Influence of Rice Straw Fibers on Concrete Strength and Drying Shrinkage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Concrete Mixing Procedure
2.2.2. RSF Washing Procedure
2.2.3. Experimental Procedures
3. Results and Discussion
3.1. Impact of RSF Addition on Concrete Heat of Hydration
3.2. Impact of RSF Addition on Concrete Strength
3.3. Impact of RSF Addition on Concrete Flexural Strength
3.4. Impact of RSF Addition on Concrete Drying Shrinkage
3.5. Discussion on Impact of RSF on Strength and Drying Shrinkage of Concrete
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- ACI 544.1R. Report on Fiber Reinforced Concrete; American Concrete Institute: Farmington Hills, MI, USA, 2009. [Google Scholar]
- Juarez, A.; Fajardoa, G.; Monroy, S.; Duran-Herrera, A.; Valdez, P.; Magniont, C. Comparative study between natural and PVA fibers to reduce plastic shrinkage cracking in cement-based composite. Constr. Build. Mater. 2015, 91, 164–170. [Google Scholar] [CrossRef]
- Tschegg, M.E. Fracture energy of natural fibre reinforced concrete. Constr. Build. Mater. 2013, 40, 991–997. [Google Scholar]
- Ardanuy, M.; Claramunt, J.; Toledo-Filho, R.-D. Cellulosic fiber reinforced cement-based composites: A review of recent research. Constr. Build. Mater. 2015, 79, 115–128. [Google Scholar] [CrossRef] [Green Version]
- Gram, H. Methods for reducing the tendency towards embrittlement in sisal fibre concrete. Nord. Concr. Res. 1983, 2, 62–71. [Google Scholar]
- Mezencevova, A.; Garas, V.; Nanko, H.; Kurtis, K.E. Influence of Thermomechanical Pulp Fiber Compositions on Internal Curing of Cementitious Materials. J. Mater. Civ. Eng. 2012, 24, 970–975. [Google Scholar] [CrossRef]
- Filho, R.D.T.; Ghavami, K.; Sanjuan, M.A.; England, G.L. Free, restrained and drying shrinkage of cement mortar composites reinforced with vegetable fibres. Cem. Concr. Compos. 2005, 27, 537–546. [Google Scholar] [CrossRef]
- Khorami, M.; Ganjian, E. Comparing flexural behaviour of fibre–cement composites reinforced bagasse: Wheat and eucalyptus. Constr. Build. Mater. 2011, 25, 3661–3667. [Google Scholar] [CrossRef]
- Mohr, J.; Biernacki, J.J.; Kurtis, K.E. Supplementary cementitious materials for mitigating degradation of kraft pulp fiber-cement composites. Cem. Concr. Res. 2007, 37, 1531–1543. [Google Scholar] [CrossRef]
- Mohr, B.J.; Nanko, H.B.; Kurtis, K.E. Durability of thermomechanical fiber-cement composites to wet/dry cycling. Cem. Concr. Res. 2005, 35, 1646–1649. [Google Scholar] [CrossRef]
- Filho, R.D.T.; Scrivener, K.; England, G.L.; Ghavami, K. Durability of alkali-sensitive sisal and coconut fibres in cement mortar composites. Cem. Concr. Compos. 2000, 22, 127–143. [Google Scholar] [CrossRef]
- Blank, S.; Jetter, K.; Wick, C.; Williams, J. With a ban on burning, incorporating rice straw into soil may become disposal option for growers. Calif. Agric. 1993, 47, 8–12. [Google Scholar]
- ASTM C150. Standard Specification for Portalnd Cement; ASTM International: West Conshohocken, PA, USA, 2009. [Google Scholar]
- ASTM C39. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens; ASTM International: West Conshohocken, PA, USA, 2017. [Google Scholar]
- ASTM C78/78M. Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading); ASTM International: West Conshohocken, PA, USA, 2016. [Google Scholar]
- C157/157M. Standard Test Method for Length Change of Hardened Hydraulic-Cement Mortar and Concrete; ASTM International: West Conshohocken, PA, USA, 2014. [Google Scholar]
- Riding, K.; Silva, D.; Scrivener, K. Early age strength of blend cement systems by CaCl2 and diethanol-isopropanolmine. Cem. Concr. Res. 2010, 40, 935–946. [Google Scholar] [CrossRef]
- Ataie, F.F.; Juenger, M.C.; Taylor-Lange, S.C.; Riding, K.A. Comparison of the retarding mechanisms of zinc oxide and sucrose on cement hydration and interactions with supplementary cementitious materials. Cem. Concr. Res. 2015, 72, 128–136. [Google Scholar] [CrossRef]
- Ataie, F.F.; Riding, K.A. Thermochemical Pretreatments for Agricultural Residue Ash Production for Concrete. J. Mater. Civ. Eng. 2012, 25, 1703–1711. [Google Scholar] [CrossRef]
- Ataie, F.F.; Riding, K.A. Impact of pretreatments and enzymatic hydrolysis on agricultural residue ash suitability for concrete. Constr. Build. Mater. 2014, 58, 25–30. [Google Scholar] [CrossRef]
- Zheng, Y.; Pan, Z.; Zhang, R. Overview of biomass pretreatment for cellulosic ethanol production. Int. J. Agric. Boil. Eng. 2009, 2, 51–68. [Google Scholar]
- Ataie, F.; Riding, K. Use of bioethanol byproduct for supplementary cementitious material production. Constr. Build. Mater. 2014, 51, 89–96. [Google Scholar] [CrossRef] [Green Version]
Silicon Dioxide (SiO2)% | 21.3 |
Aluminum Oxide (Al2O3)% | 3.9 |
Calcium Oxide (CaO)% | 63.2 |
Ferric Oxide (Fe2O3)% | 3.8 |
Magnesium Oxide (MgO)% | 2.2 |
Sulfur Trioxide (SO3)% | 2.3 |
Loss on Ignition (LOI)% | 2 |
Total Alkali | 0.49 |
Limestone% | 3.1 |
Blaine Fineness (m2/kg) | 380 |
Mix ID | w/c | Cement (kg) | RSF-C | RSF-F | ||||
---|---|---|---|---|---|---|---|---|
RSF% | RSF (kg) | Water Added to RSF (kg) | RSF% | RSF (kg) | Water Added to RSF (kg) | |||
Mix #1 | 0.54 | 329.1 | 0 | 0 | 0 | 0 | 0 | 0 |
Mix #2 | 0.42 | 371.7 | 0 | 0 | 0 | 0 | 0 | 0 |
Mix #3 | 0.54 | 329.1 | 1 | 3.4 | 16.5 | 0 | 0 | 0 |
Mix #4 | 0.54 | 329.1 | 2 | 6.7 | 32.8 | 0 | 0 | 0 |
Mix #5 | 0.54 | 329.1 | 3 | 9.9 | 49.3 | 0 | 0 | 0 |
Mix #6 | 0.42 | 371.7 | 1 | 3.7 | 18.6 | 0 | 0 | 0 |
Mix #7 | 0.42 | 371.7 | 2 | 7.4 | 37.2 | 0 | 0 | 0 |
Mix #8 | 0.42 | 371.7 | 3 | 11.2 | 55.8 | 0 | 0 | 0 |
Mix #9 | 0.54 | 329.1 | 0 | 0 | 0 | 1 | 3.4 | 16.5 |
Mix #10 | 0.54 | 329.1 | 0 | 0 | 0 | 2 | 6.7 | 32.8 |
Mix #11 | 0.54 | 329.1 | 0 | 0 | 0 | 3 | 9.9 | 49.3 |
Mix #12 | 0.42 | 371.7 | 0 | 0 | 0 | 1 | 3.7 | 18.6 |
Mix #13 | 0.42 | 371.7 | 0 | 0 | 0 | 2 | 7.4 | 37.2 |
Mix #14 | 0.42 | 371.7 | 0 | 0 | 0 | 3 | 11.2 | 55.8 |
Sample ID | Na | K | P | TOC | |
---|---|---|---|---|---|
RSF-C | Average | 145 | 882 | 93 | 2357 |
St. Div. | 6 | 31 | 3 | 40 | |
RSF-F | Average | 211 | 986 | 127 | 2562 |
St. Div. | 10 | 62 | 11 | 201 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ataie, F. Influence of Rice Straw Fibers on Concrete Strength and Drying Shrinkage. Sustainability 2018, 10, 2445. https://doi.org/10.3390/su10072445
Ataie F. Influence of Rice Straw Fibers on Concrete Strength and Drying Shrinkage. Sustainability. 2018; 10(7):2445. https://doi.org/10.3390/su10072445
Chicago/Turabian StyleAtaie, Feraidon. 2018. "Influence of Rice Straw Fibers on Concrete Strength and Drying Shrinkage" Sustainability 10, no. 7: 2445. https://doi.org/10.3390/su10072445
APA StyleAtaie, F. (2018). Influence of Rice Straw Fibers on Concrete Strength and Drying Shrinkage. Sustainability, 10(7), 2445. https://doi.org/10.3390/su10072445