Multi-Regional Delta-Tracking Method for Neutron Transport Tracking in Monte Carlo Criticality Calculation
Abstract
:1. Introduction
2. Conventional Neutron Transport Tracking Methods
2.1. Conventional Ray-Tracing Tracking (CRTT) Method
2.2. Single-Regional Delta-Tracking (SRDT) Method
- (a)
- Given the neutron kinetic energy E, the maximum total cross section, Σt,max, for all materials in the model firstly should be calculated with Equation (4), and the corresponding virtual cross section for each material will be determined with Equation (5).
- (b)
- The neutron transport length L will be calculated with Equation (6).
- (c)
- When a neutron moves forward one step with a transport length L, the RST will determine whether the following condition is satisfied.
- (d)
- If Condition (7) is not satisfied, a virtual reaction will take place at the current site. Then, the neutron will continue its next transport step without changing its flying direction and kinetic energy, and then return to Procedure (b).
3. Multi-Regional Delta-Tracking (MRDT) Method
3.1. Basic Principle
3.2. MRDT-Based Tracking Scheme
4. Validation and Results
4.1. ICSBEP Criticallity Benchmarks
- (a)
- HMF benchmarks: highly-enrichment, metal-type fuel, fast spectrum systems.
- (b)
- HST benchmarks: highly-enrichment, solution-type fuel, thermal spectrum systems.
- (c)
- IMF benchmarks: intermediate-enrichment, metal-type fuel, fast spectrum systems.
- (d)
- LST benchmarks: low-enrichment, solution-type fuel, thermal spectrum systems.
4.2. Whole-Core Pin-by-Pin Reactors
5. Discussion
5.1. The Advantages of the MRDT Method
5.2. The Disadvantages of the MRDT Method
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Forest, B. Recent advances and future prospects for Monte Carlo. Prog. Nucl. Sci. Technol. 2011, 2, 1–4. [Google Scholar]
- Martin, W.R. Challenges and prospects for whole-core Monte Carlo analysis. Nucl. Eng. Technol. 2012, 44, 151–160. [Google Scholar] [CrossRef]
- Siegel, A.R.; Smith, K.; Romano, P.K.; Forget, B.; Felker, K.G. Multi-core performance studies of a Monte Carlo neutron transport code. Int. J. High Perform. Comput. Appl. 2014, 28, 87–96. [Google Scholar] [CrossRef]
- Tramm, J.R.; Siegel, A.R. Memory bottlenecks and memory contention in multi-core Monte Carlo transport codes. Ann. Nucl. Energy 2015, 82, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Seco, J.; Verhaegen, F.B. Monte Carlo Techniques in Radiation Therapy, 1st ed.; Taylor and Francis Group: Boca Raton, FL, USA, 2013; pp. 17–27. ISBN 978-1-4665-0794-4. [Google Scholar]
- Woodcock, E.; Murphy, T.; Hemmings, P.; Longworth, S. Techniques used in the GEM code for Monte Carlo neutronics calculation in reactor and other system of complex geometry. In Proceedings of the Conference on Applications of Computing Methods to Reactors, Argonne National Laboratory, Lemont, IL, USA, 17–19 May 1965. [Google Scholar]
- Leppänen, J. Performance of Woodcock delta-tracking in lattice physics applications using the Serpent Monte Carlo reactor physics burnup calculation code. Ann. Nucl. Energy 2010, 37, 715–722. [Google Scholar] [CrossRef]
- Cowan, P.; Dobson, G.; Wright, G.A.; Cooper, A. Recent developments to the Monte Carlo code MCBEND. Nucl. Technol. 2009, 168, 780–784. [Google Scholar] [CrossRef]
- Chen, Z.P.; Xie, J.S.; Guo, Q.; Zhang, Z.Y.; Yu, T. Development and Application of the multi-objective modeling and simulation platform for radiation transport system. J. Univ. South China 2018, 32, 12–18. [Google Scholar]
- Organization for Economic Cooperation and Development (OECD). International Handbook of Evaluated Criticality Safety Benchmarks; Nuclear Energy Agency: Paris, France, 2006. [Google Scholar]
- A General Monte Carlo N-Particle (MCNP) Transport Code. Available online: https://mcnp.lanl.gov/ (accessed on 22 May 2018).
- Kim, K.T.; Suh, J.M. Development of an advanced PWR fuel for OPR1000s in Korea. Nucl. Eng. Des. 2008, 238, 606–2613. [Google Scholar] [CrossRef]
- Hoogenboom, J.E.; Martin, W.R.; Petrovic, B. The Monte Carlo performance benchmark test—Aims, specifications and first results. In Proceedings of the International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, Rio de Janeiro, Brazil, 8–12 May 2011; American Nuclear Society: La Grange Park, IL, USA, 2011. [Google Scholar]
- Horelik, N.; Herman, B.R.; Forget, B.; Smith, K. Benchmark for evaluation and validation of reactor simulations (BEAVRS), v1.0.1. In Proceedings of the International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, Sun Valley, ID, USA, 5–9 May 2013; American Nuclear Society: La Grange Park, IL, USA, 2013. [Google Scholar]
Benchmark | Experiment | MRDT | SRDT | CRTT | MCNP |
---|---|---|---|---|---|
hmf001 | 1.0000(0.00100) | 0.99909(0.00055) | 0.99924(0.00063) | 0.99901(0.00058) | 0.99907(0.00056) |
hmf004 | 1.00200(0.00050) | 1.00260(0.00060) | 1.00278(0.00060) | 1.00257(0.00064) | 1.00250(0.00058) |
hmf008 | 0.99890(0.00160) | 0.99556(0.00057) | 0.99553(0.00058) | 0.99557(0.00055) | 0.99590(0.00057) |
hmf011 | 0.99890(0.00150) | 0.99864(0.00054) | 0.99817(0.00060) | 0.99892(0.00062) | 0.99854(0.00059) |
hmf013 | 0.99900(0.00150) | 0.99709(0.00056) | 0.99659(0.00054) | 0.99739(0.00057) | 0.99692(0.00056) |
hmf015 | 0.99960(0.00170) | 0.99426(0.00055) | 0.99448(0.00058) | 0.99413(0.00059) | 0.99455(0.00056) |
hmf019 | 1.00000(0.00280) | 1.00671(0.00062) | 1.00706(0.00059) | 1.00650(0.00056) | 1.00699(0.00059) |
hmf02611 | 1.00000(0.00380) | 1.00437(0.00060) | 1.00428(0.00060) | 1.00442(0.00062) | 1.00384(0.00063) |
hmf034 | 0.99900(0.00120) | 0.99818(0.00060) | 0.99822(0.00063) | 0.99816(0.00061) | 0.99807(0.00056) |
hmf069 | 0.99950(0.00130) | 0.99921(0.00058) | 0.99900(0.00056) | 0.99933(0.00053) | 0.99881(0.00057) |
hst001 | 1.00040(0.00600) | 0.99730(0.00074) | 0.99718(0.00074) | 0.99737(0.00068) | 0.99735(0.00070) |
hst004 | 1.00000(0.00320) | 0.99719(0.00060) | 0.99686(0.00068) | 0.99739(0.00067) | 0.99693(0.00063) |
hst009 | 0.99900(0.00430) | 1.00107(0.00073) | 1.00166(0.00072) | 1.00073(0.00067) | 1.00128(0.00070) |
hst010 | 1.00000(0.00290) | 1.00106(0.00068) | 1.00182(0.00066) | 1.00061(0.00065) | 1.00113(0.00071) |
hst011 | 1.00000(0.00230) | 1.00398(0.00067) | 1.00442(0.00065) | 1.00374(0.00067) | 1.00438(0.00068) |
hst012 | 0.99990(0.00580) | 1.00093(0.00065) | 1.00127(0.00061) | 1.00073(0.00057) | 1.00070(0.00061) |
hst013 | 1.00120(0.00260) | 0.99745(0.00059) | 0.99682(0.00059) | 0.99794(0.00058) | 0.99738(0.00059) |
hst020 | 0.99660(0.01160) | 0.99099(0.00071) | 0.99120(0.00071) | 0.99087(0.00068) | 0.99097(0.00069) |
hst032 | 1.00150(0.00260) | 0.99864(0.00050) | 0.99876(0.00052) | 0.99834(0.00053) | 0.99827(0.00052) |
hst042 | 0.99570(0.00390) | 0.99582(0.00052) | 0.99596(0.00058) | 0.99574(0.00054) | 0.99597(0.00055) |
imf00101 | 1.00000(0.00090) | 1.00030(0.00059) | 1.00016(0.00057) | 1.00039(0.00056) | 1.00052(0.00059) |
imf00102 | 1.00000(0.00090) | 1.00046(0.00055) | 1.00064(0.00057) | 1.00035(0.00057) | 1.00057(0.00057) |
imf00103 | 1.00000(0.00030) | 1.00133(0.00059) | 1.00091(0.00056) | 1.00158(0.00054) | 1.00124(0.00058) |
imf002 | 1.00000(0.00300) | 0.99884(0.00046) | 0.99847(0.00048) | 0.99905(0.00049) | 0.99888(0.00048) |
imf00302 | 1.00000(0.00020) | 1.00214(0.00050) | 1.00191(0.00056) | 1.00227(0.00052) | 1.00201(0.00049) |
imf00402 | 1.00000(0.00020) | 1.00749(0.00057) | 1.00778(0.00057) | 1.00732(0.00057) | 1.00763(0.00057) |
imf00502 | 1.00000(0.00020) | 1.00198(0.00056) | 1.00141(0.00055) | 1.00237(0.00050) | 1.00189(0.00050) |
imf00602 | 1.00000(0.00020) | 0.99608(0.00057) | 0.99543(0.00055) | 0.99653(0.00052) | 0.99598(0.00058) |
imf00704 | 1.00450(0.00070) | 1.00438(0.00048) | 1.00479(0.00045) | 1.00402(0.00048) | 1.00433(0.00050) |
imf009 | 1.00000(0.00530) | 1.00999(0.00062) | 1.01007(0.00066) | 1.00995(0.00065) | 1.01009(0.00061) |
lst001 | 1.00000(0.00290) | 1.01223(0.00069) | 1.01238(0.00066) | 1.01214(0.00069) | 1.01244(0.00064) |
lst002 | 1.00380(0.00400) | 1.00048(0.00062) | 1.00011(0.00058) | 1.00076(0.00058) | 1.00052(0.00056) |
lst00301 | 1.00070(0.00390) | 1.00066(0.00064) | 1.00056(0.00066) | 1.00072(0.00069) | 1.00055(0.00060) |
lst00302 | 1.00030(0.00420) | 0.99990(0.00060) | 0.99954(0.00061) | 1.00012(0.00060) | 0.99987(0.00060) |
lst00401 | 0.99940(0.00080) | 0.99906(0.00062) | 0.99892(0.00063) | 0.99914(0.00063) | 0.99886(0.00061) |
lst00429 | 0.99990(0.00090) | 1.00251(0.00068) | 1.00223(0.00061) | 1.00267(0.00062) | 1.00281(0.00062) |
lst00714 | 0.99610(0.00090) | 0.99466(0.00063) | 0.99418(0.00066) | 0.99494(0.00062) | 0.99437(0.00063) |
lst00730 | 0.99730(0.00090) | 0.99716(0.00057) | 0.99648(0.00059) | 0.99756(0.00060) | 0.99707(0.00063) |
lst016105 | 0.99960(0.00130) | 1.00542(0.00065) | 1.00592(0.00061) | 1.00512(0.00062) | 1.00547(0.00064) |
lst016113 | 0.99990(0.00130) | 1.00558(0.00060) | 1.00554(0.00065) | 1.00561(0.00066) | 1.00603(0.00067) |
Benchmark | Speedup Ratio | Benchmark | Speedup Ratio | ||
---|---|---|---|---|---|
MRDT | SRDT | MRDT | SRDT | ||
hmf001 | 1.18 | 1.12 | imf00101 | 1.42 | 1.32 |
hmf004 | 1.01 | 1 | imf00102 | 1.29 | 1.2 |
hmf008 | 1.18 | 1.12 | imf00103 | 1.04 | 1 |
hmf011 | 1.02 | 1 | imf002 | 1.42 | 1.32 |
hmf013 | 1.07 | 1.02 | imf00302 | 1.54 | 1.43 |
hmf015 | 1.21 | 1.15 | imf00402 | 1.41 | 1.31 |
hmf019 | 1.06 | 1 | imf00502 | 1.25 | 1.17 |
hmf02611 | 1.44 | 1.36 | imf00602 | 1.3 | 1.21 |
hmf034 | 1.08 | 1.02 | imf00704 | 1.46 | 1.36 |
hmf069 | 1.32 | 1.25 | imf009 | 1 | 1 |
hst001 | 1.24 | 1.21 | lst001 | 1.8 | 1.74 |
hst004 | 1.06 | 1.03 | lst002 | 1.5 | 1.45 |
hst009 | 1.02 | 1 | lst00301 | 1.39 | 1.35 |
hst010 | 1.15 | 1.12 | lst00302 | 1.13 | 1.09 |
hst011 | 1.26 | 1.23 | lst00401 | 1.24 | 1.19 |
hst012 | 1.01 | 1 | lst00429 | 1.26 | 1.21 |
hst013 | 1.57 | 1.53 | lst00714 | 1.22 | 1.18 |
hst020 | 1.09 | 1.05 | lst00730 | 1.12 | 1.08 |
hst032 | 1.58 | 1.54 | lst016105 | 1.12 | 1.08 |
hst042 | 1.1 | 1.07 | lst016113 | 1.18 | 1.14 |
Reactor Model | MRDT | SRDT | CRTT | MCNP |
---|---|---|---|---|
OPR | 1.00610(0.00085) | 1.00595(0.00105) | 1.00623(0.00091) | 1.00624(0.00082) |
HM | 1.00128(0.00059) | 1.00158(0.00068) | 1.00116(0.00057) | 1.00112(0.00064) |
BEAVRS | 1.00505(0.00072) | 1.00537(0.00084) | 1.00490(0.00072) | 1.00523(0.00068) |
Reactor Model | Method | Tracking Rate (neutron/s) | Elapsed Runtime (s) | Speedup Ratio 1 | Speedup Ratio 2 |
---|---|---|---|---|---|
CRTT | 6811 | 4.11 × 103 | 1.00 | 1.00 | |
OPR | SRDT | 8823 | 3.21 × 103 | 1.30 | 1.28 |
MRDT | 9973 | 2.87 × 103 | 1.46 | 1.43 | |
CRTT | 2532 | 1.09 × 104 | 1.00 | 1.00 | |
HM | SRDT | 3429 | 8.38 × 103 | 1.35 | 1.30 |
MRDT | 3917 | 7.13 × 103 | 1.55 | 1.53 | |
CRTT | 2322 | 1.20 × 104 | 1.00 | 1.00 | |
BEAVRS | SRDT | 3450 | 8.30 × 103 | 1.49 | 1.45 |
MRDT | 3833 | 7.41 × 103 | 1.65 | 1.62 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Q.; Chen, Z. Multi-Regional Delta-Tracking Method for Neutron Transport Tracking in Monte Carlo Criticality Calculation. Sustainability 2018, 10, 2272. https://doi.org/10.3390/su10072272
Guo Q, Chen Z. Multi-Regional Delta-Tracking Method for Neutron Transport Tracking in Monte Carlo Criticality Calculation. Sustainability. 2018; 10(7):2272. https://doi.org/10.3390/su10072272
Chicago/Turabian StyleGuo, Qian, and Zhenping Chen. 2018. "Multi-Regional Delta-Tracking Method for Neutron Transport Tracking in Monte Carlo Criticality Calculation" Sustainability 10, no. 7: 2272. https://doi.org/10.3390/su10072272
APA StyleGuo, Q., & Chen, Z. (2018). Multi-Regional Delta-Tracking Method for Neutron Transport Tracking in Monte Carlo Criticality Calculation. Sustainability, 10(7), 2272. https://doi.org/10.3390/su10072272