Physico-Mechanical and Thermodynamic Properties of Mycelium-Based Biocomposites: A Review
Abstract
:1. Introduction
2. Materials and Properties
2.1. Properties of Mycelium-Based Foams (MBFs)
2.1.1. Density
2.1.2. Thermal and Acoustic Insulation
2.1.3. Thermal Properties and Fire Safety
2.1.4. Mechanical Properties
2.2. Mycelium-Based Sandwich Composites
2.3. Moisture as a Critical Factor in Affecting Properties in Mycelium-Based Composites
3. Life Cycle Assessment (LCA) and Biodegradability of Mycelium-Based Composites
- (1)
- waste materials are re-entered in a production process rather than being discarded; the final product is in turn combustible or compostable;
- (2)
- pure materials and energy are consumed to create products (panels, and package cases for example) of which post-life has a quality significantly improved in comparison to non-biodegradable products;
- (3)
- a mycelium-based life cycle provides an optimization of resources and energy consumption in comparison to traditional competitor products.
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dicker, M.P.M.; Duckworth, P.F.; Baker, A.B.; Francois, G.; Hazzard, M.K.; Weaver, P.M. Green composites: A review of material attributes and complementary applications. Compos. Part A Appl. Sci. Manuf. 2014, 56, 280–289. [Google Scholar] [CrossRef]
- Sitte, P.; Weiler, E.; Kadereit, H.J.; Bresinsky, A.; Körner, C. Strasburger, Lehrbuch der Botanik für Hochschulen, 35th ed.; Springer: Berlin/Heidelberg, Germany, 2002; ISBN 3-8274-1010-X. [Google Scholar]
- Callister, W.M.; Rethwisch, D.G. Materials Science and Engineering, 8th ed.; John Wiley & Sons: New York, NY, USA, 2007; ISBN 978-0470419977. [Google Scholar]
- Ramamoorthy, S.K.; Skrifvars, M.; Persson, A. A review of natural fibers used in biocomposites: Plant, animal and regenerated cellulose fibers. Polym. Rev. 2015, 55, 107–162. [Google Scholar] [CrossRef]
- Nechyporchuk, O.; Belgacem, M.N.; Bras, J. Production of cellulose nanofibrils: A review of recent advances. Ind. Crops Prod. 2016, 93, 2–25. [Google Scholar] [CrossRef]
- Lelivelt, R.J.J. The Mechanical Possibilities of Mycelium Materials. Master’s Thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, 2015. [Google Scholar]
- Lu, T.; Liu, S.; Jiang, M.; Xu, X.; Wang, Y.; Wang, Z.; Gou, J.; Hui, D.; Zhou, Z. Effects of modifications of bamboo cellulose fibers on the improved mechanical properties of cellulose reinforced poly (lactic acid) composites. Compos. Part-B Eng. 2014, 62, 191–197. [Google Scholar] [CrossRef]
- Rognoli, V.; Bianchini, M.; Maffei, S.; Karana, E. DIY materials. Mater. Des. 2015, 86, 692–702. [Google Scholar] [CrossRef]
- Yamanaka, S.; Kikuchi, R. Complex of Fibers and Fungi and a Process for Preparation Thereof. U.S. Patent No. 5,074,959, 24 December 1991. [Google Scholar]
- Ecovative. Available online: http://www.ecovativedesign.com/ (accessed on 26 November 2018).
- Mycoworks. Available online: http://www.mycoworks.com/ for fungi-based leather (accessed on 26 November 2018).
- Fungal Futures, 2016, NL. Available online: http:// www.fungal-futures.com (accessed on 26 November 2018).
- Creative Industries Fund nl. Available online: https://stimuleringsfonds.nl/en (accessed on 26 November 2018).
- Horizon 2020. European Union. Available online: https://ec.europa.eu/programmes/horizon2020 (accessed on 26 November 2018).
- Kirk, P.M.; Cannon, P.F.; Minter, D.W.; Stalpers, J.A. (Eds.) Ainswoth & Bisby’s Dictionary of the Fungi, 10th ed.; CABI Europe: Wallingford, UK, 2008; p. 445. ISBN 978 0 85199 826 8. [Google Scholar]
- Deacon, J.W. Fungal Biology, 4th ed.; Blackwell-Wiley: Oxford, UK, 2006; p. 384. ISBN 978 1 4051 3066 0. [Google Scholar]
- Schwarze, F.W.M.R.; Engels, J.; Mattheck, C. Fungal Strategies of Wood Decay in Trees; Springer-Verlag: Berlin, Germany, 2013; p. 185. ISBN 3 540 67205 2. [Google Scholar]
- Appels, F.V.; Camere, S.; Montalti, M.; Karana, E.; Jansen, K.M.; Dijksterhuis, J.; Krijgsheld, P.; Wösten, H.A. Fabrication factors influencing mechanical, moisture-and water-related properties of mycelium-based composites. Mater. Des. 2019, 161, 64–71. [Google Scholar] [CrossRef]
- Ecovative Design. Available online: www.ecovativedesign.com (accessed on 14 December 2018).
- Mycoworks. Available online: www.mycoworks.com (accessed on 14 December 2018).
- KQED Science. Available online: www.ww2.kqued.org (accessed on 14 December 2018).
- Jiang, L.; Walczyk, D.; McIntyre, G.; Chan, W.K. Cost modeling and optimization of a manufacturing system for mycelium-based biocomposite parts. J. Manuf. Syst. 2017, 41, 8–20. [Google Scholar] [CrossRef]
- Drzal, L.T.; Mohanty, A.K.; Misra, M. Bio-composite materials as alternatives to petroleum-based composites for automotive applications. Magnesium 2001, 40, 1–3. [Google Scholar]
- López Nava, J.A.; Méndez González, J.; Ruelas Chacón, X.; Nájera Luna, J.A. Assessment of Edible Fungi and Films Bio-Based Material Simulating Expanded Polystyrene. Mater. Manuf. Process 2016, 31, 1085–1090. [Google Scholar] [CrossRef]
- Travaglini, S.; Noble, J.; Ross, P.G.; Dharan, C.K.H. Mycology matrix composites. In Proceedings of the American Society for Composites, 28th Technical Conference, State College, PA, USA, 9–11 September 2013. [Google Scholar]
- Hilton, B. Using LCA to Prioritize Process Changes: A Mushroom Packaging LCA Case Study; Rochester Institute of Technology: Rochester, NY, USA, 2013. [Google Scholar]
- European Environment Agency. An EU Action Plan for the Circular Economy COM/2015/0614 Final. Available online: https://www.eea.europa.eu/policy-documents/com-2015-0614-final (accessed on 26 November 2018).
- Doria, E.; Altobelli, E.; Girometta, C.; Nielsen, E.; Zhang, T.; Savino, E. Evaluation of lignocellulolytic activities of ten fungal species able to degrade poplar wood. Int. Biodeterior. Biodegrad. 2014, 94, 160–166. [Google Scholar] [CrossRef]
- Girometta, C.; Zeffiro, A.; Malagodi, M.; Savino, E.; Doria, E.; Nielsen, E.; Buttafava, A.; Dondi, D. Pretreatment of alfalfa stems by wood decay fungus Perenniporia meridionalis improves cellulose degradation and minimizes the use of chemicals. Cellulose 2017, 24, 3803–3813. [Google Scholar] [CrossRef]
- Ross, P. Method for Producing Fungus Structures. U.S. Patent 2016/0355779 A1, 9 August 2016. [Google Scholar]
- MOGU. Available online: https://www.mogu.bio (accessed on 26 November 2018).
- Ahmadi, H. Cellulose-Mycelia Foam: Novel Bio-Composite Material. Master’s Thesis, The University of British Columbia, Vancouver, BC, Canada, 2016. [Google Scholar]
- Mayoral González, E.; González Díez, I. Bacterial induced cementation processes and mycelium panel growth from agricultural waste. Key Eng. Mater. 2015, 663, 42–49. [Google Scholar] [CrossRef]
- Santhosh, B.S.; Bhavana, D.R.; Rakesh, M.G. Mycelium composites: An emerging green building material. Int. Res. J. Eng. Technol. 2018, 5, 3066–3068. [Google Scholar]
- Xing, Y.; Brewer, M.; El-Gharabawy, H.; Griffith, G.; Jones, P. Growing and testing mycelium bricks as building insulation materials. IOP Conf. Ser. Earth Environ. Sci. 2018, 121, 022032. [Google Scholar] [CrossRef] [Green Version]
- Karana, E.; Blauwhoff, D.; Hultink, E.J.; Camere, S. When the material grows: A case study on designing (with) mycelium-based materials. Int. J. Des. 2018, 12, 119–136. [Google Scholar]
- Ziegler, A.R.; Bajwa, S.G.; Holt, G.A.; McIntyre, G.; Bajwa, D.S. Evaluation of physico-mechanical properties of mycelium reinforced green biocomposites made from cellulosic fibers. Appl. Eng. Agric. 2016, 32, 931–938. [Google Scholar] [CrossRef]
- Jiang, L.; Walczyk, D.; McIntyre, G.; Bucinell, R. A new approach to manufacturing biocomposite sandwich structures: Mycelium-based cores. In Proceedings of the ASME 2016 11th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, Blacksburg, VA, USA, 27 June–1 July 2016; ISBN 978-0-7918-4989-7. [Google Scholar]
- Arifin, Y.H.; Yusuf, Y. Mycelium fibers as new resource for environmental sustainability. Procedia Eng. 2013, 53, 504–508. [Google Scholar] [CrossRef]
- Holt, G.A.; McIntyre, G.; Flagg, D.; Bayer, E.; Wanjura, J.D.; Pelletier, M.G. Fungal mycelium and cotton plant materials in the manufacture of biodegradable molded packaging material: Evaluation study of select blends of cotton byproducts. J. Biobased Mater. Bioenergy 2012, 6, 431–439. [Google Scholar] [CrossRef]
- Amstislavski, P.; Yang, Z.; White, M.D. United States Patent Application Pubblication; U.S. Patent and Trademark Office: Washington, DC, USA, 2017.
- Velasco, P.M.; Ortiz, M.P.M.; Giro, M.A.M.; Castelló, M.C.J.; Velasco, L.M. Development of better insulation bricks by adding mushroom compost wastes. Energy Build. 2014, 80, 17–22. [Google Scholar] [CrossRef]
- Pelletier, M.G.; Holt, G.A.; Wanjura, J.D.; Bayer, E.; McIntyre, G. An evaluation study of mycelium based acoustic absorbers grown on agricultural by-product substrates. Ind. Crops Prod. 2013, 51, 480–485. [Google Scholar] [CrossRef]
- Jones, M.; Bhat, T.; Huynh, T.; Kandare, E.; Yuen, R.; Wang, C.H.; John, S. Waste-derived low-cost mycelium composite construction materials with improved fire safety. Fire Mater. 2018, 1–10. [Google Scholar] [CrossRef]
- Silverman, J. Development and Testing of Mycelium-Based Composite Materials for Shoe Sole Applications. Master’s Thesis, University of Delaware, Newark, CA, USA, 2018. [Google Scholar]
- Jones, M.; Huynh, T.; Dekiwadia, C.; Daver, F.; John, S. Mycelium composites: A review of engineering characteristics and growth kinetics. J. Bionanosci. 2017, 11, 241–257. [Google Scholar] [CrossRef]
- Abhijith, R.; Ashok, A.; Rejeesh, C.R. Sustainable packaging applications from mycelium to substitute polystyrene: A review. Mater. Today Proc. 2018, 5, 2139–2145. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, F.; Still, B.; White, M.; Amstislavski, P. Physical and mechanical properties of fungal mycelium-based biofoam. J. Mater. Civ. Eng. 2017, 29, 1–9. [Google Scholar] [CrossRef]
- Islam, M.R.; Tudryn, G.; Bucinell, R.; Schadler, L.; Picu, R.C. Morphology and mechanics of fungal mycelium. Sci. Rep. 2017, 7, 13070. [Google Scholar] [CrossRef] [PubMed]
- Schiavoni, S.; Bianchi, F.; Asdrubali, F. Insulation materials for the building sector: A review and comparative analysis. Renew Sustain. Energy Rev. 2016, 62, 988–1011. [Google Scholar] [CrossRef]
- Siyamak, S.; Ibrahim, N.A.; Abdolmohammadi, S.; Yunus, W.M.Z.B.W.; Rahman, M.Z.A. Enhancement of Mechanical and Thermal Properties of Oil Palm Empty Fruit Bunch Fiber Poly(butylene adipate-co-terephtalate) Biocomposites by Matrix Esterification Using Succinic Anhydride. Molecules 2012, 17, 1969–1991. [Google Scholar] [CrossRef] [Green Version]
- Atif, R.; Shyha, I.; Inam, F. Mechanical, Thermal, and Electrical Properties of Graphene-Epoxy Nanocomposites—A Review. Polymers 2016, 8, 281. [Google Scholar] [CrossRef]
- Gaaz, T.S.; Sulong, A.B.; Ansari, M.N.M.; Kadhum, A.A.H.; Al-Amiery, A.A.; Nassir, M.H. Effect of Starch Loading on the Thermo-Mechanical and Morphological Properties of Polyurethane Composites. Materials 2017, 10, 777. [Google Scholar] [CrossRef]
- Asdrubali, F.; D’Alessandro, F.; Schiavoni, S. A review of unconventional sustainable building insulation materials. Sustain. Mater. Technol. 2015, 4, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Mouritz, A.P.; Gibson, A.G. Fire Properties of Polymer Composite Materials; Springer Science & Business Media: New York, NY, USA, 2007; p. 401. ISBN 978 1 4020 5356 6. [Google Scholar]
- Kapteyn, J.C.; Van Den Ende, H.; Klis, F.M. The contribution of cell wall proteins to the organization of the yeast cell wall. BBA 1999, 1426, 373–383. [Google Scholar] [CrossRef]
- Bowman, S.M.; Free, S.J. The structure and synthesis of the fungal cell wall. Bioessays 2006, 28, 799–808. [Google Scholar] [CrossRef] [PubMed]
- Pillai, C.K.S.; Paul, W.; Sharma, C.P. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. J. Prog. Polym. Sci. 2009, 34, 641–678. [Google Scholar] [CrossRef]
- Corazzari, I.; Nisticò, R.; Turci, F.; Faga, M.G.; Franzoso, F.; Tabasso, S.; Magnacca, G. Advanced physico-chemical characterization of chitosan by means of TGA coupled on-line with FTIR and GCMS: Thermal degradation and water adsorption capacity. Polym. Degrad. Stab. 2015, 112, 1–9. [Google Scholar] [CrossRef]
- Croisier, F.; Jérôme, C. Chitosan-based biomaterials for tissue engineering. Eur. Polym. J. 2013, 49, 780–792. [Google Scholar] [CrossRef] [Green Version]
- Dongre, R.S. Introductory Chapter: Multitask Portfolio of Chitin/Chitosan: Biomatrix to Quantum Dot. In Chitin-Chitosan-Myriad Functionalities in Science and Technology; InTech: London, UK, 2018. [Google Scholar]
- Hu, S.; Song, L.; Pan, H.; Hu, Y. Effect of a novel chitosan-based flame retardant on thermal and flammability properties of polyvinyl alcohol. J. Therm. Anal. Calorim. 2013, 112, 859–864. [Google Scholar] [CrossRef]
- Costes, L.; Laoutid, F.; Brohez, S.; Dubois, P. Bio-based flame retardants: When nature meets fire protection. Mater. Sci. Eng. 2017, 117, 1–25. [Google Scholar] [CrossRef]
- El-Tahlawy, K. Chitosan phosphate: A new way for production of eco-friendly flame-retardant cotton textiles. J. Text. Inst. 2008, 99, 185–191. [Google Scholar] [CrossRef]
- Pan, H.; Wang, W.; Pan, Y.; Song, L.; Hu, Y.; Liew, K.M. Formation of self-extinguishing flame retardant biobased coating on cotton fabrics via Layer-by-Layer assembly of chitin derivatives. Carbohydr. Polym. 2015, 115, 516–524. [Google Scholar] [CrossRef]
- Fang, F.; Zhang, X.; Meng, Y.; Gu, Z.; Bao, C.; Ding, X.; Li, S.; Chen, X.; Tian, X. Intumescent flame retardant coatings on cotton fabric of chitosan and ammonium polyphosphate via layer-by-layer assembly. Surf. Coat. Technol. 2015, 262, 9–14. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Q.Q.; Jiang, Z.M.; Zhang, C.J.; Li, Z.F.; Chen, H.Q.; Zhu, P. Effect of chitosan on the fire retardancy and thermal degradation properties of coated cotton fabrics with sodium phytate and APTES by LBL assembly. J. Anal. Appl. Pyrolysis 2018, 135, 289–298. [Google Scholar] [CrossRef]
- Maddalena, L.; Carosio, F.; Gomez, J.; Saracco, G.; Fina, A. Layer-by-layer assembly of efficient flame retardant coatings based on high aspect ratio graphene oxide and chitosan capable of preventing ignition of PU foam. Polym. Degrad. Stab. 2018, 152, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Ramos-Sanchez, M.C.; Rey, F.J.; Rodriguez, M.L.; Martin-Gil, F.J.; Martin-Gil, J. DTG and DTA studies on typical sugars. Thermochim. Acta 1988, 134, 55–60. [Google Scholar] [CrossRef]
- Ospina Álvarez, S.P.; Ramírez Cadavid, D.A.; Escobar Sierra, D.M.; Ossa Orozco, C.P.; Rojas Vahos, D.F.; Zapata Ocampo, P.; Atehortúa, L. Comparison of extraction methods of chitin from Ganoderma lucidum mushroom obtained in submerged culture. BioMed Res. Int. 2014, 2014. [Google Scholar] [CrossRef] [PubMed]
- Ospina, N.M.; Alvarez, S.P.O.; Sierra, D.M.E.; Vahos, D.F.R.; Ocampo, P.A.Z.; Orozco, C.P.O. Isolation of chitosan from Ganoderma lucidum mushroom for biomedical applications. J. Mater. Sci. Mater. Med. 2015, 26, 135. [Google Scholar] [CrossRef]
- Qiao, Y.; Chen, S.; Liu, Y.; Sun, H.; Jia, S.; Shi, J.; Pedersen, C.M.; Wang, Y.; Hou, X. Pyrolysis of chitin biomass: TG–MS analysis and solid char residue characterization. Carbohydr. Polym. 2015, 133, 163–170. [Google Scholar] [CrossRef]
- Werner, K.; Pommer, L.; Broström, M. Thermal decomposition of hemicelluloses. J. Anal. Appl. Pyrolysis 2014, 110, 130–137. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Wang, S.; Wang, K.; Liu, Q.; Gu, Y.; Luo, Z.; Cen, K.; Fransson, T. Comparison of the pyrolysis behavior of lignins from different tree species. Biotechnol. Adv. 2009, 27, 562–567. [Google Scholar] [CrossRef]
- Yu, J.; Paterson, N.; Blamey, J.; Millan, M. Cellulose, xylan and lignin interactions during pyrolysis of lignocellulosic biomass. Fuel 2017, 191, 140–149. [Google Scholar] [CrossRef] [Green Version]
- Stefanidis, S.D.; Kalogiannis, K.G.; Iliopoulou, E.F.; Michailof, C.M.; Pilavachi, P.A.; Lappas, A.A. A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. J. Anal. Appl. Pyrolysis 2014, 105, 143–150. [Google Scholar] [CrossRef]
- Wösten, H.A. Hydrophobins: Multipurpose proteins. Annu. Rev. Microbiol. 2001, 55, 625–646. [Google Scholar] [CrossRef] [PubMed]
- Zampieri, F.; Wösten, H.A.; Scholtmeijer, K. Creating surface properties using a palette of hydrophobins. Materials 2010, 3, 4607–4625. [Google Scholar] [CrossRef] [PubMed]
- Appels, F.V.; Dijksterhuis, J.; Lukasiewicz, C.E.; Jansen, K.M.; Wösten, H.A.; Krijgsheld, P. Hydrophobin gene deletion and environmental growth conditions impact mechanical properties of mycelium by affecting the density of the material. Sci. Rep. 2018, 8, 4703. [Google Scholar] [CrossRef]
- Alongi, J.; Carletto, R.A.; Bosco, F.; Carosio, F.; Di Blasio, A.; Cuttica, F.; Antonucci, V.; Giordano, M.; Malucelli, G. Caseins and hydrophobins as novel green flame retardants for cotton fabrics. Polym. Degrad. Stab. 2014, 99, 111–117. [Google Scholar] [CrossRef]
- Haneef, M.; Ceseracciu, L.; Canale, C.; Bayer, I.S.; Heredia-Guerrero, J.A.; Athanassiou, A. Advanced materials from fungal mycelium: Fabrication and tuning of physical properties. Sci. Rep. 2017, 7, 41292. [Google Scholar] [CrossRef]
- Pickering, K.L.; Li, Y.; Farrell, R.L.; Lay, M. Interfacial modification of hemp fiber reinforced composites using fungal and alkali treatment. J. Biobased Mater. Bioenergy 2007, 1, 109–117. [Google Scholar] [CrossRef]
- Ramesh, M.; Palanikumar, K.; Reddy, K.H. Plant fibre based bio-composites: Sustainable and renewable green materials. Renew. Sustain. Energy Rev. 2017, 79, 558–584. [Google Scholar] [CrossRef]
- ASTM International. Available online: https://www.astm.org/Standards/ (accessed on 20 October 2018).
- ISO—International organization for standardization. Available online: https://www.iso.org/standard/ (accessed on 20 October 2018).
- Roylance, D. Mechanical Properties of Materials. MIT, 2008; p. 128. Available online: web.mit.edu/course/3/3.225/book.pdf (accessed on 22 October 2018).
- Hassanzadeh, P.; Kharaziha, M.; Nikkhah, M.; Shin, S.R.; Jin, J.; He, S.; Sun, W.; Zhong, C.; Dokmeci, M.R.; Khademhosseini, A.; Rolandi, M. Chitin nanofiber micropatterned flexible substrates for tissue engineering. J. Mater. Chem. B 2013, 1, 4217–4224. [Google Scholar] [CrossRef] [Green Version]
- Hariraksapitak, P.; Supaphol, P. Preparation and properties of α-chitin-whisker-reinforced hyaluronan–gelatin nanocomposite scaffolds. J. Appl. Polym. Sci. 2010, 117, 3406–3418. [Google Scholar] [CrossRef]
- Ifuku, S.; Ikuta, A.; Egusa, M.; Kaminaka, H.; Izawa, H.; Morimoto, M.; Saimoto, H. Preparation of high-strength transparent chitosan film reinforced with surface-deacetylated chitin nanofibers. Carbohydr. Polym. 2013, 98, 1198–1202. [Google Scholar] [CrossRef] [PubMed]
- Kuzmanović, M.; Delva, L.; Cardon, L.; Ragaert, K. The Effect of Injection Molding Temperature on the Morphology and Mechanical Properties of PP/PET Blends and Microfibrillar Composites. Polymers 2016, 8, 355. [Google Scholar] [CrossRef]
- Solomon, A.A.; Vinoth, J.; Sudhakar, R.; Hemalatha, G. Inspecting the behavior of insulated concrete form (icf) blocks with polypropylene sheet. Indian J. Sci. Res. 2017, 14, 114–121. [Google Scholar]
- Tudryn, G.J.; Smith, L.C.; Freitag, J.; Bucinell, R.; Schadler, L.S. Processing and Morphology Impacts on Mechanical Properties of Fungal Based Biopolymer Composites. J. Polym. Environ. 2018, 26, 1473–1483. [Google Scholar] [CrossRef]
- Northwest Foam Products, Inc. Available online: http://www.northwestfoam.com/eps-specs-physical-properties.php.html (accessed on 22 October 2018).
- Jin, J.; Hassanzadeh, P.; Perotto, G.; Sun, W.; Brenckle, M.A.; Kaplan, D.; Omenetto, F.G.; Rolandi, M. A Biomimetic Composite from Solution Self-Assembly of Chitin Nanofibers in a Silk Fibroin Matrix. Adv. Mater. 2013, 25, 4482–4487. [Google Scholar] [CrossRef] [PubMed]
- Stalpers, J.A. Identification of wood-inhabiting fungi in pure culture. Stud. Mycol. 1978, 16, 1–248. [Google Scholar]
- Dow Chemical. Available online: http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_0890/0901b8038089005a.pdf (accessed on 21 October 2018).
- Quality Foam Packaging. Available online: http://www.qualityfoam.com/expanded-polystyrene.asp (accessed on 22 October 2018).
- Stamets, P. Growing Gourmet and Medicinal Mushrooms, 3rd ed.; Ten Speed Press: Berkeley, CA, USA, 2011; ISBN 9781580081757. [Google Scholar]
- Alshannaq, A.; Yu, J.H. Occurrence, toxicity, and analysis of major mycotoxins in food. Int. J. Environ. Res. Public Health 2017, 14, 632. [Google Scholar] [CrossRef]
- Vallas, T.; Courard, L. Using nature in architecture: Building a living house with mycelium and trees. Front. Archit. Res. 2017, 6, 318–328. [Google Scholar] [CrossRef]
- The Ellen Mc Arthur Foundation. Towards the Circular Economy. Economic and Business Rationale for an Accelerated Transition. 2013. Available online: https://www.ellenmacarthurfoundation.org/assets/downloads/publications/Ellen-MacArthur-Foundation-Towards-the-Circular-Economy-vol.1.pdf (accessed on 27 November 2018).
- De los Rios, I.C.; Charnley, F.J. Skills and capabilities for a sustainable and circular economy: The changing role of design. J. Clean. Prod. 2017, 160, 109–122. [Google Scholar] [CrossRef]
- New York State Pollution Prevention Institute. Ecovative Design Mushroom Packaging LCA Case Study. Available online: https://www.rit.edu/affiliate/nysp2i/sites/rit.edu.affiliate.nysp2i/files/docs/case-studies/Ecovative_Design_Mushroom_Packaging_Life_Cycle_Assessment.pdf (accessed on 27 November 2018).
- Schoberleitner, C.; Archodoulaki, V.-M.; Koch, T.; Lüftl, S.; Werderitsch, M.; Kuschnig, G. Developing a Sealing Material: Effect of Epoxy Modification on Specific Physical and Mechanical Properties. Materials 2013, 6, 5490–5501. [Google Scholar] [CrossRef] [Green Version]
- Li, D.C. Review of fungal chitinases. Mycopathologia 2006, 161, 345–360. [Google Scholar]
- Stamets, P.; Chilton, J.S. The Mushroom Cultivator, 1st ed.; Agarikon Press, Olympia: Washington, DC, USA, 1983; pp. 233–331. ISBN 9780961079802. [Google Scholar]
- Ferri, F.; Zjalic, S.; Reverberi, M.; Fabbri, A.A.; Fanelli, C. I Funghi—Coltivazione e Proprietà Medicinali, 1st ed.; Edagricole: Bologna, Italy, 2007; ISBN 9788850652303. [Google Scholar]
Density (g cm−3) | Thermal Conductivity (W m−1K−1) | Young’s Modulus (MPa) | Compressive Strength (kPa) | Flexure Strength (kPa) | Tensile Strength (kPa) | Material | Ref. |
---|---|---|---|---|---|---|---|
0.183 ± 15.1 | - | - | 41.72 ± 13.49 | 10.91 ± 4.41 | 49.90 ± 20.00 | MBF | [24] |
0.25 | - | - | - | - | - | MBF | [34] |
0.05–0.06 | 0.078–0.081 | - | - | - | - | MBF | [35] |
0.10–0.14 | - | 66.14–71.77 | 670–1180 | - | 100–200 | MBSC | [37] |
0.16–0.28 | - | - | - | - | - | MBF | [39] |
0.07–0.22 | 0.10–0.18 | 123–675 * | 1–72 * | 7–26 * | - | MBF | [40] |
0.10–0.24 | - | 2–97 | - | 50–860 | 10–240 | MBF | [18] |
0.16–0.28 | 0.05–0.07 | 5.39–58.63 | 29–567 | - | - | MBF | [41] |
- | 4.27–8.35 | - | - | - | - | Other | [42] |
0.3–0.55 | - | - | - | - | - | MBF | [43] |
0.19–0.59 | - | - | - | - | - | MBF | [44] |
0.29–0.35 | - | - | 156–340 | - | - | MBF | [45] |
0.29–0.34 | - | - | 125–311 | - | - | MBSC | [45] |
Drying Protocol | Response to Moisture Exposure | Response to Water Immersion | Material | Ref. | |||
---|---|---|---|---|---|---|---|
T (°C) | Time (h) | Relative Humidity (%) | Weight Increase (%) | Time (h) | Weight Increase (%) | ||
150; 80 | 0.20; 24 | 60–80 | 3.15–11.63 | 192 | 43–508 | MBF | [18] |
20; 80 | 0.20; 24 | 60–80 | 3.74–10 | 192 | 238–262 | MBF | [18] |
80 | 24 | 60–80 | 5.80–10.96 | 192 | 246–281 | MBF | [18] |
60 | 8 | - | - | 3 | 10–48 | MBF | [40] |
60 | 8 | - | - | 75 | 6.4–30.7 | MBF | [40] |
60 | 8 | - | - | 168 | 93.5–198 | MBF | [40] |
?; 25 | 48; 48 | - | - | Not reported * | 114.1–278.9 | MBF | [24] |
82; 93; 250 | 12; 8; 0.20 | - | - | - | - | MBSC ** | [38] |
110 | 24 | - | - | 50 | 298.7 | MBSC | [37] |
110 | 24 | - | - | >50 | 340.3–350.5 | MBSC | [37] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Girometta, C.; Picco, A.M.; Baiguera, R.M.; Dondi, D.; Babbini, S.; Cartabia, M.; Pellegrini, M.; Savino, E. Physico-Mechanical and Thermodynamic Properties of Mycelium-Based Biocomposites: A Review. Sustainability 2019, 11, 281. https://doi.org/10.3390/su11010281
Girometta C, Picco AM, Baiguera RM, Dondi D, Babbini S, Cartabia M, Pellegrini M, Savino E. Physico-Mechanical and Thermodynamic Properties of Mycelium-Based Biocomposites: A Review. Sustainability. 2019; 11(1):281. https://doi.org/10.3390/su11010281
Chicago/Turabian StyleGirometta, Carolina, Anna Maria Picco, Rebecca Michela Baiguera, Daniele Dondi, Stefano Babbini, Marco Cartabia, Mirko Pellegrini, and Elena Savino. 2019. "Physico-Mechanical and Thermodynamic Properties of Mycelium-Based Biocomposites: A Review" Sustainability 11, no. 1: 281. https://doi.org/10.3390/su11010281
APA StyleGirometta, C., Picco, A. M., Baiguera, R. M., Dondi, D., Babbini, S., Cartabia, M., Pellegrini, M., & Savino, E. (2019). Physico-Mechanical and Thermodynamic Properties of Mycelium-Based Biocomposites: A Review. Sustainability, 11(1), 281. https://doi.org/10.3390/su11010281