Drought Assessment with the Community Land Model for 1951–2010 in East Asia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Dataset
2.2. Community Land Model
2.3. Quantifying Drought Risk
2.3.1. Meteorological Drought
2.3.2. Agricultural and Hydrological Drought
2.4. Assessment of Drought in CLM
3. Results and Discussion
3.1. Regional Variations of Input Variables for Drought Indices
3.2. Spatiotemporal Variations of Droughts
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Wilhite, D.A. Drought and Water Crises: Science, Technology, and Management Issues; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Nasrollahi, N.; AghaKouchak, A.; Cheng, L.; Damberg, L.; Phillips, T.J.; Miao, C.; Hsu, K.; Sorooshian, S. How well do CMIP5 climate simulations replicate historical trends and patterns of meteorological droughts? Water Resour. Res. 2015, 51, 2847–2864. [Google Scholar] [CrossRef] [Green Version]
- Xu, K.; Yang, D.; Yang, H.; Li, Z.; Qin, Y.; Shen, Y. Spatio-temporal variation of drought in china during 1961–2012: A climatic perspective. J. Hydrol. 2015, 526, 253–264. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Boston, MA, USA, 17–22 January 1993; pp. 179–183. [Google Scholar]
- Edwards, D.C.; McKee, T.B. Characteristics of 20th century drought in the united states at multiple time scales. In Atmospheric Science Paper; Storming Media: Fort Collins, CO, USA, 1997. [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Naumann, G.; Barbosa, P.; Garrote, L.; Iglesias, A.; Vogt, J. Exploring drought vulnerability in Africa: An indicator based analysis to be used in early warning systems. Hydrol. Earth Syst. Sci. 2014, 18, 1591–1604. [Google Scholar] [CrossRef] [Green Version]
- Shukla, S.; Wood, A.W. Use of a standardized runoff index for characterizing hydrologic drought. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Hejazi, M.; Cai, X.; Valocchi, A.J. Climate change impact on meteorological, agricultural, and hydrological drought in central Illinois. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef] [Green Version]
- Leng, G.; Tang, Q.; Rayburg, S. Climate change impacts on meteorological, agricultural and hydrological droughts in china. Glob. Planet. Chang. 2015, 126, 23–34. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, T. Drought over east Asia: A review. J. Clim. 2015, 28, 3375–3399. [Google Scholar] [CrossRef]
- Wang, H.; He, S. The north china/northeastern Asia severe summer drought in 2014. J. Clim. 2015, 28, 6667–6681. [Google Scholar] [CrossRef]
- Kwon, H.-H.; Lall, U.; Kim, S.-J. The unusual 2013–2015 drought in South Korea in the context of a multicentury precipitation record: Inferences from a nonstationary, multivariate, bayesian copula model. Geophys. Res. Lett. 2016, 43, 8534–8544. [Google Scholar] [CrossRef]
- Wu, H.; Hayes, M.J.; Weiss, A.; Hu, Q. An evaluation of the standardized precipitation index, the china-z index and the statistical z-score. Int. J. Climatol. 2001, 21, 745–758. [Google Scholar] [CrossRef]
- Zhai, J.; Su, B.; Krysanova, V.; Vetter, T.; Gao, C.; Jiang, T. Spatial variation and trends in PDSI and SPI indices and their relation to streamflow in 10 large regions of china. J. Clim. 2010, 23, 649–663. [Google Scholar] [CrossRef]
- Hao, C.; Zhang, J.; Yao, F. Combination of multi-sensor remote sensing data for drought monitoring over southwest china. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 270–283. [Google Scholar] [CrossRef]
- Wang, W.; Zhu, Y.; Xu, R.; Liu, J. Drought severity change in china during 1961–2012 indicated by SPI and SPEI. Nat. Hazards 2015, 75, 2437–2451. [Google Scholar] [CrossRef]
- Tan, C.; Yang, J.; Li, M. Temporal-spatial variation of drought indicated by SPI and SPEI in Ningxia Hui autonomous region, China. Atmosphere 2015, 6, 1399–1421. [Google Scholar] [CrossRef]
- Yu, M.; Li, Q.; Hayes, M.J.; Svoboda, M.D.; Heim, R.R. Are droughts becoming more frequent or severe in china based on the standardized precipitation evapotranspiration index: 1951–2010? Int. J. Climatol. 2014, 34, 545–558. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Shao, M.; Jia, X.; Li, X. Spatiotemporal analysis of multiscalar drought characteristics across the loess plateau of China. J. Hydrol. 2016, 534, 281–299. [Google Scholar] [CrossRef]
- Lee, B.-R.; Sung, J.H.; Chung, E.-S. Comparison of meteorological drought and hydrological drought index. J. Korea Water Resour. Assoc. 2015, 48, 69–78. [Google Scholar] [CrossRef]
- Nam, W.-H.; Hayes, M.J.; Svoboda, M.D.; Tadesse, T.; Wilhite, D.A. Drought hazard assessment in the context of climate change for south Korea. Agric. Water Manag. 2015, 160, 106–117. [Google Scholar] [CrossRef]
- Sohn, S.J.; Ahn, J.B.; Tam, C.Y. Six month–lead downscaling prediction of winter to spring drought in South Korea based on a multimodel ensemble. Geophys. Res. Lett. 2013, 40, 579–583. [Google Scholar] [CrossRef]
- Park, J.; Lim, Y.-J.; Kim, B.-J.; Sung, J.H. Appraisal of drought characteristics of representative drought indices using meteorological variables. KSCE J. Civ. Eng. 2017, 22, 2002–2009. [Google Scholar] [CrossRef]
- Min, S.K.; Kwon, W.T.; Park, E.-H.; Choi, Y. Spatial and temporal comparisons of droughts over Korea with east Asia. Int. J. Climatol. 2003, 23, 223–233. [Google Scholar] [CrossRef]
- Um, M.-J.; Kim, Y.; Park, D. Evaluation and modification of the drought severity index (DSI) in east Asia. Remote Sens. Environ. 2018, 209, 66–76. [Google Scholar] [CrossRef]
- Sacks, W.J.; Cook, B.I.; Buenning, N.; Levis, S.; Helkowski, J.H. Effects of global irrigation on the near-surface climate. Clim. Dyn. 2009, 33, 159–175. [Google Scholar] [CrossRef]
- Lawrence, P.J.; Chase, T.N. Climate impacts of making evapotranspiration in the community land model (CLM3) consistent with the simple biosphere model (SIB). J. Hydrometeorol. 2009, 10, 374–394. [Google Scholar] [CrossRef]
- Lawrence, P.J.; Chase, T.N. Investigating the climate impacts of global land cover change in the community climate system model. Int. J. Climatol. 2010, 30, 2066–2087. [Google Scholar] [CrossRef] [Green Version]
- Jin, J.; Miller, N.L. Regional simulations to quantify land use change and irrigation impacts on hydroclimate in the California central valley. Theor. Appl. Climatol. 2011, 104, 429–442. [Google Scholar] [CrossRef]
- Li, M.; Ma, Z. Comparisons of simulations of soil moisture variations in the yellow river basin driven by various atmospheric forcing data sets. Adv. Atmos. Sci. 2010, 27, 1289–1302. [Google Scholar] [CrossRef]
- Sakaguchi, K.; Zeng, X. Effects of soil wetness, plant litter, and under-canopy atmospheric stability on ground evaporation in the community land model (CLM3. 5). J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Lawrence, D.M.; Oleson, K.W.; Flanner, M.G.; Thornton, P.E.; Swenson, S.C.; Lawrence, P.J.; Zeng, X.; Yang, Z.L.; Levis, S.; Sakaguchi, K. Parameterization improvements and functional and structural advances in version 4 of the community land model. J. Adv. Model. Earth Syst. 2011, 3. [Google Scholar] [CrossRef]
- Bonan, G.B.; Oleson, K.W.; Fisher, R.A.; Lasslop, G.; Reichstein, M. Reconciling leaf physiological traits and canopy flux data: Use of the try and fluxnet databases in the community land model version 4. J. Geophys. Res. Biogeosci. 2012, 117. [Google Scholar] [CrossRef]
- Qin, Y.; Yang, D.; Lei, H.; Xu, K.; Xu, X. Comparative analysis of drought based on precipitation and soil moisture indices in Haihe basin of North China during the period of 1960–2010. J. Hydrol. 2015, 526, 55–67. [Google Scholar] [CrossRef]
- Yang, Q.; Li, M.; Zheng, Z.; Ma, Z. Regional applicability of seven meteorological drought indices in china. Sci. China Earth Sci. 2017, 60, 745–760. [Google Scholar] [CrossRef]
- Zhao, M.; Velicogna, I.; Kimball, J.S. A global gridded dataset of grace drought severity index for 2002–2014: Comparison with PDSI and SPEI and a case study of the Australia millennium drought. J. Hydrometeorol. 2017, 18, 2117–2129. [Google Scholar] [CrossRef]
- Peterson, T.C.; Karl, T.R.; Jamason, P.F.; Knight, R.; Easterling, D.R. First difference method: Maximizing station density for the calculation of long-term global temperature change. J. Geophys. Res. Atmos. 1998, 103, 25967–25974. [Google Scholar] [CrossRef] [Green Version]
- Harris, I.; Jones, P.; Osborn, T.; Lister, D. Updated high-resolution grids of monthly climatic observations–the CRU TS3. 10 dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef] [Green Version]
- Fekete, B.M.; Vörösmarty, C.J.; Grabs, W. High-resolution fields of global runoff combining observed river discharge and simulated water balances. Glob. Biogeochem. Cycles 2002, 16. [Google Scholar] [CrossRef]
- Bonan, B. The Ncar Land Surface Model (Lsm Version 1.0) Coupled to the Ncar Community Climate Model; National Center for Atmospheric Research: Boulder, CO, USA, 1996. [Google Scholar]
- Collins, W.D.; Bitz, C.M.; Blackmon, M.L.; Bonan, G.B.; Bretherton, C.S.; Carton, J.A.; Chang, P.; Doney, S.C.; Hack, J.J.; Henderson, T.B. The community climate system model version 3 (CCSM3). J. Clim. 2006, 19, 2122–2143. [Google Scholar] [CrossRef]
- Gent, P.R.; Yeager, S.G.; Neale, R.B.; Levis, S.; Bailey, D.A. Improvements in a half degree atmosphere/land version of the CCSM. Clim. Dyn. 2010, 34, 819–833. [Google Scholar] [CrossRef]
- Leung, L.R.; Kuo, Y.-H.; Tribbia, J. Research needs and directions of regional climate modeling using WRF and CCSM. Bull. Am. Meteorol. Soc. 2006, 87, 1747–1751. [Google Scholar] [CrossRef]
- Bonan, G.B.; Lawrence, P.J.; Oleson, K.W.; Levis, S.; Jung, M.; Reichstein, M.; Lawrence, D.M.; Swenson, S.C. Improving canopy processes in the community land model version 4 (CLM4) using global flux fields empirically inferred from fluxnet data. J. Geophys. Res. Biogeosci. 2011, 116. [Google Scholar] [CrossRef]
- Li, H.; Huang, M.; Wigmosta, M.S.; Ke, Y.; Coleman, A.M.; Leung, L.R.; Wang, A.; Ricciuto, D.M. Evaluating runoff simulations from the community land model 4.0 using observations from flux towers and a mountainous watershed. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Hoar, T.J.; Yang, Z.L.; Anderson, J.L.; Toure, A.M.; Rodell, M. Assimilation of MODIS snow cover through the data assimilation research testbed and the community land model version 4. J. Geophys. Res. Atmos. 2014, 119, 7091–7103. [Google Scholar] [CrossRef]
- Lee, J.E.; Berry, J.A.; Tol, C.; Yang, X.; Guanter, L.; Damm, A.; Baker, I.; Frankenberg, C. Simulations of chlorophyll fluorescence incorporated into the community land model version 4. Glob. Chang. Biol. 2015, 21, 3469–3477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beven, K. Topmodel: A critique. Hydrol. Process. 1997, 11, 1069–1085. [Google Scholar] [CrossRef]
- Niu, G.Y.; Yang, Z.L.; Dickinson, R.E.; Gulden, L.E. A simple TOPMODEL-based runoff parameterization (simtop) for use in global climate models. J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef]
- Niu, G.Y.; Yang, Z.L.; Dickinson, R.E.; Gulden, L.E.; Su, H. Development of a simple groundwater model for use in climate models and evaluation with gravity recovery and climate experiment data. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Lei, H.; Huang, M.; Leung, L.R.; Yang, D.; Shi, X.; Mao, J.; Hayes, D.J.; Schwalm, C.R.; Wei, Y.; Liu, S. Sensitivity of global terrestrial gross primary production to hydrologic states simulated by the community land model using two runoff parameterizations. J. Adv. Model. Earth Syst. 2014, 6, 658–679. [Google Scholar] [CrossRef]
- Tang, D.; Ma, C.; Wang, Y.; Xu, X. Multiscale evaluation of NCEP and CRUNCEP data sets at 90 large U.S. Cities. J. Geophys. Res. Atmos. 2017, 122, 7433–7444. [Google Scholar] [CrossRef]
- McKee, T.B. In Drought monitoring with multiple time scales. In Proceedings of the 9th Conference on Applied Climatology, Boston, MA, USA, 15–20 January 1995. [Google Scholar]
- Palmer, W.C. Meteorological Drought; Citeseer: Harrisburg, PA, USA, 1965; Volume 30. [Google Scholar]
- Jacobi, J.; Perrone, D.; Duncan, L.L.; Hornberger, G. A tool for calculating the palmer drought indices. Water Resour. Res. 2013, 49, 6086–6089. [Google Scholar] [CrossRef]
- Penman, H.L. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. Lond. A 1948, 193, 120–145. [Google Scholar] [CrossRef]
- Donohue, R.J.; McVicar, T.R.; Roderick, M.L. Assessing the ability of potential evaporation formulations to capture the dynamics in evaporative demand within a changing climate. J. Hydrol. 2010, 386, 186–197. [Google Scholar] [CrossRef]
- Changnon, S.A. Detecting drought conditions in Illinois. In Circular 169; Department of Energy and Natural Resources: Champaign, IL, USA, 1987. [Google Scholar]
- Wilks, D.S.; Eggleston, K.L. Estimating monthly and seasonal precipitation distributions using the 30-and 90-day outlooks. J. Clim. 1992, 5, 252–259. [Google Scholar] [CrossRef]
- Wu, H.; Hayes, M.J.; Wilhite, D.A.; Svoboda, M.D. The effect of the length of record on the standardized precipitation index calculation. Int. J. Climatol. 2005, 25, 505–520. [Google Scholar] [CrossRef] [Green Version]
- Robock, A.; Vinnikov, K.Y.; Srinivasan, G.; Entin, J.K.; Hollinger, S.E.; Speranskaya, N.A.; Liu, S.; Namkhai, A. The global soil moisture data bank. Bull. Am. Meteorol. Soc. 2000, 81, 1281–1299. [Google Scholar] [CrossRef]
- Dorigo, W.; Wagner, W.; Hohensinn, R.; Hahn, S.; Paulik, C.; Xaver, A.; Gruber, A.; Drusch, M.; Mecklenburg, S.; Oevelen, P.V. The international soil moisture network: A data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci. 2011, 15, 1675–1698. [Google Scholar] [CrossRef]
- Dorigo, W.; Xaver, A.; Vreugdenhil, M.; Gruber, A.; Hegyiova, A.; Sanchis-Dufau, A.; Zamojski, D.; Cordes, C.; Wagner, W.; Drusch, M. Global automated quality control of in situ soil moisture data from the international soil moisture network. Vadose Zone J. 2013, 12. [Google Scholar] [CrossRef]
- Qiu, J. China Drought Highlights Future Climate Threats; Nature Publishing Group: London, UK, 2010. [Google Scholar]
- Um, M.-J.; Kim, Y.; Kim, J. Evaluating historical drought characteristics simulated in CORDEX East Asia against observation. Int. J. Climatol. 2017, 37, 4643–4655. [Google Scholar] [CrossRef]
Model | Description | Resolution | Period | Variable |
---|---|---|---|---|
CRU | Climate research unit Version: TS v.4.00 (Harris et al., 2014 [39]) | 0.5° Monthly | 1951–2010 | PR TA PET |
Classification | Description |
---|---|
Model | CLM |
Version | CLM4.0 |
Soil Hydrology Scheme | TOPMODEL |
Assumption. (Surface and subsurface runoff processes) | (1) The successive steady states for the saturated zone dynamics. (2) The homogeneous recharge rate to the water table over a catchment. (3) Using the local surface slope for the hydraulic gradient of the saturated zone. (4) An exponential function of storage deficit or depth to the water table is used for the distribution of downslope transmissivity. |
Recommended climate condition | Humid climate and mountainous areas where exist a shallow groundwater table |
Category | Description | Drought Index (SPEI, SRI, and SSMI) | |
---|---|---|---|
D1 | Incipient and mild dry | ≤−0.0 | |
D2 | Moderate dry | ≤−1.0 | |
D3 | Severe dry | ≤−1.5 | |
D4 | Extremely dry | ≤−2.0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Um, M.-J.; Kim, M.M.; Kim, Y.; Park, D. Drought Assessment with the Community Land Model for 1951–2010 in East Asia. Sustainability 2018, 10, 2100. https://doi.org/10.3390/su10062100
Um M-J, Kim MM, Kim Y, Park D. Drought Assessment with the Community Land Model for 1951–2010 in East Asia. Sustainability. 2018; 10(6):2100. https://doi.org/10.3390/su10062100
Chicago/Turabian StyleUm, Myoung-Jin, Mun Mo Kim, Yeonjoo Kim, and Daeryong Park. 2018. "Drought Assessment with the Community Land Model for 1951–2010 in East Asia" Sustainability 10, no. 6: 2100. https://doi.org/10.3390/su10062100
APA StyleUm, M. -J., Kim, M. M., Kim, Y., & Park, D. (2018). Drought Assessment with the Community Land Model for 1951–2010 in East Asia. Sustainability, 10(6), 2100. https://doi.org/10.3390/su10062100