CO2 Payoff of Extensive Green Roofs with Different Vegetation Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. CO2 Emission from a Modular Green Roof
2.1.1. Definition of Goal and Scope
2.1.2. Inventory Analysis
2.2. CO2 Sequestration by Several Green Roof Plants
2.3. Estimation of the Energy Savings Amount
2.4. CO2 Payback Time of Modular Green Roofs
3. Results and Discussion
3.1. CO2 Emissions from a Modular Green Roof
3.2. CO2 Sequestration by Several Green Roof Plant
3.3. Estimation of the Energy Savings Amount
3.4. CO2 Payback Time of Modular Green Roofs
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change. Climate Change 2014: Synthesis Report: Summary for Policymakers; IPCC: Geneva, Switzerland, 2014; Available online: http://www.ipcc.ch/pdf/assessment-report/ar5/syr/AR5_SYR_FINAL_SPM.pdf (accessed on 29 June 2018).
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Gill, S.E.; Handley, J.F.; Ennos, A.R.; Pauleit, S. Adapting cities for climate change: The role of the green infrastructure. Built Environ. 2007, 33, 115–133. [Google Scholar] [CrossRef]
- James, P.; Tzoulas, K.; Adams, M.D.; Barber, A.; Box, J.; Breuste, J.; Elmqvist, T.; Frith, M.; Gordon, C.; Greening, K.L.; et al. Towards an integrated understanding of green space in the European built environment. Urban For. Urban Green. 2009, 8, 65–75. [Google Scholar] [CrossRef]
- Jo, H.K. Impacts of urban greenspace on offsetting carbon emissions for middle Korea. J. Environ. Manag. 2002, 64, 115–126. [Google Scholar] [CrossRef]
- Li, F.; Wang, R.; Paulussen, J.; Liu, X. Comprehensive concept planning of urban greening based on ecological principles: a case study in Beijing, China. Landsc. Urban Plan. 2005, 72, 325–336. [Google Scholar] [CrossRef] [Green Version]
- Ca, V.T.; Asaeda, T.; Abu, E.M. Reductions in air conditioning energy caused by a nearby park. Energy Build. 1998, 29, 83–92. [Google Scholar] [CrossRef]
- Georgi, N.J.; Zafiriadis, K. The impact of park trees on microclimate in urban areas. Urban Ecosyst. 2006, 9, 195–209. [Google Scholar] [CrossRef]
- Kjelgren, R.; Montague, T. Urban tree transpiration over turf and asphalt surfaces. Atmos. Environ. 1998, 32, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Simpson, J.R. Improved estimates of tree-shade effects on residential energy use. Energy Build. 2002, 34, 1067–1076. [Google Scholar] [CrossRef] [Green Version]
- Soares, A.L.; Rego, F.C.; McPherson, E.G.; Simpson, J.R.; Peper, P.J.; Xiao, Q. Benefits and costs of street trees in Lisbon, Portugal. Urban For. Urban Green. 2011, 10, 69–78. [Google Scholar] [CrossRef]
- Golubiewski, N.E. Urbanization increases grassland carbon pools: Effects of landscaping in Colorado’s front range. Ecol. Appl. 2006, 16, 555–571. [Google Scholar] [CrossRef]
- Gratani, L.; Varone, L. Carbon sequestration by Quercus ilex L. and Quercus pubescens Willd. and their contribution to decreasing air temperature in Rome. Urban Ecosyst. 2006, 9, 27–37. [Google Scholar] [CrossRef]
- Liu, C.; Li, X. Carbon storage and sequestration by urban forests in Shenyang, China. Urban For. Urban Green. 2012, 11, 121–128. [Google Scholar] [CrossRef] [Green Version]
- Nowak, D.J.; Crane, D.E. Carbon storage and sequestration by urban trees in the USA. Environ. Pollut. 2002, 116, 381–389. [Google Scholar] [CrossRef]
- Stoffberg, G.H.; Van Rooyen, M.W.; Van der Linde, M.J.; Groeneveld, H.T. Carbon sequestration estimates of indigenous street trees in the City of Tshwane, South Africa. Urban For. Urban Green. 2010, 9, 9–14. [Google Scholar] [CrossRef]
- Castleton, H.F.; Stovin, V.; Beck, S.B.M.; Davison, J.B. Green roofs; building energy savings and the potential for retrofit. Energy Build. 2010, 42, 1582–1591. [Google Scholar] [CrossRef]
- Gagliano, A.; Detommaso, M.; Nocera, F.; Berardi, U. The adoption of green roofs for the retrofitting of existing buildings in the Mediterranean climate. Int. J. Sustain. Build. Technol. Urban Dev. 2016, 7, 116–129. [Google Scholar] [CrossRef]
- Gagliano, A.; Detommaso, M.; Nocera, F.; Patania, F.; Aneli, S. The retrofit of existing buildings through the exploitation of the green roofs–a simulation study. Energy Procedia 2014, 62, 52–61. [Google Scholar] [CrossRef]
- Lazzarin, R.M.; Castellotti, F.; Busato, F. Experimental measurements and numerical modelling of a green roof. Energy Build. 2005, 37, 1260–1267. [Google Scholar] [CrossRef]
- Niachou, A.; Papakonstantinou, K.; Santamouris, M.; Tsangrassoulis, A.; Mihalakakou, G. Analysis of the green roof thermal properties and investigation of its energy performance. Energy Build. 2001, 33, 719–729. [Google Scholar] [CrossRef]
- Sailor, D.J. A green roof model for building energy simulation programs. Energy Build. 2008, 40, 1466–1478. [Google Scholar] [CrossRef]
- Wong, N.H.; Cheong, D.K.W.; Yan, H.; Soh, J.; Ong, C.L.; Sia, A. The effects of rooftop garden on energy consumption of a commercial building in Singapore. Energy Build. 2003, 35, 353–364. [Google Scholar] [CrossRef]
- Sailor, D.J.; Bass, B. Development and features of the Green Roof Energy Calculator. J. Living Archit. 2014, 1, 36–58. Available online: https://static1.squarespace.com/static/588221e420099e47b8fe06d8/t/589cbfb6e58c62750d518c8d/1486667704564/JLIV2014Volume1_Issue3-Sailor_etal.pdf (accessed on 29 June 2018).
- Getter, K.L.; Rowe, D.B.; Robertson, G.P. Carbon sequestration potential of extensive green roofs. Environ. Sci. Technol. 2009, 43, 7564–7570. [Google Scholar] [CrossRef] [PubMed]
- Whittinghill, L.J.; Rowe, D.B.; Schutzki, R.; Cregg, B.M. Quantifying carbon sequestration of various green roof and ornamental landscape systems. Landsc. Urban Plan. 2014, 123, 41–48. [Google Scholar] [CrossRef]
- Chenani, S.B.; Lehvävirta, S.; Häkkinen, T. Life cycle assessment of layers of green roofs. J. Clean. Product. 2015, 90, 153–162. [Google Scholar] [CrossRef]
- Kosareo, L.; Ries, R. Comparative environmental life cycle assessment of green roofs. Build. Environ. 2007, 42, 2606–2613. [Google Scholar] [CrossRef]
- Saiz, S.; Kennedy, C.; Bass, B.; Pressnail, K. Comparative life cycle assessment of standard and green roofs. Environ. Sci. Technol. 2006, 40, 4312–4316. [Google Scholar] [CrossRef] [PubMed]
- Bianchini, F.; Hewage, K. How “green” are the green roofs? Lifecycle analysis of green roof materials. Build. Environ. 2012, 48, 57–65. [Google Scholar] [CrossRef]
- Yang, J.; Yu, Q.; Gong, P. Quantifying air pollution removal by green roofs in Chicago. Atmos. Environ. 2008, 42, 7266–7273. [Google Scholar] [CrossRef]
- Sherwani, A.F.; Usmani, J.A.; Varun. Life cycle assessment of solar PV based electricity generation systems: A review. Renew. Sustain. Energy Rev. 2010, 14, 540–544. [Google Scholar] [CrossRef]
- Tahara, K.; Kojima, T.; Inaba, A. Evaluation of CO2 payback time of power plants by LCA. Energy Convers. Manag. 1997, 38, 615–620. [Google Scholar] [CrossRef]
- Tripanagnostopoulos, Y.; Souliotis, M.; Battisti, R.; Corrado, A. Energy, cost and LCA results of PV and hybrid PV/T solar systems. Prog. Photovolt. Res. Appl. 2005, 13, 235–250. [Google Scholar] [CrossRef] [Green Version]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Costa, P.M.; Wilson, C. An equivalence factor between CO2 avoided emissions and sequestration – Description and applications in forestry. Mitig. Adapt. Strategy Glob. Chang. 2000, 5, 51–60. [Google Scholar] [CrossRef]
- Matamala, R.; Jastrow, J.D.; Miller, R.M.; Garten, C.T. Temporal changes in C and N stocks of restored prairie: implication for C sequestration strategies. Ecol. Appl. 2008, 18, 1470–1488. [Google Scholar] [CrossRef] [PubMed]
- Bribián, I.Z.; Capilla, A.V.; Usón, A.A. Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Build. Environ. 2011, 46, 1133–1140. [Google Scholar] [CrossRef]
- Kuronuma, T.; Watanabe, H. Physiological and morphological traits and competence for carbon sequestration of several green roof plants under a controlled environmental system. J. Am. Soc. Hortic. Sci. 2016, 141, 583–590. [Google Scholar] [CrossRef]
- Clark, C.; Adriaens, P.; Talbot, F.B. Green roof valuation: a probabilistic economic analysis of environmental benefits. Environ. Sci. Technol. 2007, 42, 2155–2161. [Google Scholar] [CrossRef]
- Diomnd, K.; Webb, A. Sustainable roof selection: Environmental and contextual factors to be considered in choosing a vegetated roof or rooftop solar photovoltaic system. Sustain. Cities Soc. 2017, 35, 241–249. [Google Scholar] [CrossRef]
System Components and Maintenance | Main Raw Material | Required (for 200 m2) |
---|---|---|
Substrate | Perlite | 1572 kg |
Substrate container | Polypropylene | 800 kg |
Water reservoir tray | Polyvinyl chloride | 174 kg |
Water proofing membrane | Polyvinyl chloride | 55 kg |
Edge divider | Aluminum | 75 kg |
Irrigation pipe | Polyvinyl chloride | 5 kg |
Irrigation tube | Special polyethylene | 208 m (142$) |
Automatic watering device | - | 1 machine (231$) |
Irrigation | Water | 161.6 t·year−1 |
Fertilizer | Compound fertilizer | 8 Kg·year−1 |
System Components | CO2 Emission Factor | CO2 Emission | CO2 Emission |
---|---|---|---|
(kg-CO2·200 m−2) | (kg-CO2·m−2) | ||
Substrate | 1.15 kg-CO2·kg−1 | 1809 | 9.04 |
Substrate container | 1.89 kg-CO2·kg−1 | 1512 | 7.56 |
Water reservoir tray | 3.70 kg-CO2·kg−1 | 644 | 3.22 |
Water proofing membrane | 3.29 kg-CO2·kg−1 | 182 | 0.91 |
Edge divider | 10.26 kg-CO2·kg−1 | 769 | 3.85 |
Irrigation pipe | 3.56 kg-CO2·kg−1 | 16 | 0.08 |
Irrigation tube | 0.55 kg-CO2·$−1 | 78 | 0.39 |
Automatic watering device | 0.13 kg-CO2·$−1 | 30 | 0.15 |
Total | - | 5040 | 25.2 |
Maintenances | CO2 Emission Factor | CO2 Emission | CO2 Emission |
---|---|---|---|
(kg-CO2·200 m−2·yr−1) | (kg-CO2·m−2·yr−1) | ||
Water | 0.36 kg-CO2·t−1 | 58.8 | 0.29 |
Compound fertilizer | 0.90 kg-CO2·kg−1 | 7.2 | 0.04 |
Total | - | 66.0 | 0.33 |
Species and Treatments | Dry Weight | Carbon Concentration | Carbon Content | Total AnnualCarbonSequestration | |||||
---|---|---|---|---|---|---|---|---|---|
(g·pot−1) | (%) | (g-C·pot−1) | |||||||
Oct-14 | Oct-15 | Oct-14 | Oct-15 | Oct-14 | Oct-15 | (g-C·m−2·yr−1) | |||
C. dactylon | irrigation | plant | 0.4 ± 0.0z | 7.0 ± 0.4* | 39.2 ± 0.3 | 40.7 ± 0.4 | 0.1 ± 0.0 | 2.9 ± 0.2* | 690 |
substrate | 30.7 ± 0.7 | 32.4 ± 0.7 | 5.1 ± 0.3 | 5.9 ± 0.2 | 1.6 ± 0.1 | 1.9 ± 0.1* | |||
F. arundinacea | irrigation | plant | 0.4 ± 0.0 | 7.2 ± 0.3* | 38.5 ± 0.2 | 36.3 ± 0.5 | 0.1 ± 0.0 | 2.6 ± 0.1* | 751 |
substrate | 30.0 ± 0.3 | 33.6 ± 0.6* | 5.7 ± 0.1 | 7.6 ± 0.3* | 1.7 ± 0.0 | 2.5 ± 0.1* | |||
Z. matrella | irrigation | plant | 0.6 ± 0.0 | 6.6 ± 0.4* | 42.7 ± 0.2 | 43.2 ± 0.5 | 0.2 ± 0.0 | 2.9 ± 0.2* | 671 |
substrate | 30.8 ± 1.3 | 31.8 ± 2.5 | 6.2 ± 0.2 | 7.0 ± 0.2* | 1.9 ± 0.1 | 2.2 ± 0.1* | |||
S. aizoon | irrigation | plant | 0.6 ± 0.0 | 3.9 ± 0.2* | 38.9 ± 0.5 | 41.5 ± 0.3* | 0.2 ± 0.0 | 1.6 ± 0.1* | 459 |
substrate | 30.7 ± 0.4 | 30.9 ± 0.5 | 5.5 ± 0.2 | 7.6 ± 0.2* | 1.7 ± 0.0 | 2.3 ± 0.0* | |||
non | plant | 0.6 ± 0.0 | 3.1 ± 0.1* | 38.9 ± 0.5 | 38.5 ± 0.2 | 0.2 ± 0.0 | 1.2 ± 0.0* | 336 | |
substrate | 30.7 ± 0.4 | 30.5 ± 0.3 | 5.5 ± 0.2 | 6.9 ± 0.3* | 1.7 ± 0.0 | 2.1 ± 0.0* |
Species | Treatments | LAI | Energy Saved Annually | Annual CO2 Reduction |
---|---|---|---|---|
(m2·m−2) | (kWh·200 m−2·yr−1) | (kg-CO2·m−2·yr−1) | ||
C. dactylon | irrigation | 2.21 ± 0.16 | 696.4 | 1.758 |
F. arundinacea | irrigation | 3.68 ± 0.21 | 747.1 | 1.886 |
Z. matrella | irrigation | 2.45 ± 0.17 | 713.5 | 1.802 |
S. aizoon | irrigation | 3.71 ± 0.15 | 748.2 | 1.889 |
non | 3.07 ± 0.19 | 674.3 | 1.703 |
Species | Treatments | CO2 Payback Time (years) | |
---|---|---|---|
Scenario 1 | Scenario 2 | ||
C. dactylon | irrigation | 15.9 | 6.4 |
F. arundinacea | irrigation | 14.4 | 5.8 |
Z. matrella | irrigation | 15.5 | 6.4 |
S. aizoon | irrigation | 15.1 | 7.8 |
non | 14.0 | 8.5 | |
Means ± SE | 11 ± 4.3 | ||
Standard uncertainty | 1.4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuronuma, T.; Watanabe, H.; Ishihara, T.; Kou, D.; Toushima, K.; Ando, M.; Shindo, S. CO2 Payoff of Extensive Green Roofs with Different Vegetation Species. Sustainability 2018, 10, 2256. https://doi.org/10.3390/su10072256
Kuronuma T, Watanabe H, Ishihara T, Kou D, Toushima K, Ando M, Shindo S. CO2 Payoff of Extensive Green Roofs with Different Vegetation Species. Sustainability. 2018; 10(7):2256. https://doi.org/10.3390/su10072256
Chicago/Turabian StyleKuronuma, Takanori, Hitoshi Watanabe, Tatsuaki Ishihara, Daitoku Kou, Kazunari Toushima, Masaya Ando, and Satoshi Shindo. 2018. "CO2 Payoff of Extensive Green Roofs with Different Vegetation Species" Sustainability 10, no. 7: 2256. https://doi.org/10.3390/su10072256
APA StyleKuronuma, T., Watanabe, H., Ishihara, T., Kou, D., Toushima, K., Ando, M., & Shindo, S. (2018). CO2 Payoff of Extensive Green Roofs with Different Vegetation Species. Sustainability, 10(7), 2256. https://doi.org/10.3390/su10072256