Is Land Fragmentation Facilitating or Obstructing Adoption of Climate Adaptation Measures in Ethiopia?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Study Set-Up and Data
2.3. Model Specification
3. Results
3.1. Descriptive Statistics
3.1.1. Climate Change and Variability Perception
3.1.2. SLM Practices
3.1.3. LF Indicators
3.1.4. Socioeconomic Characteristics of Households
3.1.5. Social Capital, Market Access and Extension Services
3.2. Factors Affecting the Use of SLM Practices
3.2.1. The Role of Climate Change and Variation
3.2.2. The Role of LF Indicators
3.2.3. The Role of Socioeconomic Characteristics
3.2.4. The Role of Social Networks, Market Access and Extension Services
4. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Kok, M.; Lüdeke, M.; Lucas, P.; Sterzel, T.; Walther, C.; Janssen, P.; Sietz, D.; De Soysa, I. A new method for analysing socio-ecological patterns of vulnerability. Reg. Environ. Chang. 2016, 16, 229–243. [Google Scholar] [CrossRef]
- Kurukulasuriya, P.; Mendelsohn, R. A Ricardian Analysis of the Impact of Climate Change on African Cropland; World Bank Publications: Washington, DC, USA, 2008. [Google Scholar]
- Parry, M.; Canziani, O.; Palutikof, J.; van der Linden, P.; Hanson, C. Climate Change 2007: Impacts, Adaptation and Vulnerability (Vol. 4); Cambridge University Press: Cambridge, UK, 2007; pp. 1–976. ISBN 978-0521 70597-4. [Google Scholar]
- Wang, J.; Mendelsohn, R.; Dinar, A.; Huang, J. How Chinese farmers change crop choice to adapt to climate change. Clim. Chang. Econ. 2010, 1, 167–185. [Google Scholar] [CrossRef]
- Kjellstrom, T.; Weaver, H.J. Climate change and health: Impacts, vulnerability, adaptation and mitigation. N. S. W. Public Health Bull. 2009, 20, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, E.C.; Burcroff, R. Sustainable Land Management: Challenges, Opportunities, and Trade-Offs; World Bank: Washington, DC, USA, 2006; ISBN 978-0-8213-6597-7. [Google Scholar]
- Sietz, D.; Van Dijk, H. Land-based adaptation to global change: What drives soil and water conservation in western Africa? Glob. Environ. Chang. 2015, 33, 131–141. [Google Scholar] [CrossRef]
- Bryan, E.; Deressa, T.T.; Gbetibouo, A.G.; Ringler, C. Adaptation to climate change in Ethiopia and South Africa: Options and constraints. Environ. Sci. Policy 2009, 12, 413–426. [Google Scholar] [CrossRef]
- Deressa, T.T.; Hassan, R.M.; Ringler, C.; Alemu, T.; Yesuf, M. Determinants of farmers’ choice of adaptation methods to climate change in the Nile Basin of Ethiopia. Glob. Environ. Chang. 2009, 19, 248–255. [Google Scholar] [CrossRef] [Green Version]
- Roco, L.; Bravo-Ureta, B.; Engler, A.; Jara-Rojas, R. The impact of climatic change adaptation on agricultural productivity in Central Chile: A stochastic production frontier approach. Sustainability 2017, 9, 1648. [Google Scholar] [CrossRef]
- Kassie, M.; Pender, J.; Yesuf, M.; Kohlin, G.; Bluffstone, R.; Mulugeta, E. Impact of Soil Conservation on Crop Production in the Northern Ethiopian Highlands; International Food Policy Research Institute: Washington, DC, USA, 2007. [Google Scholar]
- Branca, G.; Lipper, L.; McCarthy, N.; Jolejole, M.C. Food security, climate change, and sustainable land management. A review. Agron. Sust. Dev. 2013, 33, 635–650. [Google Scholar] [CrossRef] [Green Version]
- Edwards, F.; Dixon, J.; Friel, S.; Hall, G.; Larsen, K.; Lockie, S.; Wood, B.; Lawrence, M.; Hanigan, I.; Hogan, A.; et al. Climate change adaptation at the intersection of food and health. Asia-Pac. J. Public Health. 2011, 23, 91S–104S. [Google Scholar] [CrossRef] [PubMed]
- Silvestri, S.; Bryan, E.; Ringler, C.; Herrero, M.; Okoba, B. Climate change perception and adaptation of agro-pastoral communities in Kenya. Reg. Environ. Chang. 2012, 12, 791–802. [Google Scholar] [CrossRef]
- Niroula, G.S.; Thapa, G.B. Impacts and causes of land fragmentation, and lessons learned from land consolidation in South Asia. Land Use Policy 2005, 22, 358–372. [Google Scholar] [CrossRef]
- Clay, D.; Reardon, T.; Kangasniemi, J. Sustainable intensification in the highland tropics: Rwandan farmers’ investments in land conservation and soil fertility. Econ. Dev. Cult. Chang. 1998, 46, 351–377. [Google Scholar] [CrossRef]
- Tan, S.; Heerink, N.; Kuyvenhoven, A.; Qu, F. Impact of land fragmentation on rice producers’ technical efficiency in South-East China. NJAS Wagening. J. Life Sci. 2010, 57, 117–123. [Google Scholar] [CrossRef]
- Rahmana, S.; Rahman, M. Impact of land fragmentation and resource ownership on productivity and efficiency: The case of rice producers in Bangladesh. Land Use Policy 2008, 26, 95–103. [Google Scholar] [CrossRef]
- Van Dijk, T. Scenarios of Central European land fragmentation. Land Use Policy 2003, 20, 149–158. [Google Scholar] [CrossRef]
- Teshome, A.; Graaff, J.; Ritsema, C.; Kassie, M. Farmers’ perceptions about the influence of land quality, land fragmentation and tenure systems on sustainable land management in the north western Ethiopian highlands. Land Degrad. Dev. 2014, 27, 884–898. [Google Scholar] [CrossRef]
- Nigussie, Z.; Tsunekawa, A.; Haregeweyn, N.; Adgo, E.; Nohmi, M.; Tsubo, M.; Aklog, D.; Meshesha, T.D.; Abele, S. Factors influencing small-scale farmers’ adoption of sustainable land management technologies in north-western Ethiopia. Land Use Policy 2017, 67, 57–64. [Google Scholar] [CrossRef]
- Flintan, F.; Tache, B.; Eid, A. Rangeland Fragmentation in Traditional Grazing Areas and Its Impact on Drought Resilience of Pastoral Communities: Lessons from Borana, Oromia and Harshin, Somali Regional States, Ethiopia; Oxfam: Oxford, UK, 2011. [Google Scholar]
- De Lisle, D. Effects of distance on cropping patterns internal to the farm. Ann. Assoc. Am. Geogr. 1982, 72, 88–98. [Google Scholar] [CrossRef]
- Kawasaki, K. The costs and benefits of land fragmentation of rice farms in Japan. Aust. J. Agric. Resour. Econ. 2010, 54, 509–526. [Google Scholar] [CrossRef]
- Di Falco, S.; Penov, I.; Aleksiev, A.; Van Rensburg, T.M. Agrobiodiversity, farm profits and land fragmentation: Evidence from Bulgaria. Land Use Policy 2010, 27, 763–771. [Google Scholar] [CrossRef]
- Blarel, B.; Hazell, P.; Place, F.; Quiggin, J. The economics of farm fragmentation: Evidence from Ghana and Rwanda. World Bank Econ. Rev. 1992, 6, 233–254. [Google Scholar] [CrossRef]
- Bentley, J. Economic and ecological approaches to land fragmentation: In defense of a much-aligned phenomenon. Ann. Rev. Anthropol. 1987, 16, 31–67. [Google Scholar] [CrossRef]
- Fenoaltea, S. Risk and transaction costs and the organization of medieval agriculture. Explor. Econ. Hist. 1976, 13, 129–151. [Google Scholar] [CrossRef]
- Sikor, T.; Müller, D.; Stahl, J. Land fragmentation and cropland abandonment in Albania: Implications for the roles of state and community in post-socialist land consolidation. World Dev. 2009, 37, 1411–1423. [Google Scholar] [CrossRef]
- Sklenicka, P.; Salek, M. Ownership and soil quality as sources of agricultural land fragmentation in highly fragmented ownership patterns. Landsc. Ecol. 2008, 23, 299–311. [Google Scholar] [CrossRef]
- Pachauri, K.R.; Meyer, L. Synthesis Report: Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; p. 151. ISBN 9291691437. [Google Scholar]
- Mendelsohn, R.; Dinar, A.; Williams, L. The distributional impact of climate change on rich and poor countries. Environ. Dev. Econ. 2006, 11, 159–178. [Google Scholar] [CrossRef]
- DWSB. Dita Woreda Statistics Office (DWSB) Annual Report 2015; Dita Woreda Statistics Office: Dita, Ethiopia, 2015. [Google Scholar]
- Tolossa, D. Issues of land tenure and food security: The case of three communities of Munessa wereda, south central Ethiopia. Nor. J. Geogr. 2003, 57, 9–19. [Google Scholar] [CrossRef]
- Deressa, T.T.; Hassan, R.M. Economic impact of climate change on crop production in Ethiopia: Evidence from cross-section measures. J. Afr. Econ. 2009, 18, 529–554. [Google Scholar] [CrossRef]
- Greene, W.H. Econometric Analysis, 5th ed.; Pearson Education, Inc.: Upper Saddle River, NJ, USA, 2003; ISBN 0-13-066189-9. [Google Scholar]
- Cameron, A.C.; Trivedi, P.K. Microeconometrics: Methods and Applications; Cambridge University Press: Cambridge, UK, 2005; ISBN 9780521848053. [Google Scholar]
- Mulwa, C.; Marenya, P.; Kassie, M. Response to climate risks among smallholder farmers in Malawi: A multivariate probit assessment of the role of information, household demographics, and farm characteristics. Clim. Risk Manag. 2017, 16, 208–221. [Google Scholar] [CrossRef]
- Dorfman, J.H. Modeling multiple adoption decisions in a joint framework. Am. J. Agric. Econ. 1996, 78, 547–557. [Google Scholar] [CrossRef]
- Asfaw, S.; Di Battista, F.; Lipper, L. Agricultural technology adoption under climate change in the Sahel: Micro-evidence from Niger. J. Afr. Econ. 2016, 25, 637–669. [Google Scholar] [CrossRef]
- Kassie, M.; Teklewold, H.; Jaleta, M.; Mareny, P.; Erenstein, O. Understanding the adoption of a portfolio of sustainable intensification practices in eastern and southern Africa Menale. Land Use Policy 2015, 42, 400–411. [Google Scholar] [CrossRef]
- Cappellari, L.; Jenkins, S.P. Multivariate probit regression using simulated maximum likelihood. Stata J. 2003, 3, 278–294. [Google Scholar]
- Milioti, C.P.; Karlaftis, M.G.; Akkogiounoglou, E. Traveler perceptions and airline choice: A multivariate probit approach. J. Air Trans. Manag. 2015, 49, 46–52. [Google Scholar] [CrossRef]
- Conway, D.; Schipper, E.L.F. Adaptation to climate change in Africa: Challenges and opportunities identified from Ethiopia. Glob. Environ. Chang. 2011, 21, 227–237. [Google Scholar] [CrossRef]
- Maddison, D. The Perception of and Adaptation to Climate Change in Africa; World Bank Publications: Washington, DC, USA, 2007; Volume 4308. [Google Scholar]
- Bryan, E.; Ringler, C.; Okoba, B.; Roncoli, C.; Silvestri, S.; Herrero, M. Adapting agriculture to climate change in Kenya: Household strategies and determinants. J. Environ. Manag. 2013, 114, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Hung, V.P.; MacAulay, T.G.; Marsh, P.S. The economics of land fragmentation in the north of Vietnam. Aust. J. Agric. Resour. Econ. 2007, 51, 195–211. [Google Scholar] [CrossRef] [Green Version]
- Deininger, K.; Jin, S. Tenure security and land-related investment: Evidence from Ethiopia. Eur. Econ. Rev. 2006, 50, 1245–1277. [Google Scholar] [CrossRef]
- Seo, S.N.; Mendelsohn, R. An analysis of crop choice: Adapting to climate change in South American farms. Ecol. Econ. 2008, 67, 109–116. [Google Scholar] [CrossRef]
- Berhanu, W.; Beyene, F. Climate variability and household adaptation strategies in Southern Ethiopia. Sustainability 2015, 7, 6353–6375. [Google Scholar] [CrossRef]
- Hassan, R.; Nhemachena, C. Determinants of African farmers’ strategies for adapting to climate change: Multinomial choice analysis. Afr. J. Agric. Resour. Econ. 2008, 2, 83–104. [Google Scholar] [CrossRef]
- Richardson, B.C. Distance regularities in Guyanese rice cultivation. J. Dev. Areas 1974, 8, 235–256. [Google Scholar]
- Thapa, G.B.; Niroula, G.S. Alternative options of land consolidation in the mountains of Nepal: An analysis based on stakeholders’ opinions. Land Use Policy 2008, 25, 338–350. [Google Scholar] [CrossRef]
- Teklewold, H.; Kassie, M.; Shiferaw, B.; Köhlin, G. Cropping system diversification, conservation tillage and modern seed adoption in Ethiopia: Impacts on household income, agrochemical use and demand for labor. Ecol. Econ. 2013, 93, 85–93. [Google Scholar] [CrossRef]
- Shiferaw, B.; Holden, S. Resource degradation and adoption of land conservation technologies in the Ethiopian Highlands: A case study in Andit Tid, North Shewa. Agric. Econ. 1998, 18, 233–247. [Google Scholar] [CrossRef]
- Wu, J.; Babcock, B.A. The Choice of Tillage, Rotation, and Soil Testing Practices: Economic and Environmental Implications. Am. J. Agric. Econ. 1998, 80, 494–511. [Google Scholar] [CrossRef] [Green Version]
- Falco, S.D. Adaptation to climate change in Sub-Saharan agriculture: Assessing the evidence and rethinking the drivers. Eur. Rev. Agric. Econ. 2014, 41, 405–430. [Google Scholar] [CrossRef]
- Kibue, G.W.; Pan, G.; Zheng, J.; Zhengdong, L.; Mao, L. Assessment of climate change awareness and agronomic practices in an agricultural region of Henan Province China. Environ. Dev. Sust. 2015, 17, 379–391. [Google Scholar] [CrossRef]
- Seo, S.N. A microeconometric analysis of adapting portfolios to climate change: Adoption of agricultural systems in Latin America. Appl. Econ. Perspect. Policy 2010, 32, 489–514. [Google Scholar] [CrossRef]
- Zamasiya, B.; Nyikahadzoi, K.; Mukamuri, B.B. Factors influencing smallholder farmers’ behavioural intention towards adaptation to climate change in transitional climatic zones: A case study of Hwedza District in Zimbabwe. J. Environ. Manag. 2017, 198, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Louwsma, M.; Lemmen, C.; Hartvigsen, M.; Hiironen, J.; Du Plessis, J.; Chen, M.; Laarakker, P. Land consolidation and land readjustment for sustainable development—The issues to be addressed. In Proceedings of the FIG Working Week 2017: Surveying the World of Tomorrow: From Digitalisation to Augmented Reality, Helsinki, Finland, 29 May–2 June 2017. [Google Scholar]
- Demetriou, D.; Stillwell, J.; See, L. Land consolidation in Cyprus: Why is an integrated planning and decision support system required? Land Use Policy 2012, 29, 131–142. [Google Scholar] [CrossRef]
- Haldrup, N.O. Agreement based land consolidation—In perspective of new modes of governance. Land Use Policy 2015, 46, 163–177. [Google Scholar] [CrossRef]
Variable | Description | % | Mean | SD | Min | Max |
---|---|---|---|---|---|---|
SLM practices | ||||||
seed | 1 if a farmer alters quality seed use | 76.1 | ||||
manure | 1 if a farmer alters manure use | 93.9 | ||||
indigenous | 1 if a farmer alters indigenous tree planting | 73.7 | ||||
terrace | 1 if a farmer alters stone terrace or soil bund | 83.8 | ||||
diversification | 1 if a farmer alters crop diversification | 84.5 | ||||
enset | 1 if a farmer alters planting more enset | 84.5 | ||||
legume | 1 if a farmer alters legume-barley rotation | 85.5 | ||||
new-crop | 1 if a farmer introduced new crops | 58.9 | ||||
Perceived climate change and variability | ||||||
rainfall | 1 if meher rainfall has been increasing for the last 25 years | 16.2 | ||||
temp | 1 if meher temperature has been increasing for the last 25 years | 90.2 | ||||
productivity | 1 if meher crop productivity has been increasing for the last 25 years | 58.3 | ||||
shock2 | Sum of all shock damages observed in the last 5 years | 7.2 | 3.6 | 0 | 14 | |
Land fragmentation indicators | ||||||
homes | Number of separate homes | 1.5 | 0.7 | 1 | 4 | |
soil | Number of soil types an owner cultivates | 3.9 | 1.2 | 1 | 5 | |
plots | Total number of plots per farm | 20.6 | 13.8 | 1 | 80 | |
farm | Total farm size, ha | 1.7 | 1.7 | 0.1 | 15.3 | |
sfi | Simpson index for LF | 0.85 | 0.1 | 0 | 0.97 | |
distance2 | Sum of non-overlapping distance from home to plots (km) | 2.6 | 1.6 | 0.1 | 8.7 | |
aez | 1 if a farmer cultivates both in midland and highlands | 35.7 | ||||
landqual | Land quality index | 0.4 | 0.2 | 0 | 1 | |
Socioeconomic characteristics | ||||||
gender | 1 if gender of household head is male | 90.6 | ||||
literacy | 1 if household head can read and write | 21.6 | ||||
experience | Farming experience (years) | 33.9 | 15.6 | 0 | 76 | |
labour | Family labour size | 3.5 | 2.3 | 0 | 15 | |
tlu | Number of tropical livestock units | 2.5 | 2.7 | 0 | 22.9 | |
asset | Number of assets | 3.6 | 2.2 | 0 | 17 | |
remittance | 1 if a household has remittance | 11.5 | ||||
income | Amount of off-farm income (thousands) | 1.6 | 2.7 | 0 | 20 | |
Social network, market access and extension services | ||||||
network1 | Participation in 5 social networks per month | 5.8 | 5.3 | 0 | 54 | |
network2 | No. of trusted social networks | 2.2 | 1.4 | 0 | 5 | |
credit | 1 if access to credit without constraint | 58.9 | ||||
market | Walking distance to market (hour) | 1.9 | 1.2 | 0.3 | 6 | |
training1 | 1 if training on modern input use | 82.5 | ||||
training2 | 1 if training on soil fertility | 81.5 | ||||
training3 | 1 if training on soil erosion control | 84.5 | ||||
Number of observations | 297 |
Variables | Manure | Seed | Indigenous | Terrace | Diversifcation | Enset | Legume | New-Crop |
---|---|---|---|---|---|---|---|---|
Perceived climate variability and change | ||||||||
rainfall | 0.049 | −0.445 * | −0.460 ** | −0.115 | −0.409 | 0.624 ** | −0.342 | 0.042 |
temp | −0.221 | −0.234 | 0.306 | 0.556 * | −0.215 | 0.346 | 0.591 ** | 0.561 ** |
productivity | 0.470 * | 0.061 | 0.210 | 0.327 | 0.494 *** | 0.022 | 0.469 ** | 0.343 ** |
shock2 | −0.029 | −0.028 | −0.009 | 0.034 | −0.003 | −0.107 *** | −0.020 | − 0.033 |
LF indicators | ||||||||
plot | 0.028 ** | 0.010 | 0.015 | 0.033 *** | 0.035 ** | 0.020 ** | −0.004 | 0.026 *** |
soil | 0.174 * | 0.065 | 0.135 * | 0.206 ** | 0.244 *** | 0.130 | 0.011 | 0.071 |
distance2 | −0.027 | −0.115 | −0.069 | −0.128 | −0.116 | 0.041 | 0.067 | −0.004 |
sfi | −0.947 | −0.810 | −1.278 | −1.366 | 0.461 | 0.573 | 2.969 *** | −2.107 ** |
aez | −0.241 | 0.043 | 0.013 | 0.480 * | −0.241 | −0.037 | −0.685 0.685 *** | −0.134 |
homes | −0.219 | −0.121 | −0.157 | −0.062 | −0.107 | −0.084 | 0.234 | 0.087 |
land2 | −0.086 | −0.168 ** | −0.109 | −0.048 | −0.036 | −0.014 | 0.172 | −0.034 |
landqual | 0.868 | −0.171 | 0.205 | 1.850 *** | 0.233 | 0.337 | −0.095 | −0.006 |
Socioeconomic characteristics | ||||||||
gender | −0.703 | 0.019 | 0.119 | 0.161 | 0.522 * | −0.367 | −0.480 | 0.396 |
literacy | 0.517 * | 0.339 | 0.400 | 0.254 | −0.152 | 0.080 | 0.481 ** | |
experience | −0.025 *** | −0.013 ** | −0.010 * | 0.000 | −0.005 | 0.001 | 0.005 | −0.001 |
tlu | 0.016 | 0.028 | 0.149 ** | −0.016 | 0.028 | −0.094 ** | −0.034 | −0.078 * |
labour | −0.033 | 0.043 | −0.052 | −0.079 ** | −0.011 | −0.046 | −0.031 | 0.045 |
income | 0.079 | −0.251 | −0.101 | 0.139 | 0.110 | 0.246 | −0.614 * | 0.069 |
remittance | 0.019 | 0.224 *** | 0.030 | −0.039 | 0.123 * | 0.035 | 0.241 *** | 0.043 |
asset | −0.703 | 0.019 | 0.119 | 0.161 | 0.522 * | −0.367 | −0.480 | 0.396 |
Social network, market access and extension services | ||||||||
network1 | 0.033 | 0.002 | 0.017 | 0.026 | 0.057 | 0.058 | −0.024 | −0.023 |
network2 | −0.196 | 0.107 | 0.071 | 0.032 | −0.187 * | 0.053 | −0.020 | 0.234 *** |
credit | 0.215 | −0.234 | 0.100 | −0.180 | −0.050 | −0.169 | −0.550 ** | −0.119 |
market | 0.186 | 0.054 | −0.186 ** | 0.049 | −0.050 | −0.017 | 0.009 | 0.037 |
training1 | 0.595 *** | |||||||
training2 | 1.023 *** | 0.216 | 0.632 ** | −0.121 | ||||
training3 | 0.691 *** | 0.748 *** | ||||||
constant | 2.293 ** | 0.787 | 0.413 | −1.215 | −1.070 | −0.287 | −1.751 * | −0.329 |
Wald statistics | ||||||||
likelihood ratio test | ||||||||
log likelihood | −824.2 | |||||||
number of observations | 297 |
Selected SLM Practices (n = 279) | Yes | % |
---|---|---|
Does land fragmentation increase loss of your labor time by increasing the commuting time? | 179 | 60 |
Does land fragmentation impede manure application? | 223 | 75 |
Does land fragmentation prohibit you from planting a crop you want? | 174 | 59 |
Does land fragmentation impede use of legume-barley rotation? | 149 | 50 |
Does land fragmentation impede use of crop rotation? | 159 | 54 |
Have you abstained from manure application because some of your plots are too small? | 87 | 29 |
Is land fragmentation a challenge to apply terracing on your plots? | 135 | 46 |
Does land fragmentation impede use of modern inputs (fertilizer and quality seeds)? | 162 | 55 |
Does land fragmentation decrease indigenous tree planting as you want to avoid conflicts with neighboring farmers? | 138 | 47 |
Does land fragmentation decrease eucalyptus tree planting as you want to avoid conflicts with adjacent farmers? | 175 | 59 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cholo, T.C.; Fleskens, L.; Sietz, D.; Peerlings, J. Is Land Fragmentation Facilitating or Obstructing Adoption of Climate Adaptation Measures in Ethiopia? Sustainability 2018, 10, 2120. https://doi.org/10.3390/su10072120
Cholo TC, Fleskens L, Sietz D, Peerlings J. Is Land Fragmentation Facilitating or Obstructing Adoption of Climate Adaptation Measures in Ethiopia? Sustainability. 2018; 10(7):2120. https://doi.org/10.3390/su10072120
Chicago/Turabian StyleCholo, Tesfaye C., Luuk Fleskens, Diana Sietz, and Jack Peerlings. 2018. "Is Land Fragmentation Facilitating or Obstructing Adoption of Climate Adaptation Measures in Ethiopia?" Sustainability 10, no. 7: 2120. https://doi.org/10.3390/su10072120
APA StyleCholo, T. C., Fleskens, L., Sietz, D., & Peerlings, J. (2018). Is Land Fragmentation Facilitating or Obstructing Adoption of Climate Adaptation Measures in Ethiopia? Sustainability, 10(7), 2120. https://doi.org/10.3390/su10072120