Assessing the Greenhouse Gas Mitigation Effect of Removing Bovine Trypanosomiasis in Eastern Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Cattle Production Systems
2.3. Modelling Approach
2.3.1. Harmonising the GLEAM and MTB Herd Models
2.3.2. Estimating the Effects of Trypanosomiasis Treatment over 20 Years
2.3.3. Parameterising the Cattle Production Systems
2.3.4. Ration Composition and Nutritional Value
2.3.5. Estimating Uncertainty
3. Results
3.1. Baseline Emissions with Trypanosomiasis
3.2. Effect of Disease Treatment
3.3. Factors driving the Changes in EI
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Robinson, T.P.; Pozzi, F. Mapping Supply and Demand for Animal-Source Foods to 2030; Animal Production and Health Working Paper No. 2; Food and Agriculture Organisation of the United Nations: Rome, Italy, 2011. [Google Scholar]
- Alexandratos, N.; Bruinsma, J. World Agriculture towards 2030/2050. The 2012 Revision. Global Perspective Studies Team; ESA Working Paper No. 12-03; Food and Agriculture Organization of the United Nations: Rome, Italy, 2012. [Google Scholar]
- Pingali, P.; McCullough, E. Drivers of change in global agricultural livestock systems. In Livestock in a Changing Landscape: Drivers, Consequences and Responses; Steineld, H., Mooney, H.A., Schneider, F., Neville, L.E., Eds.; Island Press: Washington, DC, USA, 2010. [Google Scholar]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock—A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Vallat, B. Feeding the World Better by Controlling Animal Diseases. Available online: http://www.oie.int/for-the-media/editorials/detail/article/feeding-the-world-better-by-controlling-animal-diseases/ (accessed on 23 May 2014).
- Elliot, J. Animal health and productivity in the EU—Current and emerging issues. In Proceedings of the FACCE–JPI Workshop: Animal Health/Animal Diseases and GHG Mitigation, Madrid, Spain, 21 May 2014. [Google Scholar]
- MacLeod, M.; Eory, V.; Gruère, G.; Lankoski, J. Cost-Effectiveness of Greenhouse Gas Mitigation Measures for Agriculture: A Literature Review, OECD Food; Agriculture and Fisheries Papers, No. 89; OECD Publishing: Paris, France, 2015. [Google Scholar]
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. IPCC Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- Hospido, A.; Sonesson, U. The environmental impact of mastitis: A case study of dairy herds. Sci. Total Environ. 2005, 343, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Stott, A.; MacLeod, M.; Moran, D. Reducing Greenhouse Gas Emissions through Better Animal Health Rural Policy Centre Policy Briefing July 2010 (RPC PB 2010/01); SAC: Edinburgh, UK, 2010. [Google Scholar]
- Guelbenzu, M.; Graham, D. Prevalence of BVD in Northern Ireland Dairy and Suckler Herds; Agri-Food and Biosciences Institute: Belfast, UK, 2013. [Google Scholar]
- ADAS UK Ltd. Study to Model the Impact of Controlling Endemic Cattle Diseases and Conditions on National Cattle Productivity; Agricultural Performance and Greenhouse Gas Emissions: Final Report; Defra/AVHLA: London, UK, 2014. [Google Scholar]
- Houdijk, J.G.M.; Tolkamp, B.J.; Rooke, J.A.; Hutchings, M.R. Animal health and greenhouse gas intensity: The paradox of periparturient parasitism. Int. J. Parasitol. 2017, 47, 633–641. [Google Scholar] [CrossRef] [PubMed]
- Opio, C.; Gerber, P.; Mottet, A.; Falcucci, A.; Tempio, G.; MacLeod, M.; Vellinga, T.; Henderson, B.; Steinfeld, H. Greenhouse Gas Emissions from Ruminant Supply Chains—A Global Life Cycle Assessment; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Staal, S.; Poole, J.; Baltenweck, I.; Mwacharo, J.; Notenbaert, A.; Randolph, T.; Thorpe, W.; Nzuma, J.; Herrero, M. Targeting Strategic Investment in Livestock Development as a Vehicle for Rural Livelihoods. BMGF-ILRI Project on Livestock Knowledge Generation; International Livestock Research Institute: Nairobi, Kenya, 2009. [Google Scholar]
- Hristov, A.N.; Oh, J.; Lee, C.; Meinen, R.; Montes, F.; Ott, T.; Firkins, J.; Rotz, A.; Dell, C.; Adesogan, A.; et al. Mitigation of Greenhouse Gas Emissions in Livestock Production—A Review of Technical Options for Non-CO2 Emissions; Gerber, P.J., Henderson, B., Makkar, H.P.S., Eds.; FAO Animal Production and Health Paper No. 177; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Cecchi, G.; Mattioli, R.; Slingenbergh, J.; De La Rocque, S. Land cover and tsetse fly distributions in sub-Saharan Africa. Med. Vet. Entomol 2008, 22, 364–373. [Google Scholar] [CrossRef] [PubMed]
- Cattand, P.; Simarro, P.; Jannin, J.; Ly, C.; Fall, A.; Shaw, A.; Mattioli, R. Linking Sustainable Human and Animal African Trypanosomiasis Control with Rural Development Strategies; Programme Against African Trypanosomiasis–Technical and Scientific Series. Vol. 10. 2010; Food and Agriculture Organization of the United Nations: Rome, Italy, 2010. [Google Scholar]
- Simarro, P.P.; Cecchi, G.; Franco, J.R.; Paone, M.; Diarra, A.; Ruiz-Postigo, J.A.; Fèvre, E.M.; Mattioli, R.; Jannin, J.G. Estimating and mapping the population at risk of sleeping sickness. PLoS Negl. Trop. Dis. 2012, 6, 1859. [Google Scholar] [CrossRef] [PubMed]
- Taylor, K.; Authié, E.M.-L. Pathogenesis of Animal Trypanosomiasis. In The Trypanosomiases; Maudlin, I., Holmes, P.H., Miles, M.A., Eds.; CAB International: Wallingford, UK, 2004. [Google Scholar]
- Diall, O.; Cecchi, G.; Wanda, G.; Argilés-Herrero, R.; Vreysen, M.J.B.; Cattoli, G.; Viljoen, G.J.; Mattioli, R.; Bouyer, J. Developing a Progressive Control Pathway for African Animal Trypanosomosis. Trends Parasitol. 2017, 33, 499–509. [Google Scholar] [CrossRef] [PubMed]
- IGAD. The IGAD Region. Available online: https://igad.int/index.php/about-us/the-igad-region (accessed on 24 September 2017).
- FAOSTAT Live Animals. Available online: http://www.fao.org/faostat/en/#data/QA (accessed on 9 May 2018).
- Cecchi, G.; Wint, W.; Shaw, A.; Marletta, A.; Mattioli, R.; Robinson, T. Geographic distribution and environmental characterization of livestock production systems in Eastern Africa. Agric. Ecosyst. Environ. 2010, 135, 98–110. [Google Scholar] [CrossRef]
- Shaw, A.P.M.; Cecchi, G.; Wint, G.R.W.; Mattioli, R.C.; Robinson, T.P. Mapping the economic benefits of intervening against bovine trypanosomiasis in Eastern Africa. Prev. Vet. Med. 2014, 113, 197–210. [Google Scholar] [CrossRef] [PubMed]
- Mwai, O.; Hanotte, O.; Kwon, Y.-J.; Cho, S. African Indigenous Cattle: Unique Genetic Resources in a Rapidly Changing World. Asian-Australas. J. Anim. Sci. 2015, 28, 911–921. [Google Scholar] [CrossRef] [PubMed]
- Domestic Animal Genetic Resources Information System (DAGRIS). Available online: http://dagris.info/ (accessed on 9 May 2018).
- Shaw, A.; Wint, W.; Cecchi, G.; Torr, S.; Waiswa, C.; Alemu, T.; Eregae, M.; Abdi, A.; Muchina, S.; Mugasi, S.; et al. Intervening against Bovine Trypanosomosis in Eastern Africa: Mapping the Costs and Benefits; PAAT Technical and Scientific Series No. 11; FAO: Rome, Italy, 2017; Available online: http://www.fao.org/3/a-i7342e.pdf (accessed on 15 May 2018).
- Itty, P. Economics of Village Cattle Production in Tsetse-affected Areas of Africa. In A Study of Trypanosomiasis Control Using Trypanotolerant Cattle and Chemotherapy in Ethiopia, Kenya, The Gambia, Côte d’Ivoire, Zaire and Togo; Hartung-Gorre Verlag: Constance, Germany, 1992. [Google Scholar]
- Starkey, P.; Kaumbutho, P. Meeting the Challenges of Animal Traction. In A Resource Book of the Animal Traction Network for East-ern and Southern Africa (ATNESA), Harare, Zimbabwe; Intermediate Technology Publications: London, UK, 1999. [Google Scholar]
- Rege, J.E.O.; Kahi, A.K.; Okomo-Adhiambo, M.; Mwacharo, J.; Hanotte, O. Zebu Cattle of Kenya: Uses, Performance, Farmer Preferences, Measures of Genetic Diversity; ILRI (International Livestock Research Institute) and Kenya Agriculture Research Institute (KARI): Nairobi, Kenya, 2001. [Google Scholar]
- Otte, M.J.; Chilonda, P. Cattle and Small Ruminant Production Systems in Sub-Saharan Africa. A Systematic Review; FAO (Food and Agriculture Organization of the United Nations): Rome, Italy, 2002. [Google Scholar]
- Ocaido, M.; Otim, C.; Okuna, N.; Erume, J.; Ssekitto, C.; Wafula, R.; Kakaire, D.; Walubengo, J.; Monrad, J. Socio-economic and livestock disease survey of agro-pastoral communities in Serere County, Soroti District, Uganda. Livest. Res. Rural Dev. 2005, 17, 93. [Google Scholar]
- Shaw, A.P.M.; Wint, G.R.W.; Cecchi, G.; Torr, S.J.; Mattioli, R.C.; Robinson, T.P. Mapping the benefit-cost ratios of interventions against bovine trypanosomiasis in Eastern Africa. Prev. Vet. Med. 2015, 122, 406–416. [Google Scholar] [CrossRef] [PubMed]
- MacLeod, M.J.; Vellinga, T.; Opio, C.; Falcucci, A.; Tempio, G.; Henderson, B.; Makkar, H.; Mottet, A.; Robinson, T.; Steinfeld, H.; et al. Invited Review: A Position on the Global Livestock Environmental Assessment Model (GLEAM). Animal 2018, 12, 383–397. [Google Scholar] [CrossRef] [PubMed]
- Wint, G.R.W. Kilometre Resolution Tsetse Fly Distribution Maps for the Lake Victoria Basin and West Africa; Report to the Joint Food and Agriculture Organization of the United Nations/International Atomic Energy Agency Programme; Food and Agriculture Organization: Rome, Italy, 2001. [Google Scholar]
- Wint, W.; Rogers, D. Predicted Distributions of Tsetse in Africa; Report of the Environmental Research Group Oxford Ltd and TALA Research Group, Department of Zoology, University of Oxford, for the Animal Health Service of the Animal Production and Health Division of the Food and Agriculture Organisation of the United Nations; FAO: Rome, Italy, 2000. [Google Scholar]
- Wint, W.; Robinson, T. Gridded Livestock of the World; FAO (Food and Agricultural Organization of the United Nations): Rome, Italy, 2007. [Google Scholar]
- Weiler, V.; Udo, H.M.; Viets, T.; Crane, T.A.; De Boer, I.J. Handling multi-functionality of livestock in a life cycle assessment: The case of smallholder dairying in Kenya. Curr. Opin. Environ. Sustain. 2014, 8, 29–38. [Google Scholar] [CrossRef]
- IPCC. IPCC Guidelines for National Greenhouse Gas Inventories; Prepared by the National Greenhouse Gas Inventories Programme; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; IPCC: Kanagawa, Japan, 2006. [Google Scholar]
- Peeler, E.; Omore, A. Manual of Livestock Production Systems in Kenya; KARI (Kenya Agricultural Research Institute): Nairobi, Kenya, 1997. [Google Scholar]
- Roderick, S.; Stevenson, P.; Mwendia, C.; Okech, G. The use of trypanocides and antibiotics by Maasai pastoralists. Trop. Anim. Health Prod. 2000, 32, 361–374. [Google Scholar] [CrossRef] [PubMed]
- Roderick, S.; Stevenson, P.; Ndungu, J. The production parameters influencing the composition and structure of pastoral cattle herds in a semi-arid area of Kenya. Anim. Sci. 1998, 66, 585–594. [Google Scholar] [CrossRef]
- Roderick, S.; Stevenson, P.; Ndungu, J. Factors influencing the production of milk from pastoral cattle herds in Kenya. Anim. Sci. 1999, 68, 201–209. [Google Scholar]
- Itty, P.; Swallow, B.; Rowlands, G.; Mulatu, W.; d’Ieteren, G. The economics of village cattle production in a tsetse-infested area of southwest Ethiopia. Prev. Vet. Med. 1995, 22, 183–196. [Google Scholar] [CrossRef]
- Swallow, B. Impacts of Trypanosomiasis on African Agriculture; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2000. [Google Scholar]
- Muraguri, G.R. Epidemiological and Financial Impact of Vector-borne Diseases on Productivity of Smallholder Cattle in the Coastal Lowlands of Kenya; Department of Agriculture, University of Reading: Reading, UK, 2000; p. 219. [Google Scholar]
- Machila, N. Improved Targeting and Appropriate Use of Trypanocidal Drugs for the Control of African Bovine Trypanosomiasis in Tsetse Endemic Areas of Western and Coastal Kenya within the Context of Primary Veterinary Care; University of Edinburgh: Edinburgh, UK, 2005; p. 304. [Google Scholar]
- Musa, L.; Peters, K.; Ahmed, M. On farm characterization of Butana and Kenana cattle breed production systems in Sudan. Livest. Res. Rural Dev. 2006, 18, 177. [Google Scholar]
- Maichomo, M.; Ndungu, J.; Ngare, P.; Ole-Mapenay, I. The performance of Orma Boran and Maasai Zebu crossbreeds in a trypanosomiasis endemic area of Nguruman, south western Kenya. Onderstepoort J. Vet. Res. 2010, 72, 87–93. [Google Scholar]
- Omore, A.; Muriuki, H.; Kenyanjui, M.; Owango, M.; Staal, S. The Kenyan Dairy Sub-Sector: A Rapid Appraisal; Smallholder Dairy (Research & Development) Project Report; ILRI (International Live-stock Research Institute): Nairobi, Kenya, 1999. [Google Scholar]
- Mudavadi, P.O.; Otieno, K.J.; Wanambacha, W.; Odenya, J.O.; Odendo, M.; Njaro, O.K. Smallholder Dairy Production and Marketing in Western Kenya: A Review of Literature; Smallholder Dairy (Research & Development) Project Research Report; ILRI (International Livestock Research Institute): Nairobi, Kenya, 2001. [Google Scholar]
- Ongadi, P.; Wakhungu, J.; Wahome, R.; Okitoi, L. Characterization of grade dairy cattle owning households in mixed small scale farming systems of Vihiga, Kenya. Livest. Res. Rural Dev. 2007, 19, 43. [Google Scholar]
- Fox, R.G.R.; Mmbando, S.; Fox, M.; Wilson, A. Effect on herd health and productivity of controlling tsetse and trypanosomiasis by applying deltamethrin to cattle. Trop. Anim. Health Prod. 1993, 25, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Jemal, A.; Hugh-Jones, M.E. Association of tsetse control with health and productivity of cattle in the Didessa Valley, western Ethiopia. Prev. Vet. Med. 1995, 22, 29–40. [Google Scholar] [CrossRef]
- Laker, C.D. Assessment of the Economic Impact of Bovine Trypanosomiasis and its Control in Dairy Cattle in Mukono County, Uganda; Makerere University: Kampala, Uganda, 1998. [Google Scholar]
- Rowlands, G.; Mulatu, W.; Leak, S.; Nagda, S.; d’Ieteren, G. Estimating the effects of tsetse control on livestock productivity—A case study in southwest Ethiopia. Trop. Anim. Health Prod. 1999, 31, 279–294. [Google Scholar] [CrossRef] [PubMed]
- Shaw, A. Economics of African trypanosomiasis. In The Trypanosomiases; Maudlin, I., Holmes, P., Miles, M., Eds.; CABI Publishing: Wallingford, UK, 2004; pp. 369–402. [Google Scholar]
- Mugunieri, G.; Matete, G. Association of trypanosomiasis risk with dairy cattle production in western Kenya. Onderstepoort J. Vet. Res. 2005, 72, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Minjauw, B.; McLeod, A. Tick-borne Diseases and Poverty; DFID Animal Health Programme: Edinburgh, UK, 2003. [Google Scholar]
- Tesfaye, D.; Speybroeck, N.; De Deken, R.; Thys, E. Economic burden of bovine trypanosomiasis in three villages of Metekel zone, Northwest Ethiopia. Trop. Anim. Health Prod. 2012, 44, 873–879. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.T.; Bech, J.N.; Waveren, E. Draught animals in the livelihoods of mixed smallholder farmers in North Wollo, Ethiopia. Draught Anim. News 2002, 37, 2–8. [Google Scholar]
- You, L.; Guo, Z.; Koo, J.; Sebastian, K.; Wood-Sichra, U. Spatial Production Allocation Model (SPAM) 2005 Version 1; Provided through Harvest Choice; International Food Policy Research Institute: Washington, DC, USA; University of Minnesota: St. Paul, MN, USA, 2014; Available online: http://harvestchoice.org (accessed on 8 January 2015).
- Lukuyu, B.; Gachuiri, C.K.; Lukuyu, M.N.; Lusweti, C.; Mwendia, S. Feeding Dairy Cattle in East Africa; East Africa Dairy Development Project: Nairobi, Kenya, 2012. [Google Scholar]
- CGIAR/ILRI Sub-Saharan Africa Feed Composition Database. Available online: http://192.156.137.110/ssafeed/ (accessed on 1 December 2015).
- Feedipedia. Feedipedia Animal Feed Resources Information System, a Programme by INRA, CIRAD, AFZ and FAO. Available online: http://www.feedipedia.org (accessed on 1 August 2015).
- Feedipedia Napier Grass. Available online: https://www.feedipedia.org/node/395 (accessed on 13 December 2017).
- Capper, J.L.; Cady, R.A.; Bauman, D.E. The environmental impact of dairy production: 1944 compared with 2007. J. Anim. Sci. 2009, 87, 2160–2167. [Google Scholar] [CrossRef] [PubMed]
- Gerber, P.; Vellinga, T.; Opio, C.; Steinfeld, H. Productivity gains and greenhouse gas EI in dairy systems. Livest. Sci. 2011, 139, 100–108. [Google Scholar] [CrossRef]
- Cecchi, G.; Paone, M.; Feldmann, U.; Vreysen, M.J.B.; Diall, O.; Mattioli, R.C. Assembling a geospatial database of tsetse-transmitted animal trypanosomiasis for Africa. Parasites Vectors 2014, 7, 39. [Google Scholar] [CrossRef] [PubMed]
Draft Oxen | Production System | ||||
---|---|---|---|---|---|
Pastoral | Agro-Pastoral | Mixed: General a | Mixed: Ethiopia a | High Milk Yield Dairy | |
No oxen | ×× b | ||||
Low oxen | × | × | × | × | |
Medium oxen | × | × | × | ||
High oxen | × | × | × |
Production System | % of Total Cattle Population |
---|---|
Pastoral | 12% |
Agropastoral, low dairy and oxen | 34% |
Mixed, low dairy and oxen | 11% |
Agropastoral, high dairy and low oxen | 2% |
Agropastoral, low dairy and medium oxen | 1% |
Agropastoral, low dairy and high oxen | 2% |
Mixed, high dairy and low oxen | 4% |
Mixed, low dairy and low oxen | 1% |
Mixed, low dairy and high oxen | 1% |
Mixed, low dairy and medium oxen (eth) | 7% |
Mixed, low dairy and high oxen (eth) | 18% |
Mixed, low dairy and low oxen (eth) | 8% |
Total | 100% |
Category | Emissions Sources |
---|---|
Manure N2O | Direct and N2O arising from the nitrification/denitrification of excreted N during its management and storage. |
Manure CH4 | CH4 arising from the anaerobic decomposition of excreted organic matter during its management and storage. |
Enteric fermentation CH4 | CH4 arising from the microbial decomposition of feed during digestion. |
Feed energy CO2 | CO2 from: fossil fuel use in the cultivation of feed crops; fossil fuel use in the production of non-crop feed materials; processing, transportation and blending of feed materials; fossil fuel use from the production of synthetic fertiliser; land use change arising from soy cultivation. |
Feed N2O | Direct and indirect N2O from: application of synthetic fertiliser and manure to crops; crop residue management; direct deposition of N by grazing animals; fertiliser manufacture. |
Parameter | Cattle Production Systems | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Pastoral | Agro-Pastoral | Mixed Farming (General) | Mixed Farming (Ethiopia) | High Milk Yield Dairy | ||||||
T+ | T− | T+ | T− | T+ | T− | T+ | T− | T+ | T− | |
Mortality | % of animals dying each year | |||||||||
Female calves | 20 | 17 | 18 | 15 | 16 | 13 | 24 | 20 | 21 | 18 |
Male calves | 25 | 22 | 20 | 17 | 18 | 15 | 26 | 22 | 26 | 23 |
Adult females | 7.5 | 6.5 | 7.0 | 6.0 | 8.0 | 7.0 | 9.0 | 7.5 | 12.0 | 10.0 |
Work oxen | 9.0 | 7.2 | 8.5 | 6.8 | 9.0 | 7.2 | 10.0 | 8.0 | - | - |
Fertility | % of cows producing a living calf each year | |||||||||
Cow fertility | 54 | 58 | 52 | 56 | 51 | 55 | 49 | 54 | 53 | 57 |
Lactation | Litres of milk per lactation a | |||||||||
Milk offtake | 275 | 296 | 285 | 306 | 300 | 322 | 280 | 301 | 1900 | 2042 |
Parameter | Distribution | Coefficient of Variance | Minimum-Maximum | Basis |
---|---|---|---|---|
Forage digestibility, DE% | Normal | 6% | [67] | |
Milk yield | Normal | 11–39% | [32] | |
Cow fertility | Normal | 8–21% | [32] | |
Calf death rate | Normal | 25–45% | [32] | |
Enteric CH4 factor, Ym | Normal | 10% | [40], (Vol. 4, p. 10.33) | |
N2O Emission factor 1 | Lognormal | 0.003–0.03 | [40], (Vol. 4, p. 11.11) | |
N2O Emission factor 3 | Lognormal | 0.007–0.06 | [40], (Vol. 4, p. 11.11) |
System | Change in Parameter | Change in EI | |||||||
---|---|---|---|---|---|---|---|---|---|
Constant | Vary with System | Vary with System and Disease Status | |||||||
N2O EF1 | N2O EF3 | Forage DE% | Enteric CH4, Ym | Milk Yield | Cow Fertility | Calf Death Rate | Draft | ||
Pastoral | +10% | 0.7% | 1.2% | −16.4% | 7.2% | −4.5% | −3.9% | −0.6% | 0.5% |
Pastoral | −10% | −0.7% | −1.2% | 23.1% | −7.2% | 4.9% | 4.9% | 0.6% | −0.5% |
AP, high dairy | +10% | 1.6% | 0.1% | −15.8% | 5.1% | −6.3% | −5.4% | 2.2% | 0.0% |
AP, high dairy | −10% | −1.6% | −0.1% | 22.2% | −5.1% | 7.5% | 6.7% | 0.0% | 0.0% |
AP, low oxen | +10% | 1.4% | 0.7% | −16.4% | 6.3% | −4.4% | −2.9% | −0.7% | 1.0% |
AP, low oxen | −10% | −1.4% | −0.7% | 23.5% | −6.3% | 4.8% | 3.5% | 0.7% | −1.0% |
AP, medium oxen | +10% | 1.1% | 0.7% | −16.5% | 6.8% | −4.4% | −3.0% | −0.7% | 2.0% |
AP, medium oxen | −10% | −1.1% | −0.7% | 23.7% | −6.8% | 4.8% | 3.6% | 0.7% | −2.0% |
AP, high oxen | +10% | 1.3% | 0.7% | −16.3% | 6.5% | −4.4% | −3.1% | −0.7% | 3.8% |
AP, high oxen | −10% | −1.3% | −0.7% | 23.3% | −6.5% | 4.9% | 3.9% | 0.7% | −3.8% |
Mixed, high dairy | +10% | 1.6% | 0.1% | −15.8% | 5.1% | −6.3% | −5.4% | 2.3% | 0.0% |
Mixed, high dairy | −10% | −1.6% | −0.1% | 22.2% | −5.1% | 7.5% | 6.7% | −0.1% | 0.0% |
Mixed, low oxen | +10% | 1.2% | 0.3% | −17.1% | 6.7% | −4.4% | −1.7% | −0.9% | 0.9% |
Mixed, low oxen | −10% | −1.2% | −0.3% | 24.9% | −6.7% | 4.9% | 2.0% | 0.9% | −0.9% |
Mixed, medium oxen | +10% | 1.8% | 0.3% | −16.7% | 6.2% | −4.5% | −2.7% | −0.6% | 2.0% |
Mixed, medium oxen | −10% | −1.8% | −0.3% | 24.1% | −6.2% | 4.9% | 3.7% | 0.6% | −2.0% |
Mixed, high oxen | +10% | 1.4% | 0.3% | −16.8% | 6.7% | −4.5% | −3.3% | −0.6% | 3.8% |
Mixed, high oxen | −10% | −1.4% | −0.3% | 24.3% | −6.7% | 4.9% | 4.1% | 0.6% | −3.7% |
Ethiopia, low oxen | +10% | 1.5% | 0.3% | −16.8% | 6.4% | −4.5% | −1.7% | −1.5% | 0.6% |
Ethiopia, low oxen | −10% | −1.5% | −0.3% | 24.5% | −6.4% | 5.0% | 2.0% | 1.5% | −0.6% |
Ethiopia, medium oxen | +10% | 1.6% | 0.3% | −16.8% | 6.4% | −4.6% | −3.1% | −1.1% | 2.0% |
Ethiopia, medium oxen | −10% | −1.6% | −0.3% | 24.3% | −6.4% | 5.1% | 3.7% | 1.0% | −2.0% |
Ethiopia, high oxen | +10% | 1.8% | 0.3% | −16.6% | 6.2% | −4.6% | −3.5% | −1.0% | 3.7% |
Ethiopia, high oxen | −10% | −1.8% | −0.3% | 23.9% | −6.2% | 5.1% | 4.3% | 0.9% | −3.6% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
MacLeod, M.; Eory, V.; Wint, W.; Shaw, A.; Gerber, P.J.; Cecchi, G.; Mattioli, R.; Sykes, A.; Robinson, T. Assessing the Greenhouse Gas Mitigation Effect of Removing Bovine Trypanosomiasis in Eastern Africa. Sustainability 2018, 10, 1633. https://doi.org/10.3390/su10051633
MacLeod M, Eory V, Wint W, Shaw A, Gerber PJ, Cecchi G, Mattioli R, Sykes A, Robinson T. Assessing the Greenhouse Gas Mitigation Effect of Removing Bovine Trypanosomiasis in Eastern Africa. Sustainability. 2018; 10(5):1633. https://doi.org/10.3390/su10051633
Chicago/Turabian StyleMacLeod, Michael, Vera Eory, William Wint, Alexandra Shaw, Pierre J. Gerber, Giuliano Cecchi, Raffaele Mattioli, Alasdair Sykes, and Timothy Robinson. 2018. "Assessing the Greenhouse Gas Mitigation Effect of Removing Bovine Trypanosomiasis in Eastern Africa" Sustainability 10, no. 5: 1633. https://doi.org/10.3390/su10051633
APA StyleMacLeod, M., Eory, V., Wint, W., Shaw, A., Gerber, P. J., Cecchi, G., Mattioli, R., Sykes, A., & Robinson, T. (2018). Assessing the Greenhouse Gas Mitigation Effect of Removing Bovine Trypanosomiasis in Eastern Africa. Sustainability, 10(5), 1633. https://doi.org/10.3390/su10051633