What Have We Learned from the Land Sparing-sharing Model?
Abstract
:1. Introduction
1.1. Definitions and Related Concepts
1.2. What Does the Model Do?
- (1)
- how good they are,
- (2)
- for what species,
- (3)
- in relation to what reference, and
- (4)
- at what cost.
1.3. What Does the Model Not Do?
1.4. What Have We Learned So Far?
1.5. Choices about Farming and Land-Use Are Underpinned by Ethics
2. Points of Contention, Confusion or Concern
2.1. A Model of Food Production, Not Food Security
2.2. Is High-Yield Farming Necessarily Devoid of Biodiversity?
2.3. Will Yield Increases Lead to Land Sparing?
2.4. Scale and Heterogeneity
2.5. Fostering Human Connections to Nature
2.6. Land Sparing in Heavily-Modified Landscapes
2.7. Climate Change, Range Shifts and Connectivity
2.8. Political Implications
3. Conclusions
Acknowledgments
Conflicts of Interest
References
- Green, R.E.; Cornell, S.J.; Scharlemann, J.P.W.; Balmford, A. Farming and the fate of wild nature. Science 2005, 307, 550–555. [Google Scholar] [CrossRef] [PubMed]
- Phalan, B.; Onial, M.; Balmford, A.; Green, R.E. Reconciling food production and biodiversity conservation: Land sharing and land sparing compared. Science 2011, 333, 1289–1291. [Google Scholar] [CrossRef] [PubMed]
- Hulme, M.F.; Vickery, J.A.; Green, R.E.; Phalan, B.; Chamberlain, D.E.; Pomeroy, D.E.; Nalwanga, D.; Mushabe, D.; Katebaka, R.; Bolwig, S.; et al. Conserving the birds of Uganda’s banana-coffee arc: Land sparing and land sharing compared. PLoS ONE 2013, 8, e54597. [Google Scholar] [CrossRef] [PubMed]
- Gilroy, J.J.; Woodcock, P.; Edwards, F.A.; Wheeler, C.; Medina Uribe, C.A.; Haugaasen, T.; Edwards, D.P. Optimizing carbon storage and biodiversity protection in tropical agricultural landscapes. Glob. Chang. Biol. 2014, 20, 2162–2172. [Google Scholar] [CrossRef] [PubMed]
- Kamp, J.; Urazaliev, R.; Balmford, A.; Donald, P.F.; Green, R.E.; Lamb, A.J.; Phalan, B. Agricultural development and the conservation of avian biodiversity on the Eurasian steppes: A comparison of land-sparing and land-sharing approaches. J. Appl. Ecol. 2015, 52, 1578–1587. [Google Scholar] [CrossRef]
- Dotta, G.; Phalan, B.; Silva, T.W.; Green, R.; Balmford, A. Assessing strategies to reconcile agriculture and bird conservation in the temperate grasslands of South America. Conserv. Biol. 2016, 30, 618–627. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.R.; Alvarado, F.; Green, R.E.; Manica, A.; Phalan, B.; Balmford, A. Land-use strategies to balance livestock production, biodiversity conservation and carbon storage in Yucatán, Mexico. Glob. Chang. Biol. 2017, 23, 5260–5272. [Google Scholar] [CrossRef] [PubMed]
- Fischer, J.; Brosi, B.; Daily, G.C.; Ehrlich, P.R.; Goldman, R.; Goldstein, J.; Lindenmayer, D.B.; Manning, A.D.; Mooney, H.A.; Pejchar, L.; et al. Should agricultural policies encourage land sparing or wildlife-friendly farming? Front. Ecol. Environ. 2008, 6, 380–385. [Google Scholar] [CrossRef]
- Perfecto, I.; Vandermeer, J. The agroecological matrix as alternative to the land-sparing/agriculture intensification model. Proc. Natl. Acad. Sci. USA 2010, 107, 5786–5791. [Google Scholar] [CrossRef] [PubMed]
- Phalan, B.; Balmford, A.; Green, R.E.; Scharlemann, J.P.W. Minimising the harm to biodiversity of producing more food globally. Food Policy 2011, 36, S62–S71. [Google Scholar] [CrossRef]
- Adams, W.M. Feeding the next billion: Hunger and conservation. Oryx 2012, 46, 157–158. [Google Scholar] [CrossRef]
- Perfecto, I.; Vandermeer, J. Separation or integration of biodiversity conservation: The ideology behind the land-sharing versus “land-sparing” debate. Ecosistemas 2012, 21, 180–191. [Google Scholar]
- Ramankutty, N.; Rhemtulla, J. Can intensive farming save nature? Front. Ecol. Environ. 2012, 10, 455. [Google Scholar] [CrossRef]
- Tscharntke, T.; Clough, Y.; Wanger, T.C.; Jackson, L.; Motzke, I.; Perfecto, I.; Vandermeer, J.; Whitbread, A. Global food security, biodiversity conservation and the future of agricultural intensification. Biol. Conserv. 2012, 151, 53–59. [Google Scholar] [CrossRef]
- Grau, R.; Kuemmerle, T.; Macchi, L. Beyond ‘land sparing versus land sharing’: Environmental heterogeneity, globalization and the balance between agricultural production and nature conservation. Curr. Opin. Environ. Sustain. 2013, 5, 477–483. [Google Scholar] [CrossRef]
- Baudron, F.; Giller, K.E. Agriculture and nature: Trouble and strife? Biol. Conserv. 2014, 170, 232–245. [Google Scholar] [CrossRef]
- Fischer, J.; Abson, D.J.; Butsic, V.; Chappell, M.J.; Ekroos, J.; Hanspach, J.; Kuemmerle, T.; Smith, H.G.; von Wehrden, H. Land sparing versus land sharing: Moving forward. Conserv. Lett. 2014, 7, 149–157. [Google Scholar] [CrossRef]
- Von Wehrden, H.; Abson, D.J.; Beckmann, M.; Cord, A.F.; Klotz, S.; Seppelt, R. Realigning the land-sharing/land-sparing debate to match conservation needs: Considering diversity scales and land-use history. Landsc. Ecol. 2014, 1–8. [Google Scholar] [CrossRef]
- Balmford, A.; Green, R.; Phalan, B. Land for food and land for nature? Daedalus 2015, 144, 57–75. [Google Scholar] [CrossRef]
- Kremen, C. Reframing the land-sparing/land-sharing debate for biodiversity conservation. Ann. N. Y. Acad. Sci. 2015, 1355, 52–76. [Google Scholar] [CrossRef] [PubMed]
- Law, E.A.; Wilson, K.A. Providing context for the land-sharing and land-sparing debate. Conserv. Lett. 2015, 8, 404–413. [Google Scholar] [CrossRef]
- Ekroos, J.; Ödman, A.M.; Andersson, G.K.S.; Birkhofer, K.; Herbertsson, L.; Klatt, B.K.; Olsson, O.; Olsson, P.A.; Persson, A.S.; Prentice, H.C.; et al. Sparing land for biodiversity at multiple spatial scales. Agroecol. Land Use Syst. 2016, 145. [Google Scholar] [CrossRef]
- Goulart, F.F.; Carvalho-Ribeiro, S.; Soares-Filho, B. Farming-biodiversity segregation or integration? Revisiting land sparing versus land sharing debate. J. Environ. Prot. 2016, 7, 1016. [Google Scholar] [CrossRef]
- Bennett, E.M. Changing the agriculture and environment conversation. Nat. Ecol. Evol. 2017, 1, 0018. [Google Scholar] [CrossRef] [PubMed]
- Salles, J.-M.; Teillard, F.; Tichit, M.; Zanella, M. Land sparing versus land sharing: An economist’s perspective. Reg. Environ. Chang. 2017, 1–11. [Google Scholar] [CrossRef]
- Luskin, M.S.; Lee, J.S.H.; Edwards, D.P.; Gibson, L.; Potts, M.D. Study context shapes recommendations of land-sparing and sharing; a quantitative review. Glob. Food Secur. 2017. [Google Scholar] [CrossRef]
- Nolte, C.; Gobbi, B.; le Polain de Waroux, Y.; Piquer-Rodríguez, M.; Butsic, V.; Lambin, E.F. Challenges in attributing avoided deforestation to policies and actors: Lessons from provincial forest zoning in the Argentine Dry Chaco. Ecol. Econ. 2018. [Google Scholar] [CrossRef]
- Lambin, E.F.; Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef] [PubMed]
- Desquilbet, M.; Dorin, B.; Couvet, D. Land sharing vs land sparing to conserve biodiversity: How agricultural markets make the difference. Environ. Model. Assess. 2017, 22, 185–200. [Google Scholar] [CrossRef]
- Pellegrini, P.; Fernández, R.J. Crop intensification, land use, and on-farm energy-use efficiency during the worldwide spread of the green revolution. Proc. Natl. Acad. Sci. USA 2018, 115, 2335–2340. [Google Scholar] [CrossRef] [PubMed]
- Angelsen, A.; Kaimowitz, D. Introduction: The role of agricultural technologies in tropical deforestation. In Agricultural Technologies and Tropical Deforestation; Angelsen, A., Kaimowitz, D., Eds.; CABI: Wallingford, UK, 2001; pp. 1–17. [Google Scholar]
- Borlaug, N.E. Mankind and civilization at another crossroad: In balance with Nature—A biological myth. BioScience 1972, 22, 41–44. [Google Scholar] [CrossRef]
- Phalan, B.; Green, R.E.; Dicks, L.V.; Dotta, G.; Feniuk, C.; Lamb, A.; Strassburg, B.B.N.; Williams, D.R.; zu Ermgassen, E.K.H.J.; Balmford, A. How can higher-yield farming help to spare nature? Science 2016, 351, 450–451. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, J.R.; Villoria, N.; Byerlee, D.; Kelley, T.; Maredia, M. Green Revolution research saved an estimated 18 to 27 million hectares from being brought into agricultural production. Proc. Natl. Acad. Sci. USA 2013, 110, 8363–8368. [Google Scholar] [CrossRef] [PubMed]
- Wezel, A.; Soboksa, G.; McClelland, S.; Delespesse, F.; Boissau, A. The blurred boundaries of ecological, sustainable, and agroecological intensification: A review. Agron. Sustain. Dev. 2015, 35, 1283–1295. [Google Scholar] [CrossRef]
- Garnett, T.; Appleby, M.C.; Balmford, A.; Bateman, I.J.; Benton, T.G.; Bloomer, P.; Burlingame, B.; Dawkins, M.; Dolan, L.; Fraser, D.; et al. Sustainable intensification in agriculture: Premises and policies. Science 2013, 341, 33–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Royal Society. Royal Society Reaping the Benefits: Science and the Sustainable Intensification of Global Agriculture; Royal Society: London, UK, 2009. [Google Scholar]
- Bommarco, R.; Kleijn, D.; Potts, S.G. Ecological intensification: Harnessing ecosystem services for food security. Trends Ecol. Evol. 2013, 28, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Altieri, M.A. Agroecology: The science of natural resource management for poor farmers in marginal environments. Agric. Ecosyst. Environ. 2002, 93, 1–24. [Google Scholar] [CrossRef]
- Altieri, M.A.; Toledo, V.M. The agroecological revolution in Latin America: Rescuing nature, ensuring food sovereignty and empowering peasants. J. Peasant Stud. 2011, 38, 587–612. [Google Scholar] [CrossRef]
- Barrett, C.B. Measuring food insecurity. Science 2010, 327, 825–828. [Google Scholar] [CrossRef] [PubMed]
- Villoria, N.B.; Byerlee, D.; Stevenson, J. The effects of agricultural technological progress on deforestation: What do we really know? Appl. Econ. Perspect. Policy 2014, ppu005. [Google Scholar] [CrossRef]
- Byerlee, D.; Stevenson, J.; Villoria, N. Does intensification slow crop land expansion or encourage deforestation? Glob. Food Secur. 2014, 3, 92–98. [Google Scholar] [CrossRef]
- Martha, G.B., Jr.; Alves, E.; Contini, E. Land-saving approaches and beef production growth in Brazil. Agric. Syst. 2012, 110, 173–177. [Google Scholar] [CrossRef]
- Rudel, T.K.; Schneider, L.; Uriarte, M. Forest transitions: An introduction. Land Use Policy 2010, 27, 95–97. [Google Scholar] [CrossRef]
- Meyfroidt, P.; Lambin, E.F. Global forest transition: Prospects for an end to deforestation. Annu. Rev. Environ. Resour. 2011, 36, 343–371. [Google Scholar] [CrossRef]
- Kastner, T.; Erb, K.-H.; Nonhebel, S. International wood trade and forest change: A global analysis. Glob. Environ. Chang. 2011, 21, 947–956. [Google Scholar] [CrossRef]
- Smaje, C. An Eco-Futurist Miscellany. Small Farm Future. 23 April 2018. Available online: https://smallfarmfuture.org.uk/2018/04/an-eco-futurist-miscellany/ (accessed on 23 May 2018).
- Asafu-Adjaye, J.; Blomquist, L.; Brand, S.; Brook, B.W.; DeFries, R.; Ellis, E.; Foreman, C.; Keith, D.; Lewis, M.; Lynas, M. An Ecomodernist Manifesto. Available online: http://www.ecomodernism.org/manifesto (accessed on 26 May 2018).
- Lamb, A.; Green, R.; Bateman, I.; Broadmeadow, M.; Bruce, T.; Burney, J.; Carey, P.; Chadwick, D.; Crane, E.; Field, R.; et al. The potential for land sparing to offset greenhouse gas emissions from agriculture. Nat. Clim. Change 2016, 6, 488–492. [Google Scholar] [CrossRef] [Green Version]
- Nordhaus, T. The environmental case for industrial agriculture. Breakthrough. 8 June 2015. Available online: https://thebreakthrough.org/index.php/issues/food-and-farming/the-environmental-case-for-industrial-agriculture (accessed on 27 March 2018).
- Lawton, J.H.; Bignell, D.E.; Bolton, B.; Bloemers, G.F.; Eggleton, P.; Hammond, P.M.; Hodda, M.; Holt, R.D.; Larsen, T.B.; Mawdsley, N.A.; et al. Biodiversity inventories, indicator taxa and effects of habitat modification in tropical forest. Nature 1998, 391, 72–76. [Google Scholar] [CrossRef]
- Daily, G.C.; Ehrlich, P.R.; Sanchez-Azofeifa, G.A. Countryside biogeography: Use of human-dominated habitats by the avifauna of southern Costa Rica. Ecol. Appl. 2001, 11, 1–13. [Google Scholar] [CrossRef]
- Matthews, T.J.; Cottee-Jones, H.E.; Whittaker, R.J. Habitat fragmentation and the species–area relationship: A focus on total species richness obscures the impact of habitat loss on habitat specialists. Divers. Distrib. 2014, 20, 1136–1146. [Google Scholar] [CrossRef]
- Hillebrand, H.; Blasius, B.; Borer, E.T.; Chase, J.M.; Downing, J.; Eriksson, B.K.; Filstrup, C.T.; Harpole, W.S.; Hodapp, D.; Larsen, S.; et al. Biodiversity Chang. is uncoupled from species richness trends: Consequences for conservation and monitoring. J. Appl. Ecol. 2018, 55, 169–184. [Google Scholar] [CrossRef]
- Naidoo, R.; Balmford, A.; Ferraro, P.J.; Polasky, S.; Ricketts, T.H.; Rouget, M. Integrating economic costs into conservation planning. Trends Ecol. Evol. 2006, 21, 681–687. [Google Scholar] [CrossRef] [PubMed]
- Windels, C.E. Economic and social impacts of Fusarium head blight: Changing farms and rural communities in the northern Great Plains. Phytopathology 2000, 90, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Chappell, M.J.; Wittman, H.; Bacon, C.M.; Ferguson, B.G.; Barrios, L.G.; Barrios, R.G.; Jaffee, D.; Lima, J.; Méndez, V.E.; Morales, H.; et al. Food sovereignty: An alternative paradigm for poverty reduction and biodiversity conservation in Latin America. F1000Research 2013. [Google Scholar] [CrossRef] [PubMed]
- Ostrom, E.; Cox, M. Moving beyond panaceas: A multi-tiered diagnostic approach for social-ecological analysis. Environ. Conserv. 2010, 37, 451–463. [Google Scholar] [CrossRef]
- Gilroy, J.J.; Edwards, F.A.; Medina Uribe, C.A.; Haugaasen, T.; Edwards, D.P. Surrounding habitats mediate the trade-off between land-sharing and land-sparing agriculture in the tropics. J. Appl. Ecol. 2014, 51, 1337–1346. [Google Scholar] [CrossRef]
- Lamb, A.; Balmford, A.; Green, R.E.; Phalan, B. To what extent could edge effects and habitat fragmentation diminish the potential benefits of land sparing? Biol. Conserv. 2016, 195, 264–271. [Google Scholar] [CrossRef]
- Cohn, A.S.; Mosnier, A.; Havlík, P.; Valin, H.; Herrero, M.; Schmid, E.; O’Hare, M.; Obersteiner, M. Cattle ranching intensification in Brazil can reduce global greenhouse gas emissions by sparing land from deforestation. Proc. Natl. Acad. Sci. USA 2014, 111, 7236–7241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mouysset, L.; Doyen, L.; Jiguet, F. From population viability analysis to coviability of farmland biodiversity and agriculture. Conserv. Biol. 2014, 28, 187–201. [Google Scholar] [CrossRef] [PubMed]
- Edwards, D.P.; Gilroy, J.J.; Woodcock, P.; Edwards, F.A.; Larsen, T.H.; Andrews, D.J.R.; Derhé, M.A.; Docherty, T.D.S.; Hsu, W.W.; Mitchell, S.L.; et al. Land-sharing versus land-sparing logging: Reconciling timber extraction with biodiversity conservation. Glob. Chang. Biol. 2014, 20, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Paul, C.; Knoke, T. Between land sharing and land sparing—what role remains for forest management and conservation? Int. For. Rev. 2015, 17, 210–230. [Google Scholar] [CrossRef]
- Soga, M.; Yamaura, Y.; Koike, S.; Gaston, K.J. Land sharing vs. land sparing: Does the compact city reconcile urban development and biodiversity conservation? J. Appl. Ecol. 2014, 51, 1378–1386. [Google Scholar] [CrossRef]
- Stott, I.; Soga, M.; Inger, R.; Gaston, K.J. Land sparing is crucial for urban ecosystem services. Front. Ecol. Environ. 2015, 13, 387–393. [Google Scholar] [CrossRef]
- Caryl, F.M.; Lumsden, L.F.; van der Ree, R.; Wintle, B.A. Functional responses of insectivorous bats to increasing housing density support ‘land-sparing’ rather than ‘land-sharing’ urban growth strategies. J. Appl. Ecol. 2016, 53, 191–201. [Google Scholar] [CrossRef]
- Collas, L.; Green, R.E.; Ross, A.; Wastell, J.H.; Balmford, A. Urban development, land sharing and land sparing: The importance of considering restoration. J. Appl. Ecol. 2017, 54, 1865–1873. [Google Scholar] [CrossRef]
- McGowan, J.; Bode, M.; Holden, M.H.; Davis, K.; Krueck, N.C.; Beger, M.; Yates, K.L.; Possingham, H.P. Ocean zoning within a sparing versus sharing framework. Theor. Ecol. 2018, 1–10. [Google Scholar] [CrossRef]
- Gilroy, J.J.; Edwards, D.P. Source-sink dynamics: A neglected problem for landscape-scale biodiversity conservation in the tropics. Curr. Landsc. Ecol. Rep. 2017, 2, 51–60. [Google Scholar] [CrossRef]
- Fischer, J.; Abson, D.J.; Bergsten, A.; French Collier, N.; Dorresteijn, I.; Hanspach, J.; Hylander, K.; Schultner, J.; Senbeta, F. Reframing the food–biodiversity challenge. Trends Ecol. Evol. 2017. [Google Scholar] [CrossRef] [PubMed]
- Butsic, V.; Kuemmerle, T. Using optimization methods to align food production and biodiversity conservation beyond land sharing and land sparing. Ecol. Appl. 2015, 25, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Charpentier, A. Insights from life history theory for an explicit treatment of trade-offs in conservation biology. Conserv. Biol. 2015, 29, 738–747. [Google Scholar] [CrossRef] [PubMed]
- Fischer, J.; Batáry, P.; Bawa, K.S.; Brussaard, L.; Chappell, M.J.; Clough, Y.; Daily, G.C.; Dorrough, J.; Hartel, T.; Jackson, L.E.; et al. Conservation: Limits of land sparing. Science 2011, 334, 593. [Google Scholar] [CrossRef] [PubMed]
- Vucetich, J.A.; Burnham, D.; Macdonald, E.A.; Bruskotter, J.T.; Marchini, S.; Zimmermann, A.; Macdonald, D.W. Just conservation: What is it and should we pursue it? Biol. Conserv. 2018, 221, 23–33. [Google Scholar] [CrossRef]
- Martin, A.; McGuire, S.; Sullivan, S. Global environmental justice and biodiversity conservation. Geogr. J. 2013, 179, 122–131. [Google Scholar] [CrossRef]
- Kopnina, H. Half the earth for people (or more)? Addressing ethical questions in conservation. Biol. Conserv. 2016, 203, 176–185. [Google Scholar] [CrossRef]
- Forister, M.L.; Novotny, V.; Panorska, A.K.; Baje, L.; Basset, Y.; Butterill, P.T.; Cizek, L.; Coley, P.D.; Dem, F.; Diniz, I.R.; et al. The global distribution of diet breadth in insect herbivores. Proc. Natl. Acad. Sci. USA 2015, 112, 442–447. [Google Scholar] [CrossRef] [PubMed]
- Harpole, W.S.; Tilman, D. Grassland species loss resulting from reduced niche dimension. Nature 2007, 446, 791–793. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, D.; Sait, S.M.; Kunin, W.E.; Benton, T.G. Food production vs. biodiversity: Comparing organic and conventional agriculture. J. Appl. Ecol. 2013, 50, 355–364. [Google Scholar] [CrossRef]
- Clough, Y.; Barkmann, J.; Juhrbandt, J.; Kessler, M.; Wanger, T.C.; Anshary, A.; Buchori, D.; Cicuzza, D.; Darras, K.; Putra, D.D.; et al. Combining high biodiversity with high yields in tropical agroforests. Proc. Natl. Acad. Sci. USA 2011, 108, 8311–8316. [Google Scholar] [CrossRef] [PubMed]
- Doxa, A.; Paracchini, M.L.; Pointereau, P.; Devictor, V.; Jiguet, F. Preventing biotic homogenization of farmland bird communities: The role of High Nature Value farmland. Agric. Ecosyst. Environ. 2012, 148, 83–88. [Google Scholar] [CrossRef]
- Navarro, L.M.; Pereira, H.M. Rewilding abandoned landscapes in Europe. Ecosystems 2012, 15, 900–912. [Google Scholar] [CrossRef]
- Plieninger, T.; Hartel, T.; Martín-López, B.; Beaufoy, G.; Bergmeier, E.; Kirby, K.; Montero, M.J.; Moreno, G.; Oteros-Rozas, E.; Van Uytvanck, J. Wood-pastures of Europe: Geographic coverage, social–ecological values, conservation management, and policy implications. Biol. Conserv. 2015, 190, 70–79. [Google Scholar] [CrossRef]
- Merckx, T.; Pereira, H.M. Reshaping agri-environmental subsidies: From marginal farming to large-scale rewilding. Basic Appl. Ecol. 2015, 16, 95–103. [Google Scholar] [CrossRef]
- Simons, N.K.; Weisser, W.W. Agricultural intensification without biodiversity loss is possible in grassland landscapes. Nat. Ecol. Evol. 2017, 1. [Google Scholar] [CrossRef] [PubMed]
- Batavia, C.; Nelson, M.P. For goodness sake! What is intrinsic value and why should we care? Biol. Conserv. 2017, 209, 366–376. [Google Scholar] [CrossRef]
- Cafaro, P.; Primack, R. Species extinction is a great moral wrong. Biol. Conserv. 2014, 170, 1–2. [Google Scholar] [CrossRef]
- Piccolo, J.J.; Washington, H.; Kopnina, H.; Taylor, B. Why conservation scientists should re-embrace their ecocentric roots. Conserv. Biol. 2017. [Google Scholar] [CrossRef] [PubMed]
- Sandbrook, C. Weak yet strong: The uneven power relations of conservation. Oryx 2017, 51, 379–380. [Google Scholar] [CrossRef]
- Kopnina, H.; Washington, H.; Taylor, B.; Piccolo, J.J. Anthropocentrism: More than just a misunderstood problem. J. Agric. Environ. Ethics 2018, 1–19. [Google Scholar] [CrossRef]
- Ewers, R.M.; Rodrigues, A.S.L. Speaking different languages on biodiversity. Nature 2006, 443, 506. [Google Scholar] [CrossRef]
- Díaz, S.; Pascual, U.; Stenseke, M.; Martín-López, B.; Watson, R.T.; Molnár, Z.; Hill, R.; Chan, K.M.A.; Baste, I.A.; Brauman, K.A.; et al. Assessing nature’s contributions to people. Science 2018, 359, 270–272. [Google Scholar] [CrossRef] [PubMed]
- Kleijn, D.; Winfree, R.; Bartomeus, I.; Carvalheiro, L.G.; Henry, M.; Isaacs, R.; Klein, A.-M.; Kremen, C.; M’Gonigle, L.K.; Rader, R.; et al. Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nat. Commun. 2015, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyfroidt, P. Trade-offs between environment and livelihoods: Bridging the global land use and food security discussions. Glob. Food Secur. 2018, 16, 9–16. [Google Scholar] [CrossRef]
- Chappell, M.J.; LaValle, L.A. Food security and biodiversity: Can we have both? An agroecological analysis. Agric. Hum. Values 2009, 28, 3–26. [Google Scholar] [CrossRef]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [PubMed]
- Cassidy, E.S.; West, P.C.; Gerber, J.S.; Foley, J.A. Redefining agricultural yields: From tonnes to people nourished per hectare. Environ. Res. Lett. 2013, 8, 034015. [Google Scholar] [CrossRef]
- Kaimowitz, D.; Smith, J. Soybean technology and the loss of natural vegetation in Brazil and Bolivia. In Agricultural Technologies and Tropical Deforestation; CABI Publishing: Wallingford, UK, 2001; p. 195. [Google Scholar]
- Polasky, S.; Nelson, E.; Camm, J.; Csuti, B.; Fackler, P.; Lonsdorf, E.; Montgomery, C.; White, D.; Arthur, J.; Garber-Yonts, B.; et al. Where to put things? Spatial land management to sustain biodiversity and economic returns. Biol. Conserv. 2008, 141, 1505–1524. [Google Scholar] [CrossRef]
- Power, A.G. Ecosystem services and agriculture: Tradeoffs and synergies. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2959–2971. [Google Scholar] [CrossRef] [PubMed]
- Tscharntke, T.; Klein, A.M.; Kruess, A.; Steffan-Dewenter, I.; Thies, C. Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecol. Lett. 2005, 8, 857–874. [Google Scholar] [CrossRef]
- Waylen, K.A.; Fischer, A.; McGowan, P.J.K.; Thirgood, S.J.; Milner-Gulland, E.J. Effect of local cultural context on the success of community-based conservation interventions. Conserv. Biol. 2010, 9999. [Google Scholar] [CrossRef] [PubMed]
- Daly, H.E. From Uneconomic Growth to a Steady-State Economy; Edward Elgar Publishing: Cheltenham, UK, 2014; ISBN 978-1-78347-997-9. [Google Scholar]
- Dinerstein, E.; Olson, D.; Joshi, A.; Vynne, C.; Burgess, N.D.; Wikramanayake, E.; Hahn, N.; Palminteri, S.; Hedao, P.; Noss, R.; et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 2017, 67, 534–545. [Google Scholar] [CrossRef] [PubMed]
- Balmford, A.P.; Green, R. How to spare half a planet. Nature 2017, 552. [Google Scholar] [CrossRef] [PubMed]
- Creutzig, F. Govern land as a global commons. Nat. News 2017, 546, 28. [Google Scholar] [CrossRef] [PubMed]
- Angelsen, A.; Rudel, T.K. Designing and implementing effective REDD+ policies: A forest transition approach. Rev. Environ. Econ. Policy 2013, 7, 91–113. [Google Scholar] [CrossRef]
- Alcott, B. Jevons’ paradox. Ecol. Econ. 2005, 54, 9–21. [Google Scholar] [CrossRef]
- Angelsen, A.; Kaimowitz, D. Agricultural technology and forests: A recapitulation. In Agricultural Technologies and Tropical Deforestation; Angelsen, A., Kaimowitz, D., Eds.; CABI: Wallingford, UK, 2001; pp. 383–402. [Google Scholar]
- Rudel, T.K.; Schneider, L.; Uriarte, M.; Turner, B.L.; DeFries, R.; Lawrence, D.; Geoghegan, J.; Hecht, S.; Ickowitz, A.; Lambin, E.F.; et al. Agricultural intensification and changes in cultivated areas, 1970–2005. Proc. Natl. Acad. Sci. USA 2009, 106, 20675–20680. [Google Scholar] [CrossRef] [PubMed]
- Yanggen, D.; Reardon, T. Kudzu-improved fallows in the Peruvian Amazon. In Agricultural Technologies and Tropical Deforestation; Angelsen, A., Kaimowitz, D., Eds.; CABI: Wallingford, UK, 2001; pp. 213–229. [Google Scholar]
- Fisher, M.; Shively, G.E. Agricultural subsidies and forest pressure in Malawi’s Miombo woodlands. J. Agric. Resour. Econ. 2007, 32, 349–362. [Google Scholar]
- Ewers, R.M.; Scharlemann, J.P.W.; Balmford, A.; Green, R.E. Do increases in agricultural yield spare land for nature? Glob. Chang. Biol. 2009, 15, 1716–1726. [Google Scholar] [CrossRef]
- Borlaug, N. Feeding a hungry world. Science 2007, 318, 359. [Google Scholar] [CrossRef] [PubMed]
- Nolte, C.; Gobbi, B.; le Polain de Waroux, Y.; Piquer-Rodríguez, M.; Butsic, V.; Lambin, E.F. Decentralized land use zoning reduces large-scale deforestation in a major agricultural frontier. Ecol. Econ. 2017, 136, 30–40. [Google Scholar] [CrossRef]
- Moutinho, P.; Guerra, R.; Azevedo-Ramos, C. Achieving zero deforestation in the Brazilian Amazon: What is missing? Elem. Sci. Anth. 2016, 4. [Google Scholar] [CrossRef]
- Schuster, R.; Law, E.A.; Rodewald, A.D.; Martin, T.G.; Wilson, K.A.; Watts, M.; Possingham, H.P.; Arcese, P. Tax shifting and incentives for biodiversity conservation on private lands. Conserv. Lett. 2018, 11, e12377. [Google Scholar] [CrossRef]
- Ceddia, M.G.; Bardsley, N.O.; Gomez-y-Paloma, S.; Sedlacek, S. Governance, agricultural intensification, and land sparing in tropical South America. Proc. Natl. Acad. Sci. USA 2014, 201317967. [Google Scholar] [CrossRef] [PubMed]
- Perfecto, I.; Vandermeer, J. Biodiversity conservation in tropical agroecosystems: A new conservation paradigm. Ann. N. Y. Acad. Sci. 2008, 1134, 173–200. [Google Scholar] [CrossRef] [PubMed]
- Watson, C. In India, agroforestry is a win for both tigers and villagers. Scientific American. 1 February 2018. Available online: https://blogs.scientificamerican.com/observations/in-india-agroforestry-is-a-win-for-both-tigers-and-villagers/ (accessed on 5 February 2018).
- Boserup, E. The Conditions of Agricultural Growth: The Economics of Agrarian Change under Population Pressure; George Allen & Unwin: London, UK, 1965. [Google Scholar]
- Angelsen, A. Policies for reduced deforestation and their impact on agricultural production. Proc. Natl. Acad. Sci. USA 2010, 107, 19639–19644. [Google Scholar] [CrossRef] [PubMed]
- Eitelberg, D.A.; van Vliet, J.; Doelman, J.C.; Stehfest, E.; Verburg, P.H. Demand for biodiversity protection and carbon storage as drivers of global land Chang. scenarios. Glob. Environ. Chang. 2016, 40, 101–111. [Google Scholar] [CrossRef]
- Koch, N.; zu Ermgassen, E.; Wehkamp, J.; Oliveira, F.; Schwerhoff, G. Agricultural Productivity and Forest Conservation: Evidence from the Brazilian Amazon; Social Science Research Network: Rochester, NY, USA, 2017. [Google Scholar]
- Alix-Garcia, J.; Gibbs, H.K. Forest conservation effects of Brazil’s zero deforestation cattle agreements undermined by leakage. Glob. Environ. Chang. 2017, 47, 201–217. [Google Scholar] [CrossRef]
- Le Polain de Waroux, Y.; Garrett, R.D.; Graesser, J.; Nolte, C.; White, C.; Lambin, E.F. The restructuring of South American soy and beef production and trade under changing environmental regulations. World Dev. 2017. [Google Scholar] [CrossRef]
- Ferraz, G.; Russell, G.J.; Stouffer, P.C.; Bierregaard, R.O.; Pimm, S.L.; Lovejoy, T.E. Rates of species loss from Amazonian forest fragments. Proc. Natl. Acad. Sci. USA 2003, 100, 14069–14073. [Google Scholar] [CrossRef] [PubMed]
- Hunter, M.L., Jr. Conserving small natural features with large ecological roles: An introduction and definition. Biol. Conserv. 2017, 211, 1–2. [Google Scholar] [CrossRef]
- Clements, G.R.; Bradshaw, C.J.A.; Brook, B.W.; Laurance, W.F. The SAFE index: Using a threshold population target to measure relative species threat. Front. Ecol. Environ. 2011, 9, 521–525. [Google Scholar] [CrossRef]
- Sandbrook, C. Separate yet connected: The spatial paradox of conservation. Thinking like a human. 10 April 2015. Available online: https://thinkinglikeahuman.com/2015/04/10/separate-yet-connected-the-spatial-paradox-of-conservation (accessed on 23 May 2018).
- Cosquer, A.; Raymond, R.; Prevot-Julliard, A.-C. Observations of everyday biodiversity: A new perspective for conservation? Ecol. Soc. 2012, 17. [Google Scholar] [CrossRef]
- Lumber, R.; Richardson, M.; Sheffield, D. Beyond knowing nature: Contact, emotion, compassion, meaning, and beauty are pathways to nature connection. PLoS ONE 2017, 12, e0177186. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.R. Biodiversity conservation and the extinction of experience. Trends Ecol. Evol. 2005, 20, 430–434. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.B.; Fuller, R.A.; Bush, R.; Gaston, K.J.; Shanahan, D.F. Opportunity or orientation? Who uses urban parks and why. PLoS ONE 2014, 9, e87422. [Google Scholar] [CrossRef] [PubMed]
- Steven, R.; Pickering, C.; Guy Castley, J. A review of the impacts of nature based recreation on birds. J. Environ. Manag. 2011, 92, 2287–2294. [Google Scholar] [CrossRef] [PubMed]
- Vangansbeke, P.; Blondeel, H.; Landuyt, D.; Frenne, P.D.; Gorissen, L.; Verheyen, K. Spatially combining wood production and recreation with biodiversity conservation. Biodivers. Conserv. 2017, 26, 3213–3239. [Google Scholar] [CrossRef]
- Vandermeer, J.; Perfecto, I. The agricultural matrix and a future paradigm for conservation. Conserv. Biol. 2007, 21, 274–277. [Google Scholar] [CrossRef] [PubMed]
- Crespin, S.J.; García-Villalta, J.E. Integration of land-sharing and land-sparing conservation strategies through regional networking: The Mesoamerican biological corridor as a lifeline for carnivores in El Salvador. Ambio 2014, 43, 820–824. [Google Scholar] [CrossRef] [PubMed]
- Pereira, G.A.; Dantas, S.D.M.; Silveira, L.F.; Roda, S.A.; Albano, C.; Sonntag, F.A.; Leal, S.; Periquito, M.C.; Malacco, G.B.; Lees, A.C. Status of the globally threatened forest birds of northeast Brazil. Pap. Avulsos Zool. São Paulo 2014, 54, 177–194. [Google Scholar] [CrossRef]
- Newmark, W.D.; Jenkins, C.N.; Pimm, S.L.; McNeally, P.B.; Halley, J.M. Targeted habitat restoration can reduce extinction rates in fragmented forests. Proc. Natl. Acad. Sci. USA 2017, 201705834. [Google Scholar] [CrossRef] [PubMed]
- Chazdon, R.L. Beyond deforestation: Restoring forests and ecosystem services on degraded lands. Science 2008, 320, 1458–1460. [Google Scholar] [CrossRef] [PubMed]
- Wright, H.L.; Lake, I.R.; Dolman, P.M. Agriculture–A key element for conservation in the developing world. Conserv. Lett. 2012, 5, 11–19. [Google Scholar] [CrossRef]
- Fuller, R.J.; Williamson, T.; Barnes, G.; Dolman, P.M. Human activities and biodiversity opportunities in pre-industrial cultural landscapes: Relevance to conservation. J. Appl. Ecol. 2017, 54, 459–469. [Google Scholar] [CrossRef]
- Phalan, B.; Balmford, A.; Green, R.E. Agriculture as a key element for conservation: Reasons for caution. Conserv. Lett. 2012, 5, 323–324. [Google Scholar] [CrossRef]
- Wright, H.L.; Lake, I.R.; Dolman, P.M. Low-impact agriculture requires urgent attention not greater caution: Response to Phalan and colleagues. Conserv. Lett. 2012, 5, 325–326. [Google Scholar] [CrossRef]
- Hodgson, J.A.; Thomas, C.D.; Wintle, B.A.; Moilanen, A. Climate change, connectivity and conservation decision making: Back to basics. J. Appl. Ecol. 2009, 46, 964–969. [Google Scholar] [CrossRef]
- Hodgson, J.A.; Moilanen, A.; Wintle, B.A.; Thomas, C.D. Habitat area, quality and connectivity: Striking the balance for efficient conservation. J. Appl. Ecol. 2011, 48, 148–152. [Google Scholar] [CrossRef]
- Betts, M.G.; Phalan, B.; Frey, S.J.K.; Rousseau, J.S.; Yang, Z. Old-growth forests buffer climate-sensitive bird populations from warming. Divers. Distrib. 2018, 24, 439–447. [Google Scholar] [CrossRef]
- Zuckerberg, B.; Ribic, C.A.; McCauley, L.A. Effects of temperature and precipitation on grassland bird nesting success as mediated by patch size. Conserv. Biol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Hiley, J.R.; Bradbury, R.B.; Holling, M.; Thomas, C.D. Protected areas act as establishment centres for species colonizing the UK. Proc. R. Soc. B Biol. Sci. 2013, 280. [Google Scholar] [CrossRef] [PubMed]
- Van Dyck, H.; Baguette, M. Dispersal behaviour in fragmented landscapes: Routine or special movements? Basic Appl. Ecol. 2005, 6, 535–545. [Google Scholar] [CrossRef]
- Keeley, A.T.H.; Beier, P.; Keeley, B.W.; Fagan, M.E. Habitat suitability is a poor proxy for landscape connectivity during dispersal and mating movements. Landsc. Urban Plan. 2017, 161, 90–102. [Google Scholar] [CrossRef]
- Garcés-Restrepo, M.F.; Pauli, J.N.; Peery, Z.M. Natal dispersal of tree sloths in a human-dominated landscape: Implications for tropical biodiversity conservation. J. Appl. Ecol. 2018. [Google Scholar] [CrossRef]
- Barnes, M.D.; Glew, L.; Wyborn, C.; Craigie, I.D. Prevent perverse outcomes from global protected area policy. Nat. Ecol. Evol. 2018, 1. [Google Scholar] [CrossRef] [PubMed]
Term | Definition | Terms Used as Synonyms |
---|---|---|
Land sparing | Increasing yields on farmed land while at the same time protecting native vegetation or freeing up land for habitat restoration elsewhere | Nature sparing [20] |
Borlaug hypothesis | The expectation that higher crop yields will result in land being spared for nature | Land saving [34,42,43,44]; land sparing [20,23,28,30]; passive land sparing [33] |
Land sharing | Producing both food and wildlife in the same parts of the landscape by maintaining or restoring the conservation value of the farmed land itself | Wildlife-friendly farming [1,8,10] |
Sustainable intensification | Actions to increase food production from existing farmland in ways that reduce environmental impacts and conserve resources | Considerable overlap and lack of consensus in use of these three terms [35] |
Ecological intensification | Actions to replace anthropogenic inputs or increase yields by harnessing ecosystem services | |
Agroecological intensification | Actions to improve the performance of (typically smallholder) farming systems by using ecological and local knowledge | |
Food production | The amount of food produced in a region, not to be confused with yield (production per unit area) | |
Food security | Situation where people have physical, social and economic access to sufficient, safe and nutritious food (often conceptualised as availability, access and utilisation) | |
Food sovereignty | A community’s right to decide how food is produced, distributed and consumed |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phalan, B.T. What Have We Learned from the Land Sparing-sharing Model? Sustainability 2018, 10, 1760. https://doi.org/10.3390/su10061760
Phalan BT. What Have We Learned from the Land Sparing-sharing Model? Sustainability. 2018; 10(6):1760. https://doi.org/10.3390/su10061760
Chicago/Turabian StylePhalan, Benjamin T. 2018. "What Have We Learned from the Land Sparing-sharing Model?" Sustainability 10, no. 6: 1760. https://doi.org/10.3390/su10061760
APA StylePhalan, B. T. (2018). What Have We Learned from the Land Sparing-sharing Model? Sustainability, 10(6), 1760. https://doi.org/10.3390/su10061760