Urban Green Space Suitability Evaluation Based on the AHP-CV Combined Weight Method: A Case Study of Fuping County, China
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data Sources
3. Methods
3.1. AHP-CV Combined Weight
3.2. UGS Suitability Evaluation Model
3.2.1. The Evaluation Index System
3.2.2. The Classification Criteria for the Evaluation Factors
3.2.3. GIS Analysis and Processing of the Evaluation Index Data
- (1)
- DEM data processing: The DEM data were downloaded from the Geospatial Data Cloud, and the evaluation and slope were obtained from the surface analysis tool in ArcGIS10.5.
- (2)
- Extract remote sensing image data: After preprocessing the remote sensing images, the existing land use classifications were obtained through the integration of supervised classification and field investigation. The NDVI was derived from the processing of remote sensing image multi-spectral images [50], and the heat island effect was obtained from an algorithm that was applied to retrieve the land surface temperature (LST) distribution from the Landsat8 data [51].
- (3)
- GIS buffer analysis data: Using the classification criteria of the evaluation factor, the different distances of the buffer were established for the pollution sources, significant infrastructure, road traffic, water area and other factors.
3.2.4. Evaluation Index Weight Calculation
3.2.5. UGS Suitability Evaluation Model
4. Results
4.1. Fuping County Green Space Suitability Evaluation Results
4.2. Spatial Layout Optimization of the Green Space System in Fuping County
5. Discussion
5.1. AHP-CV Combined Weight of UGS Suitability Evaluation
5.2. Contributions to the Literature
5.3. Limitations of the Results
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- De Ridder, K.; Adamec, V.; Banuelos, A.; Bruse, M.; Burger, M.; Damsgaard, O.; Dufek, J.; Hirsch, J.; Lefebre, F.; Perez-Lacorzana, J.M.; et al. An integrated methodology to assess the benefits of urban green space. Sci. Total Environ. 2004, 334–335, 489–497. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Wang, C.; Li, M.; Song, F.; He, P.; Wang, B.; Shi, M.; Qiu, H. Research theories and methods of urban green space at abroad. Chin. J. Ecol. 2006, 25, 857–862. (In Chinese) [Google Scholar]
- Haq, S.M.A. Urban green spaces and an integrative approach to sustainable environment. J. Environ. Prot. 2011, 2, 601–608. [Google Scholar] [CrossRef]
- Anguluri, R.; Narayanan, P. Role of green space in urban planning: Outlook towards smart cities. Urban For. Urban Green. 2017, 25, 58–65. [Google Scholar] [CrossRef]
- Rakhshandehroo, M.; Mohdyusof, M.J.; Tahir, O.M.; Yunos, M.Y.M. The socialbenefits of urban open green spaces: A literature review. Manag. Res. Pract. 2015, 7, 60–71. [Google Scholar]
- Li, F.; Wang, R. Research advance in ecosystem service of urban green space. Chin. J. Appl. Ecol. 2004, 15, 527–531. (In Chinese) [Google Scholar]
- Wolch, J.R.; Byrne, J.; Newell, J.P. Urban green space, public health, and environmental justice: The challenge of making cities ‘just green enough’. Landsc. Urban Plan. 2014, 125, 234–244. [Google Scholar] [CrossRef] [Green Version]
- Jim, C.Y.; Chen, S.S. Comprehensive greenspace planning based on landscape ecology principles in compact Nanjing City, China. Landsc. Urban Plan. 2003, 65, 95–116. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, Y. Spatial–temporal dynamics of urban green space in response to rapid urbanization and greening policies. Landsc. Urban Plan. 2011, 100, 268–277. [Google Scholar] [CrossRef]
- Uy, P.D.; Nakagoshi, N. Application of land suitability analysis and landscape ecology to urban greenspace planning in hanoi, vietnam. Urban For. Urban Green. 2008, 7, 25–40. [Google Scholar] [CrossRef]
- Zhou, Y.; Shi, T.; Hu, Y.; Gao, C.; Liu, M. Urban green space land suitability and its spatial distribution in shenyang city of northeast China. Chin. J. Ecol. 2011, 30, 1805–1812. (In Chinese) [Google Scholar]
- Malczewski, J. Gis-based land-use suitability analysis: A critical overview. Prog. Plan. 2004, 62, 3–65. [Google Scholar] [CrossRef]
- Bojorquez-Tapia, L.A.; Diaz-Mondragon, S.; Ezcurra, E. Gis-based approach for participatory decision making and land suitability assessment. Int. J. Geogr. Inf. Sci 2001, 15, 129–151. [Google Scholar] [CrossRef]
- Li, Q.; Huang, J.; Wang, C.; Lin, H.; Zhang, J.; Jiang, J.; Wang, B. Land development suitability evaluation of pingtan island based on scenario analysis and landscape ecological quality evaluation. Sustainability 2017, 9, 1292. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, Z. Ecological suitability assessment of urban land use based on gis: Synthesis of ecological footprint analysis and eco-system service. Acta Sci. Nat. Univ. Pekin. 2011, 47, 531–538. (In Chinese) [Google Scholar]
- Chen, Y.; Yu, J.; Khan, S. Spatial sensitivity analysis of multi-criteria weights in gis-based land suitability evaluation. Environ. Model. Softw. 2010, 25, 1582–1591. [Google Scholar] [CrossRef]
- Shearer, K.S.; Xiang, W. Representing multiple voices in landscape planning: A land suitability assessment study for a park land-banking program in concord, north carolina, USA. Landsc. Urban Plan. 2009, 93, 111–122. [Google Scholar] [CrossRef]
- McHarg, I.L.; Mumford, L. Design with Nature; American Museum of Natural History: New York, NY, USA, 1969. [Google Scholar]
- Marull, J.; Pino, J.; Mallarach, J.M.; Cordobilla, M.J. A land suitability index for strategic environmental assessment in metropolitan areas. Landsc. Urban Plan. 2007, 81, 200–212. [Google Scholar] [CrossRef]
- Quan, B.; Zhu, H.; Chen, S.; MJM, R.; Li, B. Land suitability assessment and land use change in Fujian Province, China. Pedosphere 2007, 17, 493–504. [Google Scholar] [CrossRef]
- Ngowi, J.; Stocking, M. Assessing land suitability and yield potential for coconuts in tanzania. Appl. Geogr. 1989, 9, 21–33. [Google Scholar] [CrossRef]
- Lathrop, R.G., Jr.; Bognar, J.A. Applying gis and landscape ecological principles to evaluate land conservation alternatives. Landsc. Urban Plan. 1998, 41, 27–41. [Google Scholar] [CrossRef]
- Miller, W.; Collins, M.G.; Steiner, F.R.; Cook, E. An approach for greenway suitability analysis. Landsc. Urban Plan. 1998, 42, 91–105. [Google Scholar] [CrossRef]
- do Carmo Giordano, L.; Riedel, P.S. Multi-criteria spatial decision analysis for demarcation of greenway: A case study of the city of Rio Claro, Sao Paulo, Brazil. Landsc. Urban Plan. 2008, 84, 301–311. [Google Scholar] [CrossRef]
- Kuang, P. Suitability analysis for system planning of city open space. Chin. Landsc. Archit. 1995, 11, 48–51. (In Chinese) [Google Scholar]
- Mahmoud, A.H.A.; El-Sayed, M.A. Development of sustainable urban green areas in egyptian new cities: The case of el-sadat city. Landsc. Urban Plan. 2011, 101, 157–170. [Google Scholar] [CrossRef]
- M’Ikiugu, M.M.; Kinoshita, I.; Tashiro, Y. Urban green space analysis and identification of its potential expansion areas. Procedia Soc. Behav. Sci. 2012, 35, 449–458. [Google Scholar] [CrossRef]
- Lai, C.; Chen, X.; Chen, X.; Wang, Z.; Wu, X.; Zhao, S. A fuzzy comprehensive evaluation model for flood risk based on the combination weight of game theory. Nat. Hazards 2015, 77, 1243–1259. [Google Scholar] [CrossRef]
- Quinn, B.; Schiel, K.; Caruso, G. Mapping uncertainty from multi-criteria analysis of land development suitability, the case of howth, dublin. J. Maps 2015, 11, 487–495. [Google Scholar] [CrossRef]
- Caha, J.; Burian, J. Comparison of Fuzzy AHP Algorithms for Land Suitability Assessment. In Proceedings of the GIS Ostrava, Ostrava, Czech Republic, 22–24 March 2017; Springer: Berlin, Germany; pp. 31–46. [Google Scholar]
- Mosadeghi, R.; Warnken, J.; Tomlinson, R.; Mirfenderesk, H. Comparison of fuzzy-ahp and ahp in a spatial multi-criteria decision making model for urban land-use planning. Comput. Environ. Urban Syst. 2015, 49, 54–65. [Google Scholar] [CrossRef]
- Saaty, T.L.; Tran, L.T. On the invalidity of fuzzifying numerical judgments in the analytic hierarchy process. Math. Comput. Model. 2007, 46, 962–975. [Google Scholar] [CrossRef]
- Xu, X. A note on the subjective and objective integrated approach to determine attribute weights. Eur. J. Oper. Res. 2004, 156, 530–532. [Google Scholar] [CrossRef]
- Jahan, A.; Mustapha, F.; Sapuan, S.; Ismail, M.Y.; Bahraminasab, M. A framework for weighting of criteria in ranking stage of material selection process. Int. J. Adv. Manuf. Technol. 2012, 58, 411–420. [Google Scholar] [CrossRef]
- Hayati, E.; Majnounian, B.; Abdi, E.; Sessions, J.; Makhdoum, M. An expert-based approach to forest road network planning by combining delphi and spatial multi-criteria evaluation. Environ. Monit. Assess. 2013, 185, 1767–1776. [Google Scholar] [CrossRef] [PubMed]
- Chandio, I.A.; Matori, A.-N.; Lawal, D.U.; Sabri, S. Gis-based land suitability analysis using AHP for public parks planning in Larkana city. Mod. Appl. Sci. 2011, 5, 177. [Google Scholar] [CrossRef]
- Guo, Y.; Shen, Y. Quantifying water and energy budgets and the impacts of climatic and human factors in the Haihe River Basin, China: 2. Trends and implications to water resources. J. Hydrol. 2015, 527, 251–261. [Google Scholar] [CrossRef]
- Zhao, L.; Li, L.; Wu, Y. Research on the coupling coordination of a sea–land system based on an integrated approach and new evaluation index system: A case study in Hainan Province, China. Sustainability 2017, 9, 859. [Google Scholar] [CrossRef]
- Wu, D.S.; Feng, X.; Wen, Q.Q. The research of evaluation for growth suitability of carya cathayensis sarg. Based on pca and ahp. Procedia Eng. 2011, 15, 1879–1883. [Google Scholar] [CrossRef]
- Zhao, W.; Lin, J.; Wang, S.; Liu, J.; Chen, Z.; Kou, W. Influence of human activities on groundwater environment based on coefficient variation method. Environ. Sci. 2013, 34, 1277–1283. (In Chinese) [Google Scholar]
- Wu, H.; Yu, H.; Hu, Y.; Meng, F.; Yang, J.; Zhu, J.; Wang, Y. Research on the establishment of the regional ecological security assessment model by means of the combined weights. J. Saf. Environ. 2015, 15, 370–375. (In Chinese) [Google Scholar]
- Wu, K.; Jin, J. Attribute recognition method of regional ecological security evaluation based on combined weight on principle of relative entropy. Sci. Geogr. Sin. 2008, 28, 754–758. (In Chinese) [Google Scholar]
- Kordi, M.; Brandt, S.A. Effects of increasing fuzziness on analytic hierarchy process for spatial multicriteria decision analysis. Comput. Environ. Urban Syst. 2012, 36, 43–53. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L. The Analytic Hierarchy Process: Planning, Priority Setting, Resources Allocation; McGraw-Hill: New York, NY, USA, 1980; 281p. [Google Scholar]
- Manlun, Y. Suitability Analysis of Urban Green Space System Based on GIS; ITC: Geneva, Switzerland, 2003. [Google Scholar]
- Abebe, M.T.; Megento, T.L. Urban green space development using GIS-based multi-criteria analysis in addis ababa metropolis. Appl. Geomat. 2017, 9, 247–261. [Google Scholar] [CrossRef]
- Zhou, J.; Zeng, G.; Huang, G.; Li, Z.; Jiao, S.; Tang, L. The ecological suitability evaluation on urban expansion land based on uncertainties. Acta Ecol. Sin. 2007, 27, 774–783. (In Chinese) [Google Scholar]
- Liu, B.; Jiang, Y. The inclined errors and countermeasures of urban green space system planning in China; the research on indices system of the urban green space system planning. Urban Plan. Forum 2002, 2, 27–29. (In Chinese) [Google Scholar]
- FAO. A Framework for Land Evaluation; FAO: Rome, Italy, 1976. [Google Scholar]
- Weber, D.; Schaepman-Strub, G.; Ecker, K. Predicting habitat quality of protected dry grasslands using landsat ndvi phenology. Ecol. Indic. 2018, 91, 447–460. [Google Scholar] [CrossRef]
- Kaplan, G.; Avdan, U.; Avdan, Z.Y. Urban heat island analysis using the landsat 8 satellite data: A case study in Skopje, Macedonia. Proceedings 2018, 2, 358. [Google Scholar] [CrossRef]
- Zhang, L.; Li, J.; Fu, L. Layout of urban green system: Characteristics and trend. City Plan. Rev. 2009, 3, 32–36. (In Chinese) [Google Scholar]
- Fuping Urban Green Space System Plan 2017–2030. Available online: http://www.fuping.gov.cn/ (accessed on 3 July 2018).
- Liu, B.; Wang, P. Green space ecological network planning: Evolution and research frontier in China. Chin. Landsc. Archit. 2010, 26, 1–5. (In Chinese) [Google Scholar]
- Piran, H.; Maleknia, R.; Akbari, H.; Soosani, J.; Karami, O. Site selection for local forest park using analytic hierarchy process and geographic information system (case study: Badreh county). Int. Res. J. Appl. Basic Sci. 2013, 6, 930–935. [Google Scholar]
- Zucca, A.; Sharifi, A.M.; Fabbri, A.G. Application of spatial multi-criteria analysis to site selection for a local park: A case study in the Bergamo Province, Italy. J. Environ. Manag. 2008, 88, 752–769. [Google Scholar] [CrossRef] [PubMed]
- Nazeri, Z.; Mirzaee, J.; Rostami, A. Application of analytical hierarchy process in land suitability for forest park location (case study: Ilam County, Iran). J. Biodivers. Environ. Sci. 2014, 4, 301–309. [Google Scholar]
- Fu, H.; Fu, G. Land suitability evaluation of urban green space based on gis in haikou. J. Northwest For. Univ. 2016, 31, 291–297. (In Chinese) [Google Scholar]
- Tahmasebi, E.; Jalali, M.; Gharehghashlo, M.; Nicknamfar, M.; Bahmanpour, H. Urban park site selection at local scale by using geographic information system (GIS) and analytic hierarchy process (AHP). Eur. J. Exp. Biol. 2014, 4, 357–365. [Google Scholar]
- Desai, A.R.; Bhagat, S.S. Analysis of suitable locations of urban green space based on AHP for surat city. J. Recent Act. Infrastruct. Sci. 2018, 2. Available online: http://matjournals.in/index.php/JoRAIS/article/view/1533 (accessed on 10 June 2018).
- Li, H.; Chen, W.; He, W. Planning of green space ecological network in urban areas: An example of Nanchang, China. Int. J. Environ. Res. Public Health 2015, 12, 12889–12904. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Saito, K.; Yin, W.; Su, C. Landscape connectivity as a tool in green space evaluation and optimization of the haidan district, beijing. Sustainability 2018, 10, 1979. [Google Scholar] [CrossRef]
- Kong, F.; Yin, H.; Nakagoshi, N. Using gis and landscape metrics in the hedonic price modeling of the amenity value of urban green space: A case study in Jinan City, China. Landsc. Urban Plan. 2007, 79, 240–252. [Google Scholar] [CrossRef]
- Comber, A.; Brunsdon, C.; Green, E. Using a gis-based network analysis to determine urban greenspace accessibility for different ethnic and religious groups. Landsc. Urban Plan. 2008, 86, 103–114. [Google Scholar] [CrossRef]
- Cetin, M. Using GIS analysis to assess urban green space in terms of accessibility: Case study in Kutahya. Int. J. Sustain. Dev. World Ecol. 2015, 22, 420–424. [Google Scholar] [CrossRef]
No. | Criteria | Sub-Criteria | Description |
---|---|---|---|
1 | Human activities (X1) | Existing land use (X11) | Reflects the ecological value of land resources |
2 | Pollution source (X12) | Reflects the degree of pollution impact on the region | |
3 | Significant infrastructure (X13) | Characterization of significant infrastructure requires greenbelt isolation | |
4 | Road traffic (X14) | Characterizes the basic conditions of green traffic corridors | |
5 | Historical sites (X2) | Ancient and famous trees (X21) | Reflects the ecological protection value of ancient and famous trees |
6 | Tourism resources (X22) | Reflects the development degree of regional tourism resources | |
7 | Heritage sites (X23) | Reflects the ecological and cultural values of heritage sites | |
8 | Natural landforms (X3) | Water area (X31) | Factors that reflect the conditions of regional water resources and maintenance of the ecological balance |
9 | Slope (X32) | Reflects the degree of impact on vegetation distribution | |
10 | Elevation (X33) | Reflects the degree of impact on living creatures | |
11 | Heat island effect (X34) | Reflects the influence of regional temperature differences on vegetation | |
12 | Geological disasters (X35) | Reflects the stability of the development of green space by geological disasters | |
13 | Biological protection (X4) | Ecological patches (X41) | Reflects the degree of biological diversity |
14 | NDVI (X42) | Reflects the growth of green vegetation |
Criteria | Sub-Criteria | Layer Classification (Suitability) | ||||
---|---|---|---|---|---|---|
5 | 4 | 3 | 2 | 1 | ||
Human activities (X1) | Existing land use (X11) | Forest, water | Green space | Agricultural land | – | Construction land |
Pollution source (X12) | <300 m | – | 300–500 m | 500–1000 m | >1000 m | |
Significant infrastructure (X13) | <40 m | – | 40–80 m | 80–200 m | >200 m | |
Road traffic (X14) | <50 m | – | 50–100 m | 100–200 m | >200 m | |
Historical sites (X2) | Ancient and famous trees (X21) | <30 m | – | 30–50 m | 50–100 m | >100 m |
Tourism resources (X22) | <500 m | 500–1000 m | 1000–2000 m | 2000–5000 m | >5000 m | |
Heritage sites (X23) | Heritage site | < 500 m | 500–1000 m | – | >1000 m | |
Natural landforms (X3) | Water area (X31) | Water | < 100 m | 100–300 m | 300–500 m | >500 m |
Slope (X32) | >20° | 15–20° | 10–15° | 5–10° | <5° | |
Elevation (X33) | >1000 m | 800–1000 m | 600–800 m | 400–600 m | <400 m | |
Heat island effect (X34) | Below the average temperature 4 degrees | Below the average temperature 4–3 degrees | Below the average temperature 3–2 degrees | Below the average temperature 2–1 degrees | Other | |
Geological disasters (X35) | Geological disaster area | >20 m | 20–40 m | 40–80 m | >80 m | |
Biological protection (X4) | Ecological patches (X41) | Ecological patches | >300 m | 300–500 m | 500–1000 m | >1000 m |
NDVI (X42) | NDVI > 0.3 | 0.2 < NDVI < 0.3 | 0.1 < NDVI < 0.2 | 0 < NDVI < 0.1 | NDVI < 0 |
Code | Evaluation Factor | AHP Weight | AHP Weight Ranking | CV Weight | CV Weight Ranking | Combined Weight | Combined Weight Ranking |
---|---|---|---|---|---|---|---|
X11 | Existing land use | 0.0302 | 11 | 0.0858 | 3 | 0.0568 | 8 |
X12 | Pollution source | 0.0174 | 14 | 0.0585 | 7 | 0.0356 | 14 |
X13 | Significant infrastructure | 0.0325 | 10 | 0.0534 | 9 | 0.0465 | 10 |
X14 | Road traffic | 0.0649 | 5 | 0.0469 | 11 | 0.0616 | 7 |
X21 | Ancient and famous trees | 0.0239 | 12 | 0.0541 | 8 | 0.0401 | 13 |
X22 | Tourism resources | 0.0477 | 7 | 0.0927 | 2 | 0.0742 | 4 |
X23 | Heritage sites | 0.0239 | 13 | 0.0639 | 5 | 0.0436 | 12 |
X31 | Water area | 0.1521 | 2 | 0.0398 | 13 | 0.0869 | 3 |
X32 | Slope | 0.0427 | 9 | 0.0588 | 6 | 0.0559 | 9 |
X33 | Elevation | 0.0519 | 6 | 0.0751 | 4 | 0.0697 | 5 |
X34 | Heat island effect | 0.0743 | 4 | 0.0502 | 10 | 0.0681 | 6 |
X35 | Geological disasters | 0.0452 | 8 | 0.0375 | 14 | 0.0459 | 11 |
X41 | Ecological patches | 0.2622 | 1 | 0.0414 | 12 | 0.1163 | 2 |
X42 | NDVI | 0.1311 | 3 | 0.2419 | 1 | 0.1987 | 1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Fan, Z.; Shen, S. Urban Green Space Suitability Evaluation Based on the AHP-CV Combined Weight Method: A Case Study of Fuping County, China. Sustainability 2018, 10, 2656. https://doi.org/10.3390/su10082656
Li Z, Fan Z, Shen S. Urban Green Space Suitability Evaluation Based on the AHP-CV Combined Weight Method: A Case Study of Fuping County, China. Sustainability. 2018; 10(8):2656. https://doi.org/10.3390/su10082656
Chicago/Turabian StyleLi, Zhiming, Zhengxi Fan, and Shiguang Shen. 2018. "Urban Green Space Suitability Evaluation Based on the AHP-CV Combined Weight Method: A Case Study of Fuping County, China" Sustainability 10, no. 8: 2656. https://doi.org/10.3390/su10082656