. 2007, 68, 315–321. [Google Scholar] [CrossRef]
- Xi, J.; Zhang, F.; Mao, D.; Yan, P. The utilization of halophytes for traditional medicine in Xin jiango Title. Rev. China Agric. Sci. Technol. 2003, 5, 43–48. [Google Scholar]
- Qasim, M.; Gulzar, S.; Shinwari, Z.K.; Aziz, I.; Ajmal Khan, M. Traditional ethnobotanical uses of halophytes from Hub, Balochistan. Pak. J. Bot. 2010, 42, 1543–1551. [Google Scholar]
- Swingle, R.S.; Glenn, E.P.; Squires, V. Growth performance of lambs fed mixed diets containing halophyte ingredients. Anim. Feed Sci. Technol. 1996, 63, 137–148. [Google Scholar] [CrossRef]
- Masters, D.G.; Benes, S.E.; Norman, H.C. Biosaline agriculture for forage and livestock production. Agric. Ecosyst. Environ. 2007, 119, 234–248. [Google Scholar] [CrossRef]
- El Shaer, H.M. Halophytes and salt-tolerant plants as potential forage for ruminants in the Near East region. Small Rumin. Res. 2010, 91, 3–12. [Google Scholar] [CrossRef]
- Manousaki, E.; Kalogerakis, N. Halophytes present new opportunities in phytoremediation of heavy metals and saline soils. Ind. Eng. Chem. Res. 2011, 50, 656–660. [Google Scholar] [CrossRef]
- Rabhi, M.; Ferchichi, S.; Jouini, J.; Hamrouni, M.H.; Koyro, H.W.; Ranieri, A.; Abdelly, C.; Smaoui, A. Phytodesalination of a salt-affected soil with the halophyte Sesuvium portulacastrum L. to arrange in advance the requirements for the successful growth of a glycophytic crop. Bioresour. Technol. 2010, 101, 6822–6828. [Google Scholar] [CrossRef] [PubMed]
- Abideen, Z.; Ansari, R.; Khan, M.A. Halophytes: Potential source of ligno-cellulosic biomass for ethanol production. Biomass Bioenergy 2011, 35, 1818–1822. [Google Scholar] [CrossRef]
- Moser, B.R.; Dien, B.S.; Seliskar, D.M.; Gallagher, J.L. Seashore mallow (Kosteletzkya pentacarpos) as a salt-tolerant feedstock for production of biodiesel and ethanol. Renew. Energy 2013, 50, 833–839. [Google Scholar] [CrossRef]
- Debez, A.; Belghith, I.; Friesen, J.; Montzka, C.; Elleuche, S. Facing the challenge of sustainable bioenergy production: Could halophytes be part of the solution? J. Biol. Eng. 2017, 11, 27. [Google Scholar] [CrossRef] [PubMed]
- Bañuelos, J.A.; Velázquez-Hernández, I.; Guerra-Balcázar, M.; Arjona, N. Production, characterization and evaluation of the energetic capability of bioethanol from Salicornia Bigelovii as a renewable energy source. Renew. Energy 2018, 123, 125–134. [Google Scholar] [CrossRef]
- Brown, J.J.; Glenn, E.P. Reuse of highly saline aquaculture effluent to irrigate a potential forage halophyte, Suaeda esteroa. Aquac. Eng. 1999, 20, 91–111. [Google Scholar] [CrossRef]
- Shpigel, M.; Ben-Ezra, D.; Shauli, L.; Sagi, M.; Ventura, Y.; Samocha, T.; Lee, J.J. Constructed wetland with Salicornia as a biofilter for mariculture effluents. Aquaculture 2013, 412–413, 52–63. [Google Scholar] [CrossRef]
- Ali, A.; Iqbal, N.; Ali, F.; Afzal, B. Alternanthera bettzickiana (Regel) G. Nicholson, a potential halophytic ornamental plant: Growth and physiological adaptations. Flora Morphol. Distrib. Funct. Ecol. Plants 2012, 207, 318–321. [Google Scholar] [CrossRef]
- Cybulska, I.; Brudecki, G.; Alassali, A.; Thomsen, M.; Jed Brown, J. Phytochemical composition of some common coastal halophytes of the United Arab Emirates. Emir. J. Food Agric. 2014, 26, 1046–1056. [Google Scholar] [CrossRef]
- Farms Stop Cultivating Rhodes Grass. Gulf News. 23 March 2012. Available online: https://gulfnews.com/news/uae/environment/farms-stop-cultivating-rhodes-grass-1.998624 (accessed on 24 April 2018).
- Pearce, K.L.; Norman, H.C.; Wilmot, M.; Rintoul, A.; Pethick, D.W.; Masters, D.G. The effect of grazing saltbush with a barley supplement on the carcass and eating quality of sheepmeat. Meat Sci. 2008, 79, 344–354. [Google Scholar] [CrossRef] [PubMed]
- Pearce, K.L.; Masters, D.G.; Smith, G.M.; Jacob, R.H.; Pethick, D.W. Plasma and tissue α-tocopherol concentrations and meat colour stability in sheep grazing saltbush (Atriplex spp.). Aust. J. Agric. Res. 2005, 56, 663–672. [Google Scholar] [CrossRef]
- Pasternak, D.; Nerd, A.; De Malach, Y. Irrigation with brackish water under desert conditions IX. The salt tolerance of six forage crops. Agric. Water Manag. 1993, 24, 321–334. [Google Scholar] [CrossRef]
- Khan, M.A.; Ansari, R.; Ali, H.; Gul, B.; Nielsen, B.L. Panicum turgidum, a potentially sustainable cattle feed alternative to maize for saline areas. Agric. Ecosyst. Environ. 2009, 129, 542–546. [Google Scholar] [CrossRef]
- Al-Dakheel, A.; Al-Hadrami, G.; Al-Shorabi, S.; AbuRumman, G. Optimizing management practices for maximum production for two salt-tolerant grasses: Sporobolus virginicus and Distichlis spicata. In Proceedings of the 7th Annual UAE University Research Conference, Dubai, UAE, 22–24 April 2006. [Google Scholar]
- Al-Dakheel, A.; Al-Hadrami, G.; Saleh Al-Shoraby, G.S.; Shabbir, G. The potential of salt-tolerant plants and marginal resources in developing an integrated forage-livestock production system. In Salinity, Water and Society—Global Issues, Local Action, Proceedings of the 2nd International Salinity Forum, Adelaide, Australia, 31 March–3 April 2008; Libraries Australia: Canberra, Australia, 2008; Volume 31, p. 192. [Google Scholar]
- Suyama, H.; Benes, S.E.; Robinson, P.H.; Getachew, G.; Grattan, S.R.; Grieve, C.M. Biomass yield and nutritional quality of forage species under long-term irrigation with saline-sodic drainage water: Field evaluation. Anim. Feed Sci. Technol. 2007, 135, 329–345. [Google Scholar] [CrossRef]
- Al-Shorepy, S.; Alhadrami, G.; Ayoub, M.; Dakheel, A. Growth performance and body composition of indigenous goats fed Distichlis hay. In Proceedings of the 5th Annual UAE University Research Conference, Al-Ain, UAE, 25–27 April 2004. [Google Scholar]
- Al-Shorepy, S.; Alhadrami, G.; Dakheel, A. Effect of feeding Sporobolus grass hay on growth performance and slaughtering characteristics of fattening indigenous lambs. In Proceedings of the 6th Annual UAE University Research Conference, Al-Ain, UAE, 24–26 April 2005. [Google Scholar]
- Alhadrami, G.; Al-Shorepy, S.; Dakheel, A. Effect of feeding long term Sporobolus grass hay on growth performance of Awassi sheep. In Proceedings of the 6th Annual UAE University Research Conference, Al-Ain, UAE, 24–26 April 2005. [Google Scholar]
- Sarwar, M.; Mahr-un-Nisa; Ajmal Khan, M.; Mushtaque, M. Chemical composition, herbage yield and nutritive value of Panicum antidotale and Pennisetum orientale for Nili buffaloes at different clipping intervals. Asian-Australas. J. Anim. Sci. 2006, 19, 176–180. [Google Scholar] [CrossRef]
- Norman, H.C.; Masters, D.G.; Wilmot, M.G.; Rintoul, A.J. Effect of supplementation with grain, hay or straw on the performance of weaner Merino sheep grazing old man (Atriplex nummularia) or river (Atriplex amnicola) saltbush. Grass Forage Sci. 2008, 63, 179–192. [Google Scholar] [CrossRef]
- Masters, D.G.; Rintoul, A.J.; Dynes, R.A.; Pearce, K.L.; Norman, H.C. Feed intake and production in sheep fed diets high in sodium and potassium. Aust. J. Agric. Res. 2005, 56, 427–434. [Google Scholar] [CrossRef]
- Pearce, K.L.; Masters, D.G.; Jacob, R.H.; Hopkins, D.L.; Pethick, D.W. Effects of sodium chloride and betaine on hydration status of lambs at slaughter. Aust. J. Exp. Agric. 2008, 48, 1194–1200. [Google Scholar] [CrossRef]
- Pearce, K.L.; Pethick, D.W.; Masters, D.G. The effect of ingesting a saltbush and barley ration on the carcass and eating quality of sheepmeat. Animal 2008, 2, 479–490. [Google Scholar] [CrossRef] [PubMed]
- Masters, D.; Tiong, M.; Vercoe, P.; Norman, H. The nutritive value of river saltbush (Atriplex amnicola) when grown in different concentrations of sodium chloride irrigation solution. Small Rumin. Res. 2010, 91, 56–62. [Google Scholar] [CrossRef]
- Masters, D.G.; Norman, H.C. 15—Genetic and Environmental Management of Halophytes for Improved Livestock Production. In Halophytes for Food Security in Dry Lands; Khan, M.A., Ozturk, M., Gul, B., Ahmed, M.Z., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 243–257. ISBN 978-0-12-801854-5. [Google Scholar]
- Edgerton, M.D. Increasing Crop Productivity to Meet Global Needs for Feed, Food, and Fuel. Plant Physiol. 2009, 149, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Masuda, T.; Goldsmith, P.D. World soybean production: Area harvested, yield, and long-term projections. Int. Food Agribus. Manag. Rev. 2009, 12, 143–162. [Google Scholar] [CrossRef]
- Enghiad, A.; Ufer, D.; Countryman, A.M.; Thilmany, D.D. An Overview of Global Wheat Market Fundamentals in an Era of Climate Concerns. Int. J. Agron. 2017, 2017, 1–15. [Google Scholar] [CrossRef]
- Sukenik, A. Production of eicosapentaenoic acid by the marine eustigmatophyte Nannochloropsis. In Chemicals from Microalgae; Taylor & Francis: London, UK, 1999; pp. 41–56. ISBN 0748405151. [Google Scholar]
- Corder, R.E.; Hill, A.M.; Lindsey, H.; Lowenstein, M.; McIntosh, R.P. SERI Biomass Program FY, 1983 Annual Report; Solar Energy Research Institute: Golden, CO, USA, 1984. [Google Scholar]
- Arad, A. A Development of Outdoor Raceway Capable of Yielding Oil-Rich Halotolerant Microalgae; Solar Energy Research Institute: Golden, CO, USA, 1984. [Google Scholar]
- Slegers, P.M.; Lösing, M.B.; Wijffels, R.H.; van Straten, G.; van Boxtel, A.J.B. Scenario evaluation of open pond microalgae production. Algal Res. 2013, 2, 358–368. [Google Scholar] [CrossRef]
- Volesky, B.; Holan, Z.R. Biosorption of heavy metals. Biotechnol. Prog. 1995, 11, 235–250. [Google Scholar] [CrossRef] [PubMed]
- Mehta, S.K.; Gaur, J.P. Use of Algae for Removing Heavy Metal Ions From Wastewater: Progress and Prospects. Crit. Rev. Biotechnol. 2005, 25, 113–152. [Google Scholar] [CrossRef] [PubMed]
- Dunstan, W.M.; Menzel, D.W. Continuous Cultures of Natural Populations of Phytoplankton in Dilute, Treated Sewage Effluent1. Limnol. Oceanogr. 1971, 16, 623–632. [Google Scholar] [CrossRef]
- Becker, W. Microalgae in Human and Animal Nutrition. In Handbook of Microalgae Culture; Blackwell Science: Oxford, UK, 2004; pp. 312–351. [Google Scholar]
- Goldberg, I. Single Cell Protein; Springer: Berlin, Germany, 1985. [Google Scholar]
- Naylor, R.L.; Hardy, R.W.; Bureau, D.P.; Chiu, A.; Elliott, M.; Farrell, A.P.; Forster, I.; Gatlin, D.M.; Goldburg, R.J.; Hua, K.; et al. Feeding aquaculture in an era of finite resources. Proc. Natl. Acad. Sci. USA 2009, 106, 15103–15110. [Google Scholar] [CrossRef] [PubMed]
- Saavedra, M.; Voltolina, D. The chemical composition of Chaetoceros sp. (Bacillariophyceae) under different light conditions. Comp. Biochem. Physiol. Part B Comp. Biochem. 1994, 107, 39–44. [Google Scholar] [CrossRef]
- Muhaemin, M.; Kaswadji, R.F. Biomass Nutrient Profiles of Marine Microalgae Dunaliella salina. J. Penelit. Sains 2009, 13, 64–67. [Google Scholar]
- Pav, M.; Garc, J.; Martorell, C.; Aroca, S. Direct spectrophotometric method to determine cell density of Isochrysis galbana in serial batch cultures from a larger scale fed-batch culture in exponential phase. NEREIS 2015, 8, 35–43. [Google Scholar]
- Kent, M.; Welladsen, H.M.; Mangott, A.; Li, Y. Nutritional evaluation of Australian microalgae as potential human health supplements. PLoS ONE 2015, 10, e0118985. [Google Scholar] [CrossRef] [PubMed]
- Buono, S.; Colucci, A.; Angelini, A.; Langellotti, A.L.; Massa, M.; Martello, A.; Fogliano, V.; Dibenedetto, A. Productivity and biochemical composition of Tetradesmus obliquus and Phaeodactylum tricornutum: Effects of different cultivation approaches. J. Appl. Phycol. 2016, 28, 3179–3192. [Google Scholar] [CrossRef]
- Becker, E.W. Micro algae as a source of protein. Biotechnol. Adv. 2007, 25, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Das, P.; Thaher, M.I.; Hakim, M.A.; Al-Jabri, H.M.; Alghasal, G.S. A comparative study of the growth of Tetraselmis sp. in large scale fixed depth and decreasing depth raceway ponds. Bioresour. Technol. 2016, 216, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Das, P.; Quadir, M.A.; Chaudhary, A.K.; Thaher, M.I.; Khan, S.; Alghazal, G.; Al-Jabri, H. Outdoor continuous cultivation of self-settling marine cyanobacterium Chroococcidiopsis sp. Ind. Biotechnol. 2018, 14, 45–53. [Google Scholar] [CrossRef]
- FAO. Available online: http://www.fao.org/wairdocs/tan/x5926e/x5926e01.htm (accessed on 24 April 2018).
- Grieshop, C.M.; Fahey, G.C. Comparison of quality characteristics of soybeans from Brazil, China, and the United States. J. Agric. Food Chem. 2001, 49, 2669–2673. [Google Scholar] [CrossRef] [PubMed]
- Portz, L.; Cyrino, J.E.P. Digestibility of nutrients and amino acids of different protein sources in practical diets by largemouth bass Micropterus salmoides (Lacepede, 1802). Aquac. Res. 2004, 35, 312–320. [Google Scholar] [CrossRef]
- Tibbetts, S.M.; Bjornsson, W.J.; McGinn, P.J. Biochemical composition and amino acid profiles of Nannochloropsis granulata algal biomass before and after supercritical fluid CO2 extraction at two processing temperatures. Anim. Feed Sci. Technol. 2015, 204, 62–71. [Google Scholar] [CrossRef]
- Benemann, J. Microalgae for Biofuels and Animal Feeds. Energies 2013, 6, 5869–5886. [Google Scholar] [CrossRef]
- Hemaiswarya, S.; Raja, R.; Kumar, R.R.; Ganesan, V.; Anbazhagan, C. Microalgae: A sustainable feed source for aquaculture. World J. Microbiol. Biotechnol. 2011, 27, 1737–1746. [Google Scholar] [CrossRef]
- Pereira, H.; Barreira, L.; Custódio, L.; Alrokayan, S.; Mouffouk, F.; Varela, J.; Abu-Salah, K.M.; Ben-Hamadou, R. Isolation and fatty acid profile of selected microalgae strains from the red sea for biofuel production. Energies 2013, 6, 2773–2783. [Google Scholar] [CrossRef]
- James, C.M.; Al-Khars, A.M. An intensive continuous culture system using tubular photobioreactors for producing microalgae. Aquaculture 1990, 87, 381–393. [Google Scholar] [CrossRef]
- James, C.M.; Al-Hinty, S.; Salman, A.E. Growth and ω3 fatty acid and amino acid composition of microalgae under different temperature regimes. Aquaculture 1989, 77, 337–351. [Google Scholar] [CrossRef]
- Abu-rezq, T.S.; Al-hooti, S.; Jacob, D.A. Optimum culture conditions required for the locally isolated Dunaliella salina. J. Algal Biomass Util. 2010, 1, 12–19. [Google Scholar]
- Kitto, M.R.; Reginald, M. Effect of summer/winter light intensity and salt on growth kinetics and beta carotene accumulation by Dunaliella in open outdoor earthern ponds in a desert island, off UAE coast. J. Algal Biomass Util. 2011, 2, 14–21. [Google Scholar]
- Saadaoui, I.; Al Ghazal, G.; Bounnit, T.; Al Khulaifi, F.; Al Jabri, H.; Potts, M. Evidence of thermo and halotolerant Nannochloris isolate suitable for biodiesel production in Qatar Culture Collection of Cyanobacteria and Microalgae. Algal Res. 2016, 14, 39–47. [Google Scholar] [CrossRef]
- Das, P.; Thaher, M.I.; Hakim, M.A.; Al-Jabri, H.M. Sustainable production of toxin free marine microalgae biomass as fish feed in large scale open system in the Qatari desert. Bioresour. Technol. 2015, 192, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Das, P.; Thaher, M.I.; Abdul Hakim, M.A.; Al-Jabri, H.M.; Alghasal, G.S. Microalgae harvesting by pH adjusted coagulation-flocculation, recycling of the coagulant and the growth media. Bioresour. Technol. 2016, 216, 824–829. [Google Scholar] [CrossRef] [PubMed]
- Fon Sing, S.; Isdepsky, A.; Borowitzka, M.A.; Lewis, D.M. Pilot-scale continuous recycling of growth medium for the mass culture of a halotolerant Tetraselmis sp. in raceway ponds under increasing salinity: A novel protocol for commercial microalgal biomass production. Bioresour. Technol. 2014, 161, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Horiuchi, J.; Ohba, I.; Tada, K.; Kobayashi, M.; Kanno, T.; Kishimoto, M. Effective Cell Harvesting of the Halotolerant Microalga Dunaliella tertiolecta with pH Control. J. Biosci. Bioeng. 2003, 95, 412–415. [Google Scholar] [CrossRef]
- Rogers, J.N.; Rosenberg, J.N.; Guzman, B.J.; Oh, V.H.; Mimbela, L.E.; Ghassemi, A.; Betenbaugh, M.J.; Oyler, G.A.; Donohue, M.D. A critical analysis of paddlewheel-driven raceway ponds for algal biofuel production at commercial scales. Algal Res. 2014, 4, 76–88. [Google Scholar] [CrossRef]
- Rashid, N.; Rehman, S.U.; Han, J.-I. Rapid harvesting of freshwater microalgae using chitosan. Process Biochem. 2013, 48, 1107–1110. [Google Scholar] [CrossRef]
- Ndikubwimana, T.; Zeng, X.; He, N.; Xiao, Z.; Xie, Y.; Chang, J.S.; Lin, L.; Lu, Y. Microalgae biomass harvesting by bioflocculation-interpretation by classical DLVO theory. Biochem. Eng. J. 2015, 101, 160–167. [Google Scholar] [CrossRef]
- Choy, S.Y.; Prasad, K.M.N.; Wu, T.Y.; Raghunandan, M.E.; Phang, S.-M.; Juan, J.C.; Ramanan, R.N. Separation of Chlorella biomass from culture medium by flocculation with rice starch. Algal Res. 2018, 30, 162–172. [Google Scholar] [CrossRef]
- Knuckey, R.M.; Brown, M.R.; Robert, R.; Frampton, D.M.F. Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds. Aquac. Eng. 2006, 35, 300–313. [Google Scholar] [CrossRef]
- Rwehumbiza, V.M.; Harrison, R.; Thomsen, L. Alum-induced flocculation of preconcentrated Nannochloropsis salina: Residual aluminium in the biomass, FAMEs and its effects on microalgae growth upon media recycling. Chem. Eng. J. 2012, 200–202, 168–175. [Google Scholar] [CrossRef]
- Salim, S.; Bosma, R.; Vermuë, M.H.; Wijffels, R.H. Harvesting of microalgae by bio-flocculation. J. Appl. Phycol. 2010, 23, 849–855. [Google Scholar] [CrossRef] [PubMed]
- Talukder, M.M.R.; Das, P.; Wu, J.C. Immobilization of microalgae on exogenous fungal mycelium: A promising separation method to harvest both marine and freshwater microalgae. Biochem. Eng. J. 2014, 91, 53–57. [Google Scholar] [CrossRef]
- Worm, B.; Barbier, E.B.; Beaumont, N.; Duffy, J.E.; Folke, C.; Halpern, B.S.; Jackson, J.B.C.; Lotze, H.K.; Micheli, F.; Palumbi, S.R.; et al. Impacts of biodiversity loss on ocean ecosystem services. Science 2006, 314, 787–790. [Google Scholar] [CrossRef] [PubMed]
- MOAF Considering 24 Aquaculture Projects Worth RO 853 Million. 20 May 2017. Available online: http://www.muscatdaily.com/Archive/Oman/MoAF-considering-24-aquaculture-projects-worth-RO853mn-50x1 (accessed on 24 April 2018).
- Ataullah, S. Plan to Set up Floating Fish Farms in Sea. The Penninsula, 13 February 2017. Available online: https://www.thepeninsulaqatar.com/article/13/02/2017/Plan-to-set-up-floating-fish-farms-in-sea (accessed on 24 April 2018).
- Xiao, X.; Agusti, S.; Lin, F.; Li, K.; Pan, Y.; Yu, Y.; Zheng, Y.; Wu, J.; Duarte, C.M. Nutrient removal from Chinese coastal waters by large-scale seaweed aquaculture. Sci. Rep. 2017, 7, 46613. [Google Scholar] [CrossRef] [PubMed]
- Goldman, J. So You Want to Be a Fish Farmer. Available online: https://umaine.edu/cooperative-aquaculture/wp-content/uploads/sites/75/2015/11/So-You-Want-to-be-a-Fish-Farmer-by-Josh-Goldman.pdf (accessed on 17 April 2018).
- Warshay, B.; Brown, J.J.; Sgouridis, S. Erratum to: Life cycle assessment of integrated seawater agriculture in the Arabian (Persian) Gulf as a potential food and aviation biofuel resource. Int. J. Life Cycle Assess. 2017, 22, 1033. [Google Scholar] [CrossRef]
- Bailis, R.; Yu, E. Environmental and social implications of integrated seawater agriculture systems producing Salicornia bigelovii for biofuel. Biofuels 2012, 3, 555–574. [Google Scholar] [CrossRef]
- Alkhamisi, S.A.; Ahmed, M. Opportunities and Challenges of Using Treated Wastewater in Agriculture. In Environmental Cost and Face of Agriculture in the Gulf Cooperation Council Countries: Fostering Agriculture in the Context of Climate Change; Shahid, S.A., Ahmed, M., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 109–123. ISBN 978-3-319-05768-2. [Google Scholar]
- Shahid, S.A.; Al-Shankiti, A. Sustainable food production in marginal lands—Case of GDLA member countries. Int. Soil Water Conserv. Res. 2013, 1, 24–38. [Google Scholar] [CrossRef]
- Siddiqi, A.; Anadon, L.D. The water-energy nexus in Middle East and North Africa. Energy Policy 2011, 39, 4529–4540. [Google Scholar] [CrossRef]
- Al Iriani, M.A.; Trabelsi, M. The economic impact of phasing out energy consumption subsidies in GCC countries. J. Econ. Bus. 2016, 87, 35–49. [Google Scholar] [CrossRef]
- Meltzer, J.; Hultman, N.E.; Langley, C. Low-carbon energy transitions in Qatar and the Gulf cooperation council region. In Brookings Pap. Econ. Act.; Brookings Institution: Washington, DC, USA, 2014. [Google Scholar]
- Elmi, A.A. Food Security in the Arab Gulf Cooperation Council States. In Sustainable Agriculture Reviews; Lichtfouse, E., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 89–114. ISBN 978-3-319-58679-3. [Google Scholar]
- Sewilam, H.; Nasr, P. Desalinated Water for Food Production in the Arab Region. In The Water, Energy, and Food Security Nexus in the Arab Region; Amer, K., Adeel, Z., Böer, B., Saleh, W., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 59–81. ISBN 978-3-319-48408-2. [Google Scholar]
Feedstock | Yield (t/hectare) | Reference |
---|---|---|
Corn | 9.4 | [66] |
Soybean | 2.7 | [67] |
Wheat | 5.7 | [68] |
Nannochloropsis sp. φ | 80.3 | [69] |
Nitzschia sp. φ | 78.8 | [70] |
Isochrysis galbana φ | 86.1 | [71] |
Phaeodactylum tricornutmφ | 63.7 | [72] |
Strains Name | Protein (%) | Carbohydrate (%) | Lipid (%) | Ref. |
---|---|---|---|---|
Chaetoceros sp. | 33 | 12 | 20.9 | [79] |
Dunaliella sp. | 25.7 | 40.2 | 18 | [80] |
Isochrysis sp. | 47.9 | 26.8 | 14.5 | [81] |
Nannochloropsis sp. | 30.3 | 9.6 | 21.8 | [82] |
Phaeodactylum sp. | 49.5 | 45.5 | 5.5 | [83] |
Synechococcus sp. | 63 | 15 | 11 | [84] |
Tetraselmis sp. | 30.7 | 33.6 | 17.6 | [85] |
Chroococcidiopsis sp. | 60.3 | 22.2 | 3.8 | [86] |
EAA | Fish Meal (Herring) | Soybean Meal | Corn Meal | Nannochloropsis sp. | Chroococcidiopsis sp. |
---|---|---|---|---|---|
Histidine | 2.4 | 1.442 | 0.91 | 1.5 | 0.8 |
Isoleucine | 4.5 | 3.17 | 2.37 | 3.5 | 2.6 |
Leucine | 7.5 | 5.53 | 10.26 | 6.7 | 7 |
Lysine | 7.7 | 3.84 | 0.91 | 4.8 | 3.8 |
Methionine | 2.9 | 0.81 | 1.09 | 1.8 | 0.4 |
Phenylalanine | 3.9 | 2.76 | 2.79 | 3.9 | 6.3 |
Threonine | 4.3 | 3.03 | 2.06 | 3.6 | 6.1 |
Tryptophan | 1.2 | 0.57 | 1.3 | 1.7 | - |
Valine | 5.4 | 5.59 | 2.85 | 4.6 | 7.8 |
Reference | [87] | [88] | [89] | [90] | [86] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brown, J.J.; Das, P.; Al-Saidi, M. Sustainable Agriculture in the Arabian/Persian Gulf Region Utilizing Marginal Water Resources: Making the Best of a Bad Situation. Sustainability 2018, 10, 1364. https://doi.org/10.3390/su10051364
Brown JJ, Das P, Al-Saidi M. Sustainable Agriculture in the Arabian/Persian Gulf Region Utilizing Marginal Water Resources: Making the Best of a Bad Situation. Sustainability. 2018; 10(5):1364. https://doi.org/10.3390/su10051364
Chicago/Turabian StyleBrown, J. Jed, Probir Das, and Mohammad Al-Saidi. 2018. "Sustainable Agriculture in the Arabian/Persian Gulf Region Utilizing Marginal Water Resources: Making the Best of a Bad Situation" Sustainability 10, no. 5: 1364. https://doi.org/10.3390/su10051364