A Spatial DEA-Based Framework for Analyzing the Effectiveness of Disaster Risk Reduction Policy Implementation: A Case Study of Earthquake-Oriented Urban Renewal Policy in Yongkang, Taiwan
Abstract
:1. Introduction
2. Seismic Risk Reduction Policy in Taiwan
3. Case Study Area
4. Material and Methods
4.1. Data Envelopment Analysis
- j = number of decision-making units in DEA
- DMUj = decision-making unit number j
- yrj = amount of output r used by decision-making unit j
- xij = amount of input i used by decision-making unit j
- i = number of inputs used by DMUs
- r = number of outputs produced by DMUs
- ur = coefficient or weight assigned by DEA to output r
- vi = coefficient or weight assigned by DEA to input i
4.2. The Conceptual Framework of DEA
4.3. Input Variable
4.3.1. Policy Feasibility
4.3.2. Seismic Hazard Risk
4.4. Output Variable
4.4.1. Disaster Losses
4.4.2. Government Revenue
4.5. The Assessment of Variables, Data Resource, and Research Unit
4.6. Descriptive Statistical and Correlation Analysis
5. Result
5.1. The Rank of Policy Adaptation Based on the Efficiency Scores
5.2. The Improvement of Policy Efficiency in DMUs
6. Discussion
7. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Sim, T.; Wang, D.; Han, Z. Assessing the disaster resilience of megacities: The case of Hong Kong. Sustainability 2018, 10, 1137. [Google Scholar] [CrossRef]
- Oxley, M.C. A “people-centred principles-based” Post-Hyogo framework to strengthen the resilience of nations and communities. Int. J. Disaster Risk Reduct. 2018, 4, 1–9. [Google Scholar] [CrossRef]
- Scolobig, A.; Prior, T.; Schröter, D.; Jörin, J.; Patt, A. Towards people-centred approaches for effective disaster risk management: Balancing rhetoric with reality. Int. J. Disaster Risk Reduct. 2015, 12, 202–212. [Google Scholar] [CrossRef]
- United Nations International Strategy for Disaster Reduction. Sendai Framework for Disaster Risk Reduction 2015–2030; UNISDR: Geneva, Switzerland, 2015. [Google Scholar]
- Chun, H.; Chi, S.; Hwang, B.G. A spatial disaster assessment model of social resilience based on geographically weighted regression. Sustainability 2017, 9, 2222. [Google Scholar] [CrossRef]
- Han, Z.; Wang, H.; Du, Q.; Zeng, Y. Natural hazards preparedness in Taiwan: A comparison between households with and without disabled members. Health Secur. 2017, 15, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Rashed, T.; Weeks, J. Assessing vulnerability to earthquake hazards through spatial multicriteria analysis of urban areas. Int. J. Geograph. Inf. Sci. 2003, 17, 547–576. [Google Scholar] [CrossRef]
- Ainuddin, S.; Mukhtar, U.; Ainuddin, S. Public perception about enforcement of building codes as risk reduction strategy for seismic safety in Quetta, Baluchistan. Int. J. Disaster Risk Reduct. 2014, 9, 99–106. [Google Scholar] [CrossRef]
- Taylan, A. Factors influencing homeowners’ seismic risk mitigation behavior: A case study in Zeytinburnu district of Istanbul. Int. J. Disaster Risk Reduct. 2015, 13, 414–426. [Google Scholar] [CrossRef]
- Saunders, W.S.A.; Becker, J.S. A discussion of resilience and sustainability: Land use planning recovery from the Canterbury earthquake sequence, New Zealand. Int. J. Disaster Risk Reduct. 2015, 14, 73–81. [Google Scholar] [CrossRef]
- Godschalk, D.R. Urban hazard mitigation: Creating resilient cities. Nat. Hazards Rev. 2003, 4, 136–143. [Google Scholar] [CrossRef]
- Coelli, T.J.; Prasada Rao, D.S.; O’Donnell, C.; Battese, G.E. Data envelopment analysis. In An Introduction to Efficiency and Productivity Analysis; Springer: New York, NY, USA, 2005; pp. 161–181. [Google Scholar]
- Neumayer, E.; Plümper, T.; Barthel, F. The political economy of natural disaster damage. Glob. Environ. Chang. 2014, 24, 8–19. [Google Scholar] [CrossRef] [Green Version]
- Jang, L.J.; Wang, J.J.; Paton, D.; Tsai, N.Y. Cross-cultural comparisons between the earthquake preparedness models of Taiwan and New Zealand. Disasters 2016, 40, 327–345. [Google Scholar] [CrossRef] [PubMed]
- Afonso, A.; Schuknecht, L.; Tanzi, V. Public sector efficiency: Evidence for new EU member states and emerging markets. Appli. Econ. 2010, 42, 2147–2164. [Google Scholar] [CrossRef]
- Madden, G.; Savage, S.; Kemp, S. Measuring public sector efficiency: A study of economics departments at Australian universities. Educ. Econ. 1997, 5, 153–168. [Google Scholar] [CrossRef]
- El Ezz, A.A.; Nollet, M.J.; Nastev, M. Assessment of earthquake-induced damage in Quebec City, Canada. Int. J. Disaster Risk Reduct. 2015, 12, 16–24. [Google Scholar] [CrossRef]
- Godfrey, A.; Ciurean, R.L.; van Westen, C.J.; Kingma, N.C.; Glade, T. Assessing vulnerability of buildings to hydro-meteorological hazards using an expert based approach—An application in Nehoiu Valley, Romania. Int. J. Disaster Risk Reduct. 2015, 13, 229–241. [Google Scholar] [CrossRef]
- Rahman, N.; Ansary, M.A.; Islam, I. GIS based mapping of vulnerability to earthquake and fire hazard in Dhaka city, Bangladesh. Int. J. Disaster Risk Reduct. 2015, 13, 291–300. [Google Scholar] [CrossRef]
- Alfonso Pina, W.H.; Pardo Martinez, C.I. Development and urban sustainability: An analysis of efficiency using data envelopment analysis. Sustainability 2016, 8, 148. [Google Scholar] [CrossRef]
- Lo Storto, C. Ecological efficiency based ranking of cities: A combined DEA cross-efficiency and shannon’s entropy method. Sustainability 2016, 8, 124. [Google Scholar] [CrossRef]
- Azadeh, A.; Ghaderi, S.F.; Nasrollahi, M.R. Location optimization of wind plants in Iran by an integrated hierarchical Data Envelopment Analysis. Renew. Energy 2011, 36, 1621–1631. [Google Scholar] [CrossRef]
- Pawar, S.; Koo, M.S.; Kelley, C.; Ahmed, M.F.; Chaudhuri, S.; Sarkar, S. Conservation assessment and prioritization of areas in Northeast India: Priorities for amphibians and reptiles. Biol. Conserv. 2007, 136, 346–361. [Google Scholar] [CrossRef]
- Yang, L.; Wang, K.L. Regional differences of environmental efficiency of China’s energy utilization and environmental regulation cost based on provincial panel data and DEA method. Math. Comput. Model. 2013, 58, 1074–1083. [Google Scholar] [CrossRef]
- Chen, L.C.; Liu, C.Y.; Chen, H.E.; Ke, S.S.; Chang, K.C.; Hwang, S.J.; Hsu, C.C.; Lin, C.H.; Ma, K.F.; Liu, C.H. Large Earthquake Disaster Prevention Strategy Proposal; Report 2015; Academia Sinica: Taipei, Taiwan, 2015. [Google Scholar]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Euro. J. Oper. Resear. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Cook, W.D.; Green, R.H. Project prioritization: A resource-constrained data envelopment analysis approach. Socio-Econ. Plan. Sci. 2000, 34, 85–99. [Google Scholar] [CrossRef]
- Sexton, T.R.; Silkman, R.H.; Hogan, A.J. Data envelopment analysis: Critique and extensions. New Dir. Program Eval. 1986, 32, 73–105. [Google Scholar] [CrossRef]
- Adams, D.; Hastings, E.M. Urban renewal in Hong Kong: Transition from development corporation to renewal authority. Land Use Policy 2010, 18, 245–258. [Google Scholar] [CrossRef]
- Wang, H.; Shen, Q.; Tang, B.; Lu, C.; Peng, Y.; Tang, L. A framework of decision-making factors and supporting information for facilitating sustainable site planning in urban renewal projects. Cities 2014, 40, 44–55. [Google Scholar] [CrossRef]
- Norman, M.; Stoker, B. Data Envelopment Analysis: The Assessment of Performance; John Wiley & Sons, Inc.: New York, NY, USA, 1991. [Google Scholar]
Variable name | Initial | Definition | Calculation | Unit | Source |
---|---|---|---|---|---|
Private Land | PL | The proportion of the private land area to the total area in each unit. A lower proportion is easier for implementing policy. | The area of private land divided by the area of total number. | % | Tainan City Government. |
Public Willingness | PW | Public willingness means the disagreement of residents in implementing EUR in each research unit. High public disagreement could increase the communication cost when implementing policies. | The number of disagreeing residents divided by the total number of residents. | % | Questionnaire survey. |
Policy Budget | PB | This variable shows the total number of subsidies of EUR policies in each unit when all private buildings are improved or rebuilt. The calculation of subsidies is according to the regulations in Taiwan. | The sum of each vulnerable building subsidy. | NTD | Calculation by the authors. |
Density of Vulnerable Buildings | DB | The proportion of vulnerable building units to total building units in each unit. Buildings that are not earthquake safe are determined to be so based on age and construction materials. Buildings over 40 years old constructed of brick and wood are determined to be vulnerable buildings. | The number of vulnerable building units divided by the total number of building units. | % | The basic information of each building was taken from the Local Tax Bureau of the Tainan City Government. |
Household Density of Vulnerable Buildings | HD | The ratio of household units in vulnerable buildings to total households in each unit. This variable assesses the scale of potential casualties in an earthquake. | The number of household units in vulnerable buildings divided by the total number of households. | % | The basic information was taken from the Household Registration Office and Local Tax Bureau of the Tainan City Government. |
Variable name | Initial | Definition | Calculation | Unit | Source |
---|---|---|---|---|---|
Density of Hardship Assistance Household Unit | HA | The ratio of hardship assistance households in each unit. The identification is according to households living along narrow roads and having hardship assistance when a disaster occurs. A narrow alley can disturb disaster relief and increase casualties. | The number of hardship assistance households divided by the total number households in each unit. | % | The basic information was taken from the Fire Bureau of the Tainan City Government. |
Property Tax | PT | The property tax combines house tax and income tax. The property tax is an annual tax that residents must pay. The study calculated the difference in the tax earnings of governments when adopting the EUR policy. | i: the i-th household j: the j-th DMU IT: the household income E: household exemptions D: household deduction B: natural disaster deduction TI: tax ratio of income BT: basic tax of each building F: total floor areas of the building D: rate of deprecation R: rate of deprecation life DL: deprecation life of each building S: the adjustment rate of road level T: the basic rate of building usage | NTD | The basic information of each building was taken from the Local Tax Bureau of the Tainan City Government. The calculation was by the authors. |
Disaster compensation | DS | Governments provide compensation for private building collapse and casualties. Therefore, governments can save money when all buildings are strengthened through the EUR policy. | S = (N × D) + (N × AH × D) N: the total number of households living in unsafe buildings D: the compensation of settlement AH: the average number of people in each household in each unit | NTD | The basic information of each building was from the Local Tax Bureau of the Tainan City Government. |
Aspect | Name | Number | Min. | Max. | Mean | Std. Deviation |
---|---|---|---|---|---|---|
Input | Private Land (PL) | 39 | 0.1233 | 0.8971 | 0.6922 | 0.1943 |
Policy Budget (PB) | 39 | 0.0000 | 23,935,212.9800 | 6,470,133.6097 | 6,482,256.8262 | |
Public Willingness (PW) | 39 | 0.0000 | 1.0000 | 0.5313 | 0.2190 | |
Household Density of Vulnerable Building (DB) | 39 | 0.0000 | 0.1121 | 0.0404 | 0.0307 | |
Household Density of Vulnerable Building (HD) | 39 | 0.0000 | 0.2826 | 0.0921 | 0.0760 | |
Output | Density of Hardship Assistance Household Unit (HA) | 39 | 0.0000 | 0.4171 | 0.0560 | 0.0850 |
Property Tax (PT) | 39 | 0.0000 | 7,910,423.5430 | 1,686,074.9553 | 2,288,593.1014 | |
Disaster compensation (DS) | 39 | 0.0000 | 330,578,293.1000 | 66,506,629.9846 | 83,843,594.6033 |
(I) PL | (I) PB | (I) PW | (I) DB | (I) HD | (O) HA | (O) PT | (O) DS | |
---|---|---|---|---|---|---|---|---|
(I) PL | 1 | 0.305 | 0.010 | −0.012 | 0.019 | −0.199 | 0.082 | 0.163 |
(I) PB | 0.305 | 1 | −0.174 | 0.392 * | 0.488 ** | −0.164 | 0.588 ** | 0.614 ** |
(I) PW | 0.010 | −0.174 | 1 | −0.027 | −0.044 | 0.179 | −0.103 | −0.089 |
(I) DB | −0.012 | 0.392 * | −0.027 | 1 | 0.882 ** | −0.165 | 0.742 ** | 0.803 ** |
(I) HD | 0.019 | 0.488 ** | −0.044 | 0.882 ** | 1 | −0.105 | 0.767 ** | 0.846 ** |
(O) HA | −0.199 | −0.164 | 0.179 | −0.165 | −0.105 | 1 | −0.208 | −0.227 |
(O) PT | 0.082 | 0.588 ** | −0.103 | 0.742 ** | 0.767 ** | −0.208 | 1 | 0.921 ** |
(O) DS | 0.163 | 0.614 ** | −0.089 | 0.803** | 0.846 ** | −0.227 | 0.921 ** | 1 |
DMU Number | CCR-I | BCC-I | SE | RTS | |||
---|---|---|---|---|---|---|---|
OTE | RS | Rank | CE | PTE | |||
1 | 1.0000 | 2 | 10 | 0.0428 | 1.0000 | 1.0000 | CRS |
2 | 0.3494 | 0 | 35 | 0.1679 | 0.6786 | 0.5149 | IRS |
3 | 0.6859 | 0 | 24 | 0.1615 | 0.8116 | 0.8452 | IRS |
4 | 1.0000 | 4 | 8 | 0.098 | 1.0000 | 1.0000 | CRS |
5 | 0.3723 | 0 | 34 | 0.0121 | 0.6880 | 0.5412 | IRS |
6 | 1.0000 | 1 | 12 | 0.0842 | 1.0000 | 1.0000 | CRS |
7 | 1.0000 | 14 | 1 | 1.0431 | 1.0000 | 1.0000 | CRS |
8 | 0.9756 | 0 | 15 | 0 | 0.9841 | 0.9914 | IRS |
9 | 0.0000 | 0 | 39 | 0 | 1.0000 | 0.0000 | IRS |
10 | 0.3810 | 0 | 33 | 0 | 0.5415 | 0.7036 | IRS |
11 | 0.9565 | 0 | 16 | 0.16 | 0.9565 | 1.0000 | CRS |
12 | 0.8023 | 0 | 21 | 0 | 0.8259 | 0.9714 | IRS |
13 | 0.8425 | 0 | 19 | 0.0465 | 1.0000 | 0.8425 | IRS |
14 | 0.4250 | 0 | 32 | 0.0723 | 0.4471 | 0.9506 | IRS |
15 | 1.0000 | 1 | 12 | 0 | 1.0000 | 1.0000 | CRS |
16 | 0.8809 | 0 | 18 | 0.0284 | 0.9922 | 0.8878 | IRS |
17 | 0.6006 | 0 | 28 | 0.1757 | 0.7003 | 0.8577 | IRS |
18 | 0.8317 | 0 | 20 | 0.3306 | 1.0000 | 0.8317 | IRS |
19 | 0.4888 | 0 | 29 | 0.0861 | 0.6043 | 0.8090 | IRS |
20 | 0.7309 | 0 | 22 | 0.0565 | 0.9057 | 0.8070 | IRS |
21 | 1.0000 | 9 | 4 | 0.0951 | 1.0000 | 1.0000 | CRS |
22 | 0.6838 | 0 | 25 | 0.0085 | 0.8895 | 0.7687 | IRS |
23 | 0.4592 | 0 | 30 | 0.2189 | 0.7041 | 0.6522 | IRS |
24 | 0.4401 | 0 | 31 | 0.1038 | 0.6675 | 0.6594 | IRS |
25 | 1.0000 | 1 | 12 | 0.0602 | 1.0000 | 1.0000 | CRS |
26 | 1.0000 | 11 | 3 | 0 | 1.0000 | 1.0000 | CRS |
27 | 0.2478 | 0 | 37 | 0 | 0.7464 | 0.3320 | IRS |
28 | 0.2504 | 0 | 36 | 0 | 1.0000 | 0.2504 | IRS |
29 | 0.6610 | 0 | 26 | 0.0256 | 0.7823 | 0.8450 | IRS |
30 | 1.0000 | 3 | 9 | 0.1435 | 1.0000 | 1.0000 | CRS |
31 | 0.9145 | 0 | 17 | 0 | 0.9660 | 0.9467 | IRS |
32 | 1.0000 | 13 | 2 | 0 | 1.0000 | 1.0000 | CRS |
33 | 1.0000 | 5 | 7 | 0.5168 | 1.0000 | 1.0000 | CRS |
34 | 1.0000 | 8 | 5 | 0.0224 | 1.0000 | 1.0000 | CRS |
35 | 0.6502 | 0 | 27 | 0.0315 | 0.7847 | 0.8286 | IRS |
36 | 0.1559 | 0 | 38 | 0 | 0.6272 | 0.2485 | IRS |
37 | 0.6961 | 0 | 23 | 0.0082 | 0.8240 | 0.8448 | IRS |
38 | 1.0000 | 2 | 10 | 0.0868 | 1.0000 | 1.0000 | CRS |
39 | 1.0000 | 7 | 6 | 0 | 1.0000 | 1.0000 | CRS |
DMU Number | Input | Output | ||||||
---|---|---|---|---|---|---|---|---|
(I) PL | (I) PB | (I) PW | (I) DB | (I) HD | (O) HA | (O) PT | (O) DS | |
2 | −0.0108 | −0.0670 | 0.0000 | 0.0000 | −0.0108 | 0.0000 | 0.0000 | 0.0000 |
3 | −0.1158 | 0.0000 | −0.1435 | −0.1332 | −0.1158 | 0.0000 | 5.3261 | 0.0000 |
5 | −0.2050 | −0.2306 | −0.2204 | 0.0000 | −0.2050 | 0.0000 | 2.3308 | 0.0000 |
8 | −0.3499 | 0.0000 | −0.1898 | −0.4312 | −0.3499 | - | 2.1835 | 0.0000 |
10 | −0.1752 | 0.0000 | −0.2765 | 0.0000 | −0.1752 | - | 0.1587 | 0.0000 |
11 | −0.6416 | −0.7422 | −0.6198 | 0.0000 | −0.6416 | 0.0000 | 0.4359 | 0.0000 |
12 | 0.0000 | −0.0607 | −0.3103 | −0.0997 | 0.0000 | - | 0.1754 | 0.0000 |
13 | −0.1463 | −0.2924 | −0.6374 | −0.2704 | −0.1463 | 0.0000 | 0.0000 | 0.0000 |
14 | 0.0000 | 0.0000 | 0.0000 | −0.0181 | 0.0000 | 0.0000 | 0.2966 | 0.0000 |
16 | −0.3497 | 0.0000 | 0.0000 | −0.5764 | −0.3497 | 0.7268 | 0.0033 | 0.0000 |
17 | −0.0688 | 0.0000 | 0.0000 | −0.2813 | −0.0688 | 0.0000 | 3.0766 | 0.0000 |
18 | −0.6651 | −0.5882 | −0.3530 | −0.2141 | −0.6651 | 0.0000 | 0.5894 | 0.0000 |
19 | −0.1449 | 0.0000 | 0.0000 | −0.1375 | −0.1449 | 0.0000 | 0.4153 | 0.0000 |
20 | −0.6226 | −0.5825 | −0.5728 | −0.0407 | −0.6226 | 0.0000 | 0.0000 | 0.0000 |
22 | −0.2669 | −0.0609 | −0.4338 | −0.2907 | −0.2669 | 2.7730 | 0.0000 | 0.0000 |
23 | −0.0915 | −0.2721 | −0.0475 | 0.0000 | −0.0915 | 0.0000 | 2.2531 | 0.0000 |
24 | −0.1829 | −0.2797 | −0.0744 | 0.0000 | −0.1829 | 0.0000 | 5.3054 | 0.0000 |
27 | −0.2326 | −0.0143 | −0.2409 | −0.0373 | −0.2326 | - | 0.1680 | 0.0000 |
28 | −0.2030 | 0.0000 | −0.2367 | −0.1756 | −0.2030 | - | 27.1182 | 0.0000 |
29 | −0.3542 | −0.5170 | −0.2676 | 0.0000 | −0.3542 | 0.0000 | 0.4172 | 0.0000 |
31 | −0.8224 | 0.0000 | −0.8422 | −0.5842 | −0.8224 | - | 1.5132 | 0.0000 |
35 | −0.3707 | 0.0000 | −0.4106 | 0.0000 | −0.3707 | 0.0000 | 0.0926 | 0.0000 |
36 | −0.1204 | −0.0151 | −0.1010 | 0.0000 | −0.1204 | - | 4.9506 | 0.0000 |
37 | −0.5305 | −0.2063 | 0.0000 | 0.0000 | −0.5305 | 0.0000 | 0.0000 | 0.0000 |
Unit Number | CCR-1 | Delete Input | Delete Output | ||||||
---|---|---|---|---|---|---|---|---|---|
OTE | PL | PB | PW | DB | HD | HA | PT | DS | |
Model number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
1 | 1.0000 | 1.0000 | 1.0000 | 0.8638 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
2 | 0.3494 | 0.3494 | 0.3494 | 0.3299 | 0.3259 | 0.3494 | 0.2287 | 0.3293 | 0.3388 |
3 | 0.6859 | 0.6859 | 0.3416 | 0.6859 | 0.6859 | 0.5719 | 0.6429 | 0.6859 | 0.2795 |
4 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.6295 | 1.0000 |
5 | 0.3723 | 0.3723 | 0.3723 | 0.3723 | 0.3353 | 0.3497 | 0.3695 | 0.3723 | 0.0809 |
6 | 1.0000 | 1.0000 | 0.3812 | 1.0000 | 1.0000 | 1.0000 | 0.9225 | 0.8465 | 1.0000 |
7 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.3478 | 1.0000 | 1.0000 |
8 | 0.9756 | 0.9756 | 0.5360 | 0.9756 | 0.9756 | 0.9379 | 0.9756 | 0.9756 | 0.3039 |
9 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
10 | 0.3810 | 0.3810 | 0.3581 | 0.3810 | 0.3016 | 0.3810 | 0.3810 | 0.3810 | 0.3150 |
11 | 0.9565 | 0.9565 | 0.9565 | 0.9565 | 0.9053 | 0.8885 | 0.8878 | 0.9565 | 0.5008 |
12 | 0.8023 | 0.7877 | 0.8023 | 0.8023 | 0.8023 | 0.6800 | 0.8023 | 0.8023 | 0.5077 |
13 | 0.8425 | 0.8425 | 0.8425 | 0.8425 | 0.8425 | 0.5146 | 0.8252 | 0.8400 | 0.4600 |
14 | 0.4250 | 0.4210 | 0.4045 | 0.3414 | 0.4250 | 0.4250 | 0.2794 | 0.4250 | 0.3596 |
15 | 1.0000 | 1.0000 | 1.0000 | 0.1918 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.3290 |
16 | 0.8809 | 0.8809 | 0.4889 | 0.8631 | 0.8809 | 0.8809 | 0.8809 | 0.8809 | 0.8780 |
17 | 0.6006 | 0.6006 | 0.4875 | 0.5952 | 0.6006 | 0.5759 | 0.3415 | 0.6006 | 0.4526 |
18 | 0.8317 | 0.8317 | 0.8317 | 0.8317 | 0.8317 | 0.5411 | 0.5991 | 0.8317 | 0.4955 |
19 | 0.4888 | 0.4888 | 0.3513 | 0.4745 | 0.4888 | 0.4548 | 0.3937 | 0.4888 | 0.3997 |
20 | 0.7309 | 0.7309 | 0.7309 | 0.7309 | 0.7309 | 0.6008 | 0.6975 | 0.7226 | 0.4305 |
21 | 1.0000 | 1.0000 | 0.5190 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
22 | 0.6838 | 0.6838 | 0.6838 | 0.6838 | 0.6838 | 0.4860 | 0.6838 | 0.4450 | 0.6144 |
23 | 0.4592 | 0.4592 | 0.4592 | 0.4592 | 0.4332 | 0.4351 | 0.3779 | 0.4592 | 0.3407 |
24 | 0.4401 | 0.4401 | 0.4401 | 0.4401 | 0.3949 | 0.4186 | 0.4100 | 0.4401 | 0.2147 |
25 | 1.0000 | 1.0000 | 0.1902 | 1.0000 | 1.0000 | 1.0000 | 0.5111 | 1.0000 | 0.7919 |
26 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9931 | 1.0000 | 1.0000 | 0.7405 |
27 | 0.2478 | 0.2478 | 0.2478 | 0.2478 | 0.2478 | 0.1721 | 0.2478 | 0.2478 | 0.1148 |
28 | 0.2504 | 0.2504 | 0.1126 | 0.2504 | 0.2504 | 0.2171 | 0.2504 | 0.2504 | 0.0088 |
29 | 0.6610 | 0.6610 | 0.6610 | 0.6610 | 0.5889 | 0.6240 | 0.6559 | 0.6610 | 0.3283 |
30 | 1.0000 | 1.0000 | 0.7996 | 1.0000 | 1.0000 | 0.8687 | 1.0000 | 1.0000 | 1.0000 |
31 | 0.9145 | 0.9145 | 0.7137 | 0.9145 | 0.9145 | 0.6732 | 0.9145 | 0.9145 | 0.3474 |
32 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
33 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.3919 | 1.0000 | 1.0000 |
34 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.8945 | 1.0000 | 1.0000 | 1.0000 | 0.8435 |
35 | 0.6502 | 0.6502 | 0.5867 | 0.6502 | 0.6438 | 0.6463 | 0.6164 | 0.6502 | 0.5676 |
36 | 0.1559 | 0.1559 | 0.1559 | 0.1559 | 0.1433 | 0.1475 | 0.1559 | 0.1559 | 0.0188 |
37 | 0.6961 | 0.6961 | 0.6273 | 0.6961 | 0.6961 | 0.5171 | 0.6923 | 0.6880 | 0.5994 |
38 | 1.0000 | 1.0000 | 1.0000 | 0.2145 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
39 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
Average | 0.7303 | 0.7298 | 0.6265 | 0.6824 | 0.7186 | 0.6756 | 0.6534 | 0.7098 | 0.5554 |
Number of Efficient Unit | 14 | 14 | 10 | 11 | 13 | 12 | 10 | 12 | 10 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, H.-T.; Chang, H.-S. A Spatial DEA-Based Framework for Analyzing the Effectiveness of Disaster Risk Reduction Policy Implementation: A Case Study of Earthquake-Oriented Urban Renewal Policy in Yongkang, Taiwan. Sustainability 2018, 10, 1751. https://doi.org/10.3390/su10061751
Cheng H-T, Chang H-S. A Spatial DEA-Based Framework for Analyzing the Effectiveness of Disaster Risk Reduction Policy Implementation: A Case Study of Earthquake-Oriented Urban Renewal Policy in Yongkang, Taiwan. Sustainability. 2018; 10(6):1751. https://doi.org/10.3390/su10061751
Chicago/Turabian StyleCheng, Hao-Teng, and Hsueh-Sheng Chang. 2018. "A Spatial DEA-Based Framework for Analyzing the Effectiveness of Disaster Risk Reduction Policy Implementation: A Case Study of Earthquake-Oriented Urban Renewal Policy in Yongkang, Taiwan" Sustainability 10, no. 6: 1751. https://doi.org/10.3390/su10061751
APA StyleCheng, H. -T., & Chang, H. -S. (2018). A Spatial DEA-Based Framework for Analyzing the Effectiveness of Disaster Risk Reduction Policy Implementation: A Case Study of Earthquake-Oriented Urban Renewal Policy in Yongkang, Taiwan. Sustainability, 10(6), 1751. https://doi.org/10.3390/su10061751